• Aucun résultat trouvé

Morphological characterization of particles by the intensity and polarization of the scattered radiation

N/A
N/A
Protected

Academic year: 2021

Partager "Morphological characterization of particles by the intensity and polarization of the scattered radiation"

Copied!
7
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Optik

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . d e / i j l e o

Original

research

article

Morphological

characterization

of

particles

by

the

intensity

and

polarization

of

the

scattered

radiation

H.

Chorfi

a,∗

,

K.

Ayadi

a

,

R.

Gader

a

,

L.

Boufendi

b

aAppliedOpticsLaboratory,InstituteofOpticsandPrecisionMechanicsSetif-1-University,19000Setif,Algeria bGREMI,OrléansUniversity,14Rued’IssoudunBP6744,45067Orléanscedex2,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received13July2017 Accepted10October2017 Keywords: Biosensors Lightscattering Mietheory

Light-biologicaltissuesinteraction Complexindexofbiologicaltissues

a

b

s

t

r

a

c

t

Opticaltechniquesarebeingusedmoreandmore,becausetheyhavetheadvantageofbeing non-destructive,thelightscatteringbythematerialprovidesaframeworkofprospecting pointedandfast.Theelasticandinelasticinteractionportionofthelightwiththematter allowsfollowingtheassessmentofparticulatematterincludingcellnucleiwhicharethe focusoftissuepathologies.Ourworkfocusedontheuseofthisphenomenontofollowthe evaluationinsizeandshapeofthenuclei,inordertopreventtumoractivity.

©2017ElsevierGmbH.Allrightsreserved.

1. Introduction

Lightscatteredbythebiologicaltissueisratherrelatedtoitsstructure,includingtothedensity[1],size[2]andmorphology ofcellsnuclei[3],etc,theseimportantparametersareindicationsforthepathologisttomakedifferentiatebetweennormal cells(whichoftenhaveastructuredorganization),andtumorcells(whichpresentadisorderlystructure).

Inthepresentwork,thelightscatteringisusedasatooltocharacterizethiskindoftissue.Theadvantageofthistechnique isthatitismadewithoutcontactwiththeobjectstudied,non-destructiveandnon-ionizing.Thismeansthattheuseof electromagneticwaveinformationis nowthesubjectofincreasinginterest inthebiomedical field,andthephysicsof materials[4,5].Theprecisiononthediagnosisisrelatedtotheprecisiononthemeasurementsofthescatteredradiation,the parametersofwhichextractsmaybeexploitedtostudytheevolutionofthemicroparticlessizeandmorphology.Various measurementsofthescatteringintensities,andinparticularofitsangular,spectral,orpolarizationdependence,canserve asadiagnosticmeans.

Our objective istomake help pathologicalanatomy services.Thistechnique offersvaluableassistance byits non-destructiveeffectanditsspeedandprecision,byvaryingsameopticalparameterssuchaswavelength,polarizationstate andscatteringangle,theinformationontheevolutionofparticlessizesandmorphologymakesitpossibletopredictdirectly theexistenceofpathology.

∗ Correspondingauthor.

E-mail addresses: chorfihichem@univ-setif.dz, chorfihichemopa2@gmail.com (H. Chorfi), ayadi.khaled@hotmail.com (K. Ayadi),

romaissagader93@gmail.com(R.Gader),laifa.boufendi@univ-orleans.fr(L.Boufendi).

https://doi.org/10.1016/j.ijleo.2017.10.056

(2)

Theamplitudeofscatteredlightatdifferentanglesdependsnotonlyoncomplexrefractionindexofthemediuminwhich theparticleexistsandtheparticlesize[9],butalsoontheparticlemorphology[10,11].

Usingtheabovemethodforcalculationthescatteringphasefunctions,wecanexaminetheeffectsofparticlesize,shape, refractiveindexandparticlemorphology.Wefirstexaminetheeffectsofparticlesizeonthescatteringproperties.Weuse theMietheorytoplottheangularscatteringdistributionsforaseriesofradiusfrom0.1␮mto14.0␮mwhichhavebeen illuminatedwithseveralwavelengthsofpolarizedvisiblelight.

Takingintoaccountthepolarizationweusedthecomplexformulasofscattering[12,13].Theyinvolvetwocomplex functionsofscatteredamplitude:S1()andS2().

Theelectricfieldisdecomposedintotwopolarizations: ErPolarizedperpendicularelectricfieldtothescatteringplane.

EtPolarizedparallelelectricfieldtothescatteringplane.

Theexpressionofthediffusionis: Er=S1() e−ikr+ikz ikr Er0 (01) Et=S2() e−ikr+ikz ikr Et0 (02)

Er0andEt0areIncidentfields.

Foranunpolarizedincidentwave,theintensityisthen: I=I0

1

2r2k2(i1+i2) (03)

IfthewaveislinearlypolarizedalongOx: I=I0 1 r2k2(i1sin 2(ϕ) +i2cos2(ϕ)) (04) When:i1=|S1()|2andi2=|S2()|2

TheamplitudefunctionsS1(perpendiculartothescatteringplane)andS2 (paralleltothescatteringplane)havethe

followingform: S1()=



∞ 1 2n+1 n(n+1)[ann(cos()+bnn(cos())] (05) S2()=



∞ 1 2n(n+1) n(n+1)[bnn(cos()+ann(cos())] (06)

Theangularfactorsnandnhavethefollowingforms:

n(cos())= 1 sin()P 1 n(cos()) (07) n= d dP 1 n(cos()) (08)

(3)

Fig.1.Geometryusedtodescribetheincidentandscatteredfields.Weletthezaxisbethedirectionofpropagationoftheincidentlight,anddefinethe scatteringplaneasthatcontainingthezaxisandradiusvector.Wewritethescatteredfieldsintermsofadifferentbasisthanthatusedtodescribethe incidentfields.Eachofthesebasissetshasaunitvectorthatisparalleltoandaunitvectorthatisperpendiculartothescatteringplane[6].

Fig.2. Schemeoftheusedset-up.

4. Experimentalachievement

Tomeasurethescatteredintensityasafunctionoftheangleofobservation,weusedtheexperimentalsetupshownin thefigurebelow:

Theoutgoingbeamfromaxenonlightsourceiscollimatedbyusingtwolenses(lens1andlens2)forgettingaKöhler illumination.Forenhancingthebeam,afielddiaphragmandaspatialfilterareadded.Theobtainedbeamilluminatesthe samplesurfaceandahemisphericaldetectorisfinallyusedtodetectthescatteredintensitiesaccordingtotheangleof observation.Inthecaseofspectralandpolarizedlightapplications,apolarizerandachromaticfilterareinsertedbeforethe sampleposition(Figs.1and2).

Thepolarizedsignalscapturedareintegratedtoobtainthescatteredintensitywhichrelatesthesampleresponseusing anappropriateprogramunderMatlab-Clanguagesoftwarethatwehavedeveloped.

5. Cartesianrepresentationofintensities

Theobservationofthedifferentcurvesofthescatteredintensitiesasafunctionoftheangleofobservationandthe wavelengthgivesthesameappearanceforthedifferentcases.Nevertheless,weobservedifferentspecularintensitiesasa functionof␭,thisisexplainedbytheinfluenceoftheabsorptionparameterbythetissue.Infact,wenoticealessimportant lossforlongwavelengths.Fromthere,wewillusethelongestwavelengthtominimizetheeffectofabsorption(Tables1–4). Theresultsshowfluctuationsasafunctionofthepolarizationstateofthescatteredwave;thismayhelpustoevaluate anaveragemorphologyofthescatteringparticlesbycalculatingthediametersasafunctionofthepolarizationangle.

Forthecalculations,wehavedevelopedprogramstoplotthecurvesandtodeterminetheareas(theglobalintensities) ofthedifferentmeasurements,andthenonthebasisofthemathematicalmodelofMie,wehaveimprovedouralgorithm inordertoextractthemorphologiesfromthecalculatedparticlessizes.

Thefollowingtableshowssomeresultsobtained:

Byobservingtheresultsrepresentedinthetableabove,itisnotedthattheareasunderthecurvesofthescattered intensitiesinthecaseofthetumortissuearelargercomparedtothenormaltissue.Thepolarizationshowsasignificant differenceinthelevelofintensitysensedaccordingtothedifferentstates,thiscanbeexploitedtodeterminethespatial geometryofthediffuser(morphology).Wehaveconfirmedexperimentallythattheintensityofthescatteredlightisvery

(4)

30◦

60◦

(5)

Table1(Continued)

Polarizationangle(␤) NormalColon TumoralColon

120◦

150◦

180◦

Table2

RepresentationoftheareasofthecurvesfortheColonasafunctionoftheWavelengthandthepolarizationstate:(A)NormalColon,(B)TumorColon.

␤(◦) ␭=470nm ␭=510nm ␭=630nm Areas A B A B A B 0◦ 0.6845 2.3383 1.0342 1.1509 0.9671 1.7345 30◦ 0.4135 1.7938 0.6184 1.2360 0.9556 1.7598 60◦ 0.3149 2.1616 0.5836 1.2406 0.9641 2.1732 90◦ 0.2578 2.1927 0.6312 1.2556 0.9140 1.7686 120◦ 0.3832 2.0513 0.8275 1.1094 0.9431 1.3235 150◦ 0.4185 0.9144 0.3088 1.1353 1.0072 1.9776 180◦ 0.5383 0.8161 0.2339 1.4989 0.9498 1.6517

stronglydependentonseveralexperimentalparameterssuchasthewavelength,thepolarizationstateandtheparticlesize ofthescatteringmedium.

6. Measurementofnucleussizesusinglightscattering

Theefficiencyoflightscatteringpushedustodevelopacalculationprogramtodeterminetheparticlesizesfromthe collectedpolarizedintensities.ThisprogrambasedonMie’stheoryallowedustoobtainthesizesgatheredinthetable.The resultsobtainedwerecomparedwiththemicroscopicvalueswhichseemtobeingoodagreement.

(6)

150◦ 2.02 3.76

160◦ 2.42 3.76

170◦ 2.18 3.72

180◦ 2.20 3.88

Table4

Polarrepresentationofthemorphologyofthestudiednuclei.

Coreofanormalcell Coreofatumorcell

Colon

Bysimplifyingthesemeasurements,wecandeterminethesizeofthesupposedsphericalparticle: Theaveragecoresizeofanormalcell(Colon)is:3.02␮m

Theaveragesizeofthetumorcell(colon)is:3.81␮m

Thedifferentdiametervaluescanbecollectedinapolarcoordinatesystemtoevaluatetheparticlemorphology.

7. Studyofmorphology

Amorphologicalstudybasedonthecorrelationofthesizesobtainedbyourprogramwascarriedout,theresultsmade itpossibletoevaluatethegeneralmorphologyofthenucleibyplottingthespatialdistributionofsizes.

Thestudyofthemorphologyofcellnucleishowsthedifferencebetweenthenormalandtumoralnucleus,thisdifference isveryclearbyobservingthetableabove.FortheColon,wecansaythatthemorphologyhasbeenmodifiedinvalueand form,infavorofabiologicalevolution,theevolutionofthesizeandmorphologyofnuclei(diffusingparticles)Canleadto theemergenceofapathologyoftissue.

8. Conclusion

Thespatialdistributionofthescatteredlightintensitydependsoncell’smorphologyandthepolarizationstatesofincident light;wecanextractcellularmorphologicalinformationfromthescatteredlightinspecificangularrangesortheoverall patterntodiscriminatedifferentcelltypes.

Theangularandspectralvariationsallowedustoevaluatethesizesofthenucleibetweenthenormalandpathological organ.Thepolarizationstateparametermadeitpossibletoevaluatethemorphologyofthetwocases.Theresultsobtained havebeenconfrontedwithmeasurementsbymicroscopyofthesesameparticles,andthecomparisonwasgivenasatisfaction withtheopticaltoolsetup.

(7)

Acknowledgments

“ThisworkwassupportedbytheMinistryofHigherEducationandScientificResearch(Ministèredel’Enseignement SupérieuretdelaRechercheScientifique,MESRS).Wewouldliketothanktheteamofthepathologicalanatomyservice− theuniversityhospitalofSetif,fortheirhelp."

References

[1]W.F.CHEONG,S.A.PRAHL,A.J.WELCH,AreviewoftheopticalpropertiesofBiologicalTissues,IEEEJ.Quant.Electr.26(1990)2166–2185. [2]C.F.BOHREN,D.R.Huffman,AbsorptionandScatteringofLightbySmallParticles,Wiley-VCh,2004.

[3]Y.Wang,G.Chen,Simulationoflightscatteringpropertiesofmaterialsurfaceconsideringthespecificmorphologyinformation,Optik-Int.J.Light ElectronOpt.(2016).

[4]A.Wax,V.Backman,BiomedicalApplicationsofLightScattering,McGraw-Hill,2010.

[5]J.Holoubek,Someapplicationsoflightscatteringinmaterialsscience,J.Quant.Spectrosc.Radiat.Transf.106(2007)104–121.

[6]J.D.Wilson,MeasurementsandInterpretationsofLightScatteringfromIntactBiologicalCells,Rochesteruniversity,2007(Philosophydoctorat). [7]Y.Pu,J.Chen,W.Wang,InvestigationofscatteringcoefficientsandanisotropyfactorsofhumancancerousandnormalprostatetissuesusingMie

theory,Proc.SPIE8941(2014).

[8]W.Meng,etal.,GeneralizedmultiparticleMiemodelingoflightscatteringbycells,Chin.Sci.Bull.58(2013).

[9]H.Ding,J.L.Lu,W.A.Wooden,P.J.Kragel,X.H.Hu,Refractiveindexofhumanskintissuesateightwavelengthsandestimateddispersionrelations between300and1600nm,Phys.Med.Biol.51(2006)1479–1489.

[10]V.Devarakonda,S.Manickavasagam,Polarizedlightscatteringtechniqueformorphologicalcharacterizationofwaterbornepathogens,J.Biomed. Opt.7306(2016)73061.

[11]E.Zubko,Y.Shkuratov,G.Videen,Effectofmorphologyonlightscatteringbyagglomerates,J.Quant.Spectrosc.Radiat.Transf.150(2015)42–54. [12]D.W.Hahn,LightScatteringTheory,Floridauniversity,2009.

Figure

Fig. 1. Geometry used to describe the incident and scattered fields. We let the z axis be the direction of propagation of the incident light, and define the scattering plane as that containing the z axis and radius vector

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

This last quantity is not exactly equal to zero, because it's due to the finite aperture of the diaphragms : we don't study rigorously the light scattered on the axis of the

It was found, considering only two particle correlations, that the ratio of the intensity of the depolarized to polarized scattered light goes as ktln ( l / k < )

Measurements were carried out with the 14.4 keV Mossbauer radiation of 57 Co by observation of the conversion electrons reemitted from a Mossbauer absorber (scatterer).

the divergence of the correlation range 5 and the vanishing of the surface tension a on the coexistence curve of xenon. We have measured o by analyzing the

Before the choice of cometary analogues, systematic studies of the variations of polarization with the physical properties of the dust, such as size, porosity, or albedo

Thus, to study the e ect of the weak binding on the potential of interaction between a light exotic nucleus and a target, we have measured angular distributions of cross sections

Dans cet article, nous proposons une mesure de degré de relation sémantique entre deux concepts d’une ontologie pour faciliter cette phase dite « d’interprétation sémantique