• Aucun résultat trouvé

Optimal design of exchange networks with blind inputs and its application to Eco-industrial parks

N/A
N/A
Protected

Academic year: 2021

Partager "Optimal design of exchange networks with blind inputs and its application to Eco-industrial parks"

Copied!
19
0
0

Texte intégral

(1)

OATAO is an open access repository that collects the work of Toulouse

researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:

https://oatao.univ-toulouse.fr/27139

To cite this version:

Salas, David and Van, Kien Cao and Aussel, Didier and Montastruc,

Ludovic Optimal design of exchange networks with blind inputs and

its application to Eco-industrial parks. (2020) Computers &

Chemical Engineering, 143. 107053. ISSN 0098-1354

Open Archive Toulouse Archive Ouverte

Official URL :

(2)

Optimal

design

of

exchange

networks

with

blind

inputs

and

its

application

to

Eco-industrial

parks

David

Salas

a,b,c,∗

,

Kien

Cao

Van

a

,

Didier

Aussel

a

,

Ludovic

Montastruc

b

a Laboratoire PROMES, UPR CNRS 8521, Université de Perpignan Via Domitia, Perpignan 66100, France b Laboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS, Université de Toulouse, Toulouse 31432, France c Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Libertador Bernardo O’Higgins 611, Rancagua, Chile

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Optimization Eco Industrial Park Game theory

Single-Leader-Multi-Follower

a

b

s

t

r

a

c

t

MotivatedbythedesignandoptimizationofthewaterexchangenetworksinEco-IndustrialParks(EIP), weinvestigatetheabstractBlind-Inputmodelforgeneralexchangenetworks.Thisabstractmodelisbased onaGameTheoryapproach,formulatingitasaSingle-Leader-Multi-Follower(SLMF)game:attheupper level,thereisanauthority(leader)thataimstominimizetheconsumptionofnaturalresources,while, atthelowerlevel,agents(followers)trytominimizetheiroperatingcosts.Weintroducethenotionof Blind-Inputcontract,whichisaneconomiccontractbetweentheauthorityand theagentsinorderto ensuretheparticipationofthelatteronesintheexchangenetworks.Moreprecisely,whenparticipating intheexchangenetwork,eachagentacceptstohaveablindinputinthesensethatshecontrolsonlyher outputfluxes,and theauthoritycommits toguaranteeaminimalrelative improvementincomparison withtheagent’sstand-aloneoperation.TheSLMFgameisequivalentlytransformedintoasingle mixed-integeroptimization problem. Thankstothisreformulation,examples ofEIP ofrealistic sizearethen studiednumerically.

1. Introduction

Inthe last fewdecades,the developmentoftheindustrialized countries hasled to an increasing depletion ofnatural resources suchasfreshwaterandenergy(see,e.g.,UNEP,2000;Scientificand Organization),2009).Theconservationandsustainableuseofsuch resources play an important role in both, environmental impact andbusinesssuccess withintheindustry.Inresponse topreserve the environment while increasing the utilities of the enterprises, theconceptofindustrialecologyhasemerged(Boixetal.,2015).

Industrial ecology (IE) wasfirstintroduced in Froschand Gal-lopoulos(1989).Theywrote“theconsumption ofenergyand ma-terials isoptimized,wastegenerationis minimizedandthe efflu-entsofone process... serveastherawmaterialforanother pro-cess”.Thisisanapproachtotheindustrialdesignofproductsand processes and the implementation of sustainable manufacturing strategies. The idea is directly relatedto another concept, indus-trial symbiosis, whichinvolves “separate industriesin a collective

Corresponding author at: Laboratoire de Génie Chimique, UMR 5503

CNRS/INP/UPS, Université de Toulouse, 31432 Toulouse, France.

E-mail addresses: david.salas@uoh.cl (D. Salas), kien.van@promes.cnrs.fr (K.C. Van), aussel@univ-perp.fr (D. Aussel), ludovic.montastruc@ensiacet.fr (L. Montas- truc).

approachtocompetitiveadvantage involvingphysicalexchangeof materials,energy,waterand/or by-products” (seeChertow,2000). Onekeyconcept ofindustrialsymbiosisis thentheexchange net-works.

A perfect example of an exchange network which illustrates thenotionofindustrialsymbiosisistheconceptofEco-Industrial Parks(EIP).Thisnotionhasseveraldefinitions,butonewidely ac-cepted is “an industrial system of planned materials and energy exchangesthat seeks to minimize energy andraw materials use, minimize waste, and build sustainable economic, ecological and social relationships” Alexander et al. (2000); Boix et al. (2015);

Montastrucetal.(2013).

Recently,inworksofBoixetal.(2015)andKastneretal.(2015), ithasbeenpointedoutthatthereisstillalackofsystematic meth-odsfordesigning theoptimalconfigurationofan EIP.Inprevious studies (Boix et al., 2011; 2015; Montastruc et al., 2013), water integration networks (which is a classical example of EIP) were modeled as a cooperative economy, in the framework of multi-objectiveoptimization(MOO).Thisapproach consistincreatinga vectorfunctionofn+1coordinatesgivenby

C

(

F

)

=



Cost1

(

F

)

,...,Costn

(

F

)

,Z

(

F

)



where Costi( · ) is the cost function of the enterprise i, Z( · )

isthe global consumption ofnatural resources, andF is the flux

(3)

Nomenclature

Latinsymbols

n numberofindependentagents

m numberofregulatedagents

P setofindependentagents

R setofregulatedagents

IP indexsetofindependentagents IR indexsetofregulatedagents I assemblyofindexsetsIPandIR I0 assemblyofindexsetIandsinknode0

E networktopology

Emax setofalladmissibleconnectionsofthenetwork

Ec setofconnectionsthatarenotinE Ei,act setofactivearcsofagenti

Est stand-alonetopology E setofallvalidtopologies Costi(· ) operatingcostofagenti

STCi stand-alonecostofagenti C(i,j) arcclassof(i,j)

Ci familyofallarcclassesexitingfromagenti D setofallarcclassesofactiveagents

y booleanvariable

xi,j fluxthroughtheconnection(i,j)

xi outletfluxvectorofagenti

x−i vectorofallfluxesnotexitingfromagenti xP

−i vector ofall fluxesexiting froman independent

agentotherthani

x completevectoroffluxesthroughthenetwork

zi consumptionofnaturalresourceoftheithagent Z(· ) totalconsumptionofnaturalresources

gi(· ) inputvalidationfunctionofagenti

Fi vector of fluxesexiting from enterprise i (water

exchangenetwork)

F−i vector ofall fluxes not exiting fromenterprise i

(waterexchangenetwork)

FP vector of fluxes exiting from enterprises (water

exchangenetwork)

FP

−i vector of all fluxes exiting from an enterprise

otherthani(waterexchangenetwork)

FR vector of fluxes exiting from regeneration units

(waterexchangenetwork)

F fluxvectordescribingthedistributioninthe wa-terexchangenetwork

Mi contaminantloadofenterprisei[g/h]

Ci,in,Ci,out maximumcontaminant concentration allowedin

inlet/outletofprocesses[ppm]

Cr,in minimum inlet concentration allowed of reg.

units[ppm]

Cr,in exact outlet contaminant concentration of reg. units[ppm]

A thelifetimeofthepark[h]

Coef Penalizationcoefficientofstand-aloneagents

Acronyms

EIP Eco-IndustrialPark

GNEP generalizedNashequilibriumproblem Eq thesetofequilibriafortheinducedGNEP KKT Karush-Kuhn-Tucker

MILP Mixed-integerlinearprogramming

MPEC mathematicalprogramswithequilibriumconstraint SLMF Single-Leader-Multi-Follower

STC stand-alonecost

Greeksymbol

α

the minimal relative gain that each agent ask for participatinginthenetwork

c themarginalcostoffreshwaterconsumption[$/T]

β

i,0 thedischargecostofpollutedwaterofenterprise i

[$/T]

δ

i,j thecostsendingpollutedwaterfromenterpriseito j[$/T]



r themarginalcostofregeneratingwater[$/T]

ψ

powerassociatedto



r

vector describingthe distributioninthe exchangenetwork. Then, the aim is to solve the problem of “minimizing” C with respect to F, satisfying the physical constraints of the model. The result of such minimization is called a Pareto front, which consists in all vectors F for which noneof the coordinates of C can be im-provedwithoutworsenanotherone(McCain,2010;Emmerichand Deutz,2018).Usuallyanauthority,representingtheEIP’sdesigner, selectsoneofthissolutionsconsideringascriteriathedistanceto anutopiapoint.

Themainproblemwithsuchan approachisthatpointsofthe Paretofrontarenotnecessarilyeconomicallystable:first,aPareto pointrequirestheenterprisestocooperateandshareinformation, whichisrarelythe caseofan EIP.Second, dueto the noncooper-ativeeconomy,thedifferententerprisesmaydeviate fromthe se-lectionoftheauthoritysincetheymayimprovetheircostfunction byunilaterallychanging theiroperation.Intermsofgametheory, asolutionoftheMOOapproachisasocialoptimizationwhichmay failtorespectincentives(seeNisanetal.,2007,Chapter1).

Tosolvethisincompatibility,againinthe contextofwater in-tegration networks, in the seminal work of Ramos et al. (2016), further developed in Ramos et al. (2018b), a novel game theory approach has been proposed, by modeling the EIP design prob-lem as a Single-Leader-Multi-Follower (SLMF) game (see Aussel and Svensson,2020; Hu and Fukushima, 2015): since the agents donotwanttoexchangeinformation,aconfidentialcentralization through an authority of the parkis introduced. Then, at the up-per level,there istheEIPauthority whichwantstominimize the consumption of natural resources Z(F), while at the lower level, each enterprise tries to minimize her cost function Costi(F), re-latedtoherprocesses,consumptionofnaturalresourcesand activ-itywithintheEIP.Theauthorityoftheparkmustchoosethe con-nectionsoftheexchangenetworkandtheoperationofthe regen-erationunits,whileeachenterprise controlstheir consumptionof naturalresourcesandtheir output fluxdistribution.Based onthe EIP authority decisions, all enterprises compete with each other ina parametric non-cooperative generalizedNash game withthe strategies of the EIP authority as exogenous parameters. Fig. 1.1

showsthegeneralschemeofsuchamodel,wheretheenterprises are considered the economic agents of the game. We refer the readertoNisanetal.(2007);Ichiishi(1983)fora primerin non-cooperativegames, toPangandFukushima (2005); Facchineiand Kanzow(2010)forasurveyofGeneralizedNashEquilibrium prob-lems,andDempeetal.(2015);DempeandZemkoho(2020)forthe theory of bilevel optimization. For Single-Leader-Multi-Follower games, we refer to Hu andFukushima (2015) andthe references therein.

The main implicitassumption done in Ramos et al. (2016) is thateachenterprisecanonlycontrolheroutletdistributionandher ownfreshwaterconsumption,buttheyare forcedtoaccept what-everissenttothem throughtheexchangenetwork.Furthermore, they haveno knowledgeabouttheparticularactionsoftheother agentsof thenetwork, excepting onlythe amountandquality of the final inlet flux. In practice, this situation corresponds to the

(4)

Fig. 1.1. General scheme of SLMF game.

Fig. 1.2. Blind-Input Schema. z i , F k,i and F r,i are freshwater consumption, wastewater sent from agent k to i , and regenerated water sent from regeneration unit r to i , respectively.

casewhen,attheentrance,eachagentofthenetworkhasamixer, and so she is only aware of the total input she is receiving, as

Fig. 1.2 illustrates. In other words, when participating in the ex-changenetwork,eachagentacceptstohaveablindinput.

While this model respects incentive consistency, it has two main drawbacks:thefirstone isthat therulethat thepark’s au-thorityimposes, that is,theblind input,istoorestrictive. Indeed, under thisparadigm, an enterprise may be forcedto receive too much pollutedwaterwhichcouldturnintohighercosts thanthe stand-aloneoperationoutsidethepark(examplesareeasyto con-structwithtwoenterprises).Thisviolatestheeconomicalprinciple (wellknownincontracttheoryandmechanismdesign)of individ-ual rationality: an enterprise will participatein the EIP only ifit isconvenienttoher(see Jackson,2014;Salanié,2005;Boltonand Dewatripont, 2005);thesecond one is thestrategy tocompute a solution.InRamosetal.(2016),theauthorsimplementedthe clas-sic general approach to solve bilevel games, that is, to reformu-late it as a mathematical programming with complementarity con-straints (MPCC): looselyspeaking,fora givennetwork,they write the Karush-Kuhn-Tucker(KKT) conditionsof each problemofthe lower level game, andput themas constraintsin the authority’s problem.ThentheyimplementedaBranch-and-Boundheuristicto obtainanapproximatedoptimalexchangenetwork,solvingateach iteration theproblemdescribedabove.However, itis knownthat the MPCC problems, which is a particular class of mathematical programmingwithequilibriumconstraints(MPEC), arehardtosolve (see, e.g., Baumruckeret al., 2008; Tseveendorj, 2013;Luo et al., 1996) andtheheuristic itself doesn’tguaranteea realsolutionof theproblem(AusselandSvensson,2019;DempeandDutta,2012). Theliterature ontheoreticalandalgorithmicaspects ofMPCC and MPEC problems is large and still an active field of research in mathematics.

In this work, we further investigate the model proposed in

Ramosetal.(2016)forwaterexchangenetworks,brieflydescribed in Section 2 and fully exposed in Section 5, but considering its abstract formfor generalexchange networksin Section 3.2. This abstractmodel is calledBlind-Input model, since we consider the constraintoffullacceptanceforeachenterprise.Tosolvethe draw-backgivenbytheIndividualRationalityconstraint,weintroducein

Section3.3thenotionofBlind-Inputcontract,whichisan econom-icalcontractbetweentheauthorityandeachenterpriseinorderto participatein theBlind-Input model.We prove that, undersome linearstructureofthecostsfunctionsCosti( · )ofeachenterprise, theBlind-Inputmodelcanbereducedfroma Single-Leader-Multi-Followerproblemtoasinglemixed-integer optimizationproblem. This reduction, which is our main contribution, is presented in

Section4.

TheproposedreformulationoftheBlind-Inputmodelopensthe doortoalotofnewdevelopments,fromthenumericaltreatment ofhugesizeproblemsthanks toclassical MILPsolvers to exhaus-tivesearchofequilibriaforsmall/mediumsizeapplications.Thisis illustratedinthesecondpartofthearticleforwaterexchange net-worksinEco-IndustrialParks:Section6illustratesacaseofstudy and the obtained results which are then discussed in Section 7. ConclusionsandperspectivesarepresentedinSection8.

Itisworthtomentionthat,eventhoughthisworkismotivated by the design problem of water exchange networks, its abstract formulationpresentedinSection3allowstoapplyittoothertype of networks, asfor example energy networks (Boix et al., 2015; Nevesetal.,2020). InSection8,we willcommentwhichare the main elements needed to apply the Blind-Input model to other contexts.

Tosurvey our contributions, a comparison betweenthiswork andRamosetal.(2016)isgiveninTable1.Itisimportantto men-tionthat the nooncoperative approachusing SLMFgames inEIPs isvery recentand, up to ourknowledge, thereis noother refer-enceintheliteraturedifferentfromRamosetal.(2016,2018b)to compareourresultswith.

2. Motivation:EIPmodelforwaterexchange

Inthissection,webrieflydescribethemodelofwaterexchange networkused to describeEco-Industrial Parks. The model canbe found inRamos etal.(2016); Boixet al.(2015) among others.A detailedversionisfurtherexposedinSection5.

(5)

Table 1

Comparison between Ramos et al. (2016) and the present work. The first two rows are related to the numerical exam- ples used in each article.

Comparison criteria Ramos et al. (2016) . This work

Number of enterprises 3 15

Number of processes per enterprise

5 1

Regeneration units Yes Yes

Admits multiple processes per enterprise

Yes No

Tools to model the EIPs SLMF game SLMF game

Presence of Blind-Input model Implicitly used. Not formalized. Economic drawbacks.

Explicit formalization. Introduction of Blind-Input contract as economic instrument.

Solution Method MPCC reformulation + Branch-

and-Bound Heuristic

Mixed-Integer Linear programming (MILP) reduction. Properties of the solution MPCC is hard to solve and existing

algorithms are not robust. The solution of the MPCC may fail to be a solution of the SLMF game.

MILP alogirthms are robust. Commercial solvers are available. Any global solution of the MILP problem is a global solution of the SLMF game.

The operating cost of each participating enterprise in the EIP is lower than that of stand-alone.

No Yes

In an Eco-Industrial Park (EIP), several enterprises exchange wastestoreducetheglobalconsumptionofnaturalresources.Each timeanenterpriseusesthenaturalresourceinherindustrial pro-cess, it comes out degraded, but still can be used as input for otherenterprisesin thepark.Oneofthe mostclassicalexamples ofEIP (see,e.g.,Boix etal., 2015;Boixetal.,2012corresponds to themodelingof waterexchangenetworks: eachenterprise needs toconsumewaterforher industrialprocessesandtheoutcoming waterispartiallypolluted.Other examplesusingdifferentnatural resources likeenergy orheat can be found in Boix etal. (2011);

Ramosetal.(2018a).

InRamosetal.(2016),thedesignofawaterexchangenetwork istreated accordingto the following assumptions:first, the park hasafixednumberofnenterprises,eachenterpriseihastodilute anamountMiofcontaminant,andtheoutletconcentrationof

con-taminantmustbelessthanafixedconcentrationCi,out.Itisusually

assumedthateachenterpriseihasalwaysanoptimaloperation,in thesense that theoutlet concentration ofcontaminant is always equaltoCi,out.

Second, each enterprise i can accept partially polluted water, butwithamaximalconcentrationCi,in.Thisconcentrationis

mea-suredafteramixer(seeFig.1.2)insuchawaythatnoenterprise canreally knowthe operation ofthe other enterprises. However, thismeasurement,that we willdenote gi andwhichdependson

theactionsoftheotherenterprises,allowsenterpriseitoperform twofundamentalactions:(1)reportinfeasibilitiestotheauthority ofthe park, wheneverthe income water afterthe mixer doesn’t fulfilltheconstraints;and(2)computehowmuchfreshwatershe needs to complete its process attaining the outlet concentration

Ci,out.

Third, each enterprise has a cost function that depends on four factors: (1) the marginal cost of fresh water that she con-sumes, that we denote ci; (2) the marginal cost ofpolluted

wa-ter that she dischargesto the environment, that we denote

γ

i,0;

(3) the cost of sending polluted water through a connection of the park; and (4) the cost of receiving water from other agents of the park (other enterprises but also regeneration units con-trolledby the authority). The authority transfers the investment costofthe EIP tothe enterprisesvia thelast two costs:the first one, via a marginal cost

γ

which depends on the connections that enterprise i uses to send water; and the second one via a costfunction Costini that will depend onthe actions ofthe other enterprises.

Moreover,themainassumptionsforthepricinginstrumentsare thatthepricesoffreshwateranddischargedwaterareexogenous, andthat theauthority hasno interest of making anyprofit, and thereforeshe willfix the pricesofusing theconnections only to recoverthe investmentandmaintenance costs. Thisyields to the following scenario:each enterprise wants to minimizeits cost of theuseofwaterwhiletheauthorityisinchargeoftheecological concernsbyminimizingthefreshwaterconsumption.

Finally,aswementionedbefore,theauthoritymayhave regen-erationunits.Eachregenerationunitrreceivespollutedwaterand reducesitscontaminantconcentration uptoacertain valueCr,out.

Then,itsendsthewatertotheenterprisesforreuse.Thecosts as-sociated to the regeneration units are chargedto the enterprises throughtheinletcostfunctionCostini .

3. Blind-inputmodel

Taking inspiration from the water management model de-scribedinSection2,ouraiminthissectionistodefinetheconcept ofabstract Blind-Inputmodel forgeneralexchange networks. We divided themodel intwo parts: the physicalmodel, whichgives theconstraintsthatthenetworkmustsatisfy;andtheeconomical model,whichgivestheincentivesofeachagentofthenetwork,as well as theBlind-Input contract betweenthe agents andthe au-thority,whichwillensuretheparticipationoftheagents.

3.1. Networkmodel

Wefirstconsidertwomainactors:asetofagentsparticipating to an exchangenetwork, andan authoritythat aims to minimize theconsumption ofnaturalresources. Among the agents,we dif-ferentiate aset P:=

{

P1,...,Pn

}

ofindependent agents,andaset R=

{

R1,...,Rm

}

ofregulatedagents(controlledbytheauthority).

Regulatedagentsdon’t haveeconomicalmotivations,butthey act ontheexchange networkfollowing theindicationsofthe author-ity.InthecontextofwaterexchangeinEIP,theindependentagents aretheenterprises,andtheregulatedonesmodeltheregeneration units(Ramosetal.,2016).

We identify the independent agents with the index set IP=

{

1,...,n

}

andtheregulatedagentswithIR=

{

n+1,...,n+m

}

.We

setI=IPIR andI0=

{

0

}

I,where0representsthesinknode.

Wedefine an exchangenetworkasa simpledirectedgraph(I0,

(6)

part of her output to the agent j. The extra node 0 is identified asasinknode,whichrepresentthepossibilityofdischargeofthe output.Avalidnetwork(I0,E)mustsatisfythefollowingfive

con-ditions:

I. E⊆Emax,whereEmax isthesetofall admissibleconnections of

thenetwork.

II. (I0,E)isasimplegraph,thatis,thereisnomultipleedges nor

graphloopsinE.

III. EachindependentagentiIPisconnectedwiththesinknode,

thatis,(i,0)∈E.

IV. EachregulatedagentrIRisnotconnectedwiththesinknode,

thatis,(r,0)∈E.

V. The sinknode has not exitedges inE that is(0, i)∈Emax, for

anyiI.

Inwhatfollows,wewillcallEthetopology ofthenetwork(I0,

E),andwewilldenotebyE the setofallvalidtopologies. Never-theless, inorderto simplifynotations,thenetwork(I0, E) willbe

onlyrepresentedbyitstopologyE.Observethatthisrepresentation mayleadtoambiguity,sincethesetEdoesn’tallowtodistinguish possible isolated regulated agents (independent agents are never isolated,givenhypothesisIII).However,thisisnotaproblem,since anyisolatedregulatedagentwillbesimplyremovedfromthe net-work.

Foreach edge (i, j) ∈Emax, weset thevariable xi,j which

rep-resents the flux through the connection (i, j). For each i I, we setxi:=(xi,j:(i,j)∈Emax),beingthustheoutcomevectorofagent

i.Finally, weset x=

(

xi, j :

(

i,j

)

Emax

)

, thecomplete vector of

fluxesthroughthenetwork.

To simplify the mathematical model we use, let us introduce some notation. Weput xR := (x

r:rIR)andxP := (xi:iIP). In

whatfollows,foranagentiI,wewillwrite

x−i:=



xk, j :

(

k,j

)

Emax, kI

\

{

i

}



, xP−i:=



xk, j :

(

k,j

)

Emax, kIP

\

{

i

}



.

ForatopologysubsetA⊆Emax,wewrite

x



A:=

(

xi, j :

(

i,j

)

A

)

.

Similarly,wedefinexi|A,x−i



A,x P|

A,xP−i



AandxR|A.Itwillbeuseful

alsotodenoteAc:=E

maxࢨA.

3.2. Physicalmodel

Letusfixa networktopology EE. IfE isimplemented,then foreachagentiI,thephysicalmodelofthenetworkisgivenby thefollowingsixoperationalconstraints:

1. Nullfluxesoutsidethenetwork:each agentcanuseonlythe connectionsinthetopologyE.Thus,weset

xi



Ec=0, (3.1)

thatis,foreveryedge(i,j)∈E,thefluxxi,j iszero.

2. Consumptionofnaturalresource:theconsumptionofnatural resource ofthe ith agentis givenby the output fluxesofthe otherplayers,thatis,

zi=zi

(

x−i

)

. (3.2)

Thisassumption is derived froman optimal response hypoth-esis: we assume that, fora given value ofx−i, the agenti is capableofcomputeexactlytheminimalamountofnatural re-sourcezithatshehastoconsumeinordertoperformherinner

processes.

3. Balance constraint:the fluxes must satisfy the Kirchoff’slaw fortheagentiI,thatis,

zi

(

x−i

)

+  (k,i)E xk,i=  (i, j)E xi, j. (3.3)

Since 0isthe sinknode,it isnotsubjectto thisbalance con-straint.

4. Inputconsistency:thereexistsareal-valuedfunctiongiwhich

allows the agenti I to validate the input coming from the other agents.Wewritethisvalidationasan abstractinequality constraint

gi

(

x−i

)

≤ 0. (3.4)

Thisconstraintmayrepresentmaximalinletfluxes,maximal in-letcontaminantconcentration,minimalinlettemperature,etc. 5. Positivityoffluxes:weassumethatthefluxesonthegraph,as

well astheconsumednaturalresource areallpositive, thatis,

xi≥ 0 and zi

(

x−i

)

≥ 0. (3.5)

6. Extra authority constraints: the exchange network may re-quireadditionalconstraints.Wewillmodelthemherethrough anabstractinclusion

xX,

where X⊂ R|Emax| represents the abstract additional feasible set.

Remark3.1. Here,weassume thatthedegradationofthenatural resource is implicitin the connections of the topology E.In this generalmodel,wesupposethatagenticancomputethe degrada-tionofitsinletfluxthroughthefunctionsgiandzi.

Animportantelement ofthismodel isthe totallack ofdirect information among the agents. We suppose that agent i cannot know the actions of other agents, that is, she doesn’t have ac-cessto theexact value ofx−i.However, she countswithindirect observations: even though x−i is unknown, the values of zi

(

x−i

)

,

gi

(

x−i

)

andthe total inlet flux



(k,i)Exk,i are available. For wa-ter exchange, thiscould be interpreted asa measurement of the amountofwaterandcontaminantconcentrationafterthemixerof

Fig.1.2.Thisisaveryimportantfeatureofourmodel,since enter-priseswanttokeep asmuch private informationaspossible.The onlyagentthathasallinformationistheauthority,whohasaccess tothefullvectorx.

3.3.Economicalmodel

Inthissetting,thenetwork authorityhastwo vectorsof deci-sionvariables:shemustchoosethetopologyofthenetworkEE

andshecontrolstheoperationoftheregulatedagents,thatis,the outputvectorsxr,forevery rIR.Each independentagentiIP

controlsheroutputvectorxi.

Weassume that the authoritydoesn’t payanycost associated totheimplementationandoperationofthenetwork.Instead,she transfersall thesecosts througha function

γ

:Emax→R+,where

γ

((

i,j

))

=

γ

i, jrepresentsthemarginalcostforsendingoneunitof

fluxthroughtheconnection(i,j). Usingthispricing, the indepen-dentagentswillpaytheinvestmentcostofthenetworkandalso theoperationoftheregulatedagents.Thus,ifthereisaconnection (r1,r2)∈Emaxbetweentworegulatedagentsr1,r2∈IR,weassume

that

γ

r1,r2=0.

Sinceall the investmentcost is transferedto the independent agents,theauthorityisonlyconcernedaboutminimizingthe con-sumptionof the naturalresources, andso she aims to minimize thefunction

Z

(

x

)

:= iI

zi

(

x−i

)

. (3.6)

Remark 3.2. It could be argued that the authority must be also concernedaboutefficiencyofthenetwork,byconsideringthetotal investmentcostofthepark.However, weassumethatthepricing

(7)

instrument

γ

isgivenexclusivelytopaytheinvestmentand main-tenancecostofthepark,andthatit willbeimplementedas effi-cientlyaspossible.Thediscussionoverefficiencyandrightpricing instruments,isoutofthescopeofthiswork.

OntheotherhandanyindependentagentiIPwantsto

mini-mizeherglobalcostCosti,whichcanbeseparatedintothree

com-ponents:theconsumptionofthenaturalresourcezi

(

x−i

)

,thecost

ofdischarging(usingtheconnection(i,0)),andtheuseofthe ex-changenetwork.ThereforehercostfunctionCostiisgivenas: Costi



xi,xP−i,xR,E



=ci· zi

(

x−i

)

+Costini



xP −i,xR



+  (i, j)E

γi

, j· xi, j. (3.7) whereCostini



xP −i,xR



isthe inletoperatingcostofanagenti,and itsatisfiesthat  (k,i)Emax xk,i=0⇒Costini



xP −i,xR



=0.

Observe that, the cost concerning the exit connections is linear, andso,thecostfunctionislinearinthefirstcomponentxi.

Remark3.3. Again, in termsofcosts, agent i doesn’thave direct accessto theactions ofthe otheragents.However, shemust pay an operating cost Costini

(

xP

−i,xR

)

that is communicated to her by

the authority. The choice of this function as pricing instrument could be studied, but this is out of the scope of the work. For now,wewillsupposethatagentihasenoughindirectinformation (throughmeasurementsafterthemixerofFig.1.2)toconsiderthe costCostini



xP

−i,xR



ascorrectandthereforetoacceptit.

Withthismodel,theminimizationproblemoftheith indepen-dentagent(parametrized by the topology E, the actions of regu-latedagents xR andthe actions ofthe other independent agents xP

−i)leadstoproblemPi



xP −i,xR,E



: minxi Costi



xi,xP−i,xR,E



s.t.

zi

(

x−i

)

+  (k,i)E xk,i=  (i, j)E xi, j gi

(

x−i

)

≤ 0 zi

(

x−i

)

≥ 0 xi≥ 0 xi



Ec=0. (3.8)

Wedenoteby Eq(xR,E)the setofequilibriafortheinduced

gen-eralizedNashequilibriumproblem(GNEP,forshort) givenbythe vectorxR andthetopologyE,thatis

xPEq

(

xR,E

)

⇐⇒

iI P,xisolvesPi



xP −i,xR,E



. (3.9)

AswealreadydiscussedinSection1,themainproblemofthis model is that each independent agent only controls her output vectorxi,whichis not realistic.She isforcedby the authority to

fullyacceptanyinletfluxes,whichmaybeharmful.Thus,without anyextraconstraint, agent i maynot be willing toparticipate in thenetwork.

Thus, tosolve thisproblem, theauthority must“buy” the par-ticipationof agenti. Thisis modeled by the Blind-Input contract: agentiacceptstocontrolonlyheroutputfluxes,andtheauthority commitstoguaranteeaminimalrelativeimprovementofhercost, withrespecttothestand-aloneoperationofagenti.

Toformalizethisrequirementinthecontract,letusdenotethe stand-alonetopologybyEst∈E,thatis,

Est:=

{

(

i,0

)

: iIP

}

.

Foreach independentagentiIP wedefine thestand-alonecost

STCi,astheoptimalvalueoftheproblemPi(0,0,Est),thatis,

STCi=

(

ci+

γi

,0

)

· zi

(

0

)

Inotherwords,STCi isthecost oftheithagentassumingthat all

other agents (independent andregulated) are inactive, i.e. when agentionlysend fluxesto thesinknodeanddoesn’treceiveany complementaryfluxesfromother agents.Then, foreach indepen-dentagentPi,we canformulate thecommitmentofminimal

im-provementintheBlind-Inputcontractasthefollowingconstraint:

Costi

(

xi,xP−i,xR,E

)

α

· STCi, (3.10)

where

α

]0,1[istheminimalrelativegain thateachagentask forparticipatinginthenetwork.Weassumethat

α

>0since,itis impossibletoeliminateallcosts,andthat

α

<1sincenoagentis indifferentconcerningher participationinthenetwork.Indeed,if Costi

(

xi,xP−i,xR,E

)

=STCi,then the agenti willprefer not to

par-ticipate, since she has no gain, entering an exchange network is complicatedandsheknowsshemaybe“helpingthecompetition”.

Finally,wecanwritetheauthority’sproblemas

minE∈E,xR|Emax| Z

(

x

)

s.t.

xX, zr

(

x−r

)

+  (k,r)E xk,r=  (r, j)E xr, j,

rIR, zr

(

x−r

)

≥ 0,

rIR, gr

(

x−r

)

≤ 0,

rIR, xR≥ 0, xR



Ec=0, xPEq

(

xR,E

)

, Costi

(

xi,xP−i,xR,E

)

α

· STCi,

iIP. (3.11)

Theoptimizationproblem(3.11)canbe interpretedasfollows: theauthoritywillproposetotheagentsatopologyEandan oper-ationx∈R|Emax| whichsatisfyallthephysicalconstraintsandalso, such thattheoperation xrespects:1) theincentiveconsistency,in the sense that no agentwillhave incentivesto unilaterally devi-atefromtheproposalduetotheconstraintxPEq(xR,E);and2)

theindividualrationalityofeachagent,inthesensethatallagents will participateinthe networksince their participation hasbeen bought through the constraint (3.10). The first criteria solves the economicalinconsistencyofMOO approach,andthesecond crite-riasolves theparticipation problemof theSingle-Leader-Follower approach.

Remark 3.4. In this work, we do not claim novelty in the

constraint xP Eq(xR, E). This is the main contribution of

Ramosetal.(2016).However,theconstraint(3.10)isnew.Interms ofmodelingandinthiscontext,thefactto“attract” the indepen-dent agentstowards a participation inthe generalexchange net-workconstitutesoneoftheimportantnoveltiesofthiswork.

Remark 3.5. After reading the forthcoming Section 4, thereader will observe that all proofs and reductions could be made con-sideringdifferentvaluesof

α

foreach independentagent, thatis, puttingavalue

α

i ]0,1[ foreach i IP.Thevalue of

α

i

repre-sentsthe“cost” ofbuyingtheparticipationoftheithindependent agent,whichisexactly

(

1−

α

i

)

STCi.However,allowingtohave

dif-ferentcostsdependingontheenterpriserisesthenaturalquestion ofhow todecide thesevalues.This problemliesincontract the-ory(foranintroductiontothefield,werefertoBoltonand Dewa-tripont(2005); Salanié (2005))anditisout thescope ofthe arti-cle.Thus,wewillconsideronlyuniformvaluesof

α

,whichcanbe interpreted asa publiccall forparticipationin thenetwork. Uni-formvaluesof

α

,however,implythat thecostofbuyingthe par-ticipationofanagentisproportionaltohersize,duetothefactor STCi.

Remark3.6. Animportantfactorwedonotconsiderinthiswork isthereboundeffectthatcostsreductionsmayhaveonthe opera-tionofagents.Forexample,ittermsofwaterexchange,a

(8)

diminu-tionofcosts ofagentiwithrespecttoSTCimayinducean

incre-mentofwastesproduction,thatis,avariationinMi.Thus,this

re-boundeffectmaychangethevalueofzi

(

x−i

)

.Eventhoughthisisa

very interestingproblem, wesuppose thatthedemand ofnatural resourceisgivenbyafixedprocess,onwhichthecostswithinthe networkhavenoeffect.Inotherwords,theconsumptionofnatural resourceofeachagentisinelastic.

4. Mixed-integerprogrammingreduction

Theformulationoftheauthority’sproblem(3.11)hastheform of a general MPEC problem (see, e.g., Baumrucker et al., 2008; Tseveendorj, 2013; Luo et al., 1996). This section is devoted to prove that thisMPECformulation,which isknown tobe hard to solve,canbereformulatedasasingleMixed-Integerprogramming problem.

Thisreductioncanbe interpretedasfollows:Blind-Input mod-els are a social optimizationproblemwhere,through Blind-Input contracts, the cooperation of each independent agent has been bought.This socialoptimizationis alsoeconomicallystable, since implicitlyitrespectanequilibriumconstraint(xPEq(xR,E)).This

reduction/reformulationwillbepresentedinthreesteps.

4.1. Characterizationofequilibria

The followingtheoremcharacterizestheequilibriumsetEq(xR, E) as a system of equations.This allows to reduce the MPEC of problem (3.11) to a single optimization problem. The reduction we do here is based on the observation that, once every agent hascommittedtoaBlind-Inputcontract,her actionsbecome pre-dictablethroughthecostfunctions.Thus,theauthoritycanchoose the network E such that each action ofan independent agentis inducedtoreachthesocialoptimum.

Toformalizethisidea,letusintroducethenotionofactivearcs. Given a topology E, foreach independent agenti IP we define

the set ofactive arcs ofi,denoted by Ei,act, asall the arcseE

havingminimumcost,thatis,

Ei,act:=

(

i,j

)

E :

γ

i, j=

γ

i∗:=(mini ,k)E

γi,k

. (4.1)

As convention, for any regulated agent r IR, we set Er,act=

{

(

r,j

)

:

(

r,j

)

E

}

.

Theorem4.1. ForEE andxR ≥ 0fixed,theequilibriumsetEq(xR, E)isgivenby Eq

(

xR,E

)

=

xP :

iI P, zi

(

x−i

)

+  (k,i)E xk,i=  (i, j)E xi, j gi

(

x−i

)

≤ 0 zi

(

x−i

)

≥ 0 xi



Ec i,act =0 xi≥ 0

(4.2)

Thus, the authority’s problem (3.11) is equivalent to the following Mixted-IntegerProgrammingproblem:

minxR|Emax|,E∈E Z

(

x

)

s.t.

xX, zi

(

x−i

)

+  (k,i)E xk,i=  (i, j)E xi, j,

iI xi



Ec i,act =0,

iI gi

(

x−i

)

≤ 0,

iI zi

(

x−i

)

≥ 0,

iI

Costi

(

xi,xP−i,xR,E

)

αi

· STCi,

iIP

x≥ 0.

(4.3)

Proof. Thesecond partoftheproof iseasilyverifiedbyreplacing theconstraintxPEq(xR,E)bythesystemofequationsintheright

handof equality(4.2),and thenjust reorganizing. Thus, we only needtoprove(4.2).

Tosimplify notation, let us denote by S(xR, E) the right-hand

setof(4.2).First,letusprovethatS(xR,E)⊆Eq(xR,E).FixxPS(xR, E). SinceEi,act⊂ Eforeach iIP,itis nothard toseethat xi isa

feasiblesetofPi

(

xP−i,xR,E

)

.

Now, fix i IP and let xi be another feasible point of Pi

(

xP−i,xR,E

)

. Then, xi≥ 0 and it satisfies the balance constraint

(3.3),whichyieldsthat

Costi=  (i, j)E

γi, j

xi, j

γ

i



 (i, j)Ei,act xi, j



γ

i



 (i, j)E xi, j−  (i, j)Ei,act xi, j



≥ 0,

where

Costi:=Costi

(

xi,xP−i,xR

)

− Costi

(

xi,x−iP,xR

)

andthelast

in-equalityisduetothefactthat

 (i, j)E xi, j=zi

(

x−i

)

+  (k,i)E xk,i =  (i, j)E xi, j=  (i, j)Ei,act xi, j.

Thus,xi solves Pi

(

xP−i,xR,E

)

, andsincethis holdsforevery iIP,

wededucethatxPEq(xR,E).

Now,letusprovethatEq(xR,E)⊆S(xR,E).LetxPEq(xR,E),and

suppose that xP∈S(xR, E). Since for each i I

P the vector xi is a

feasiblepointofP

(

xP

−i,xR,E

)

,theonlywayforxPnottobelongto

S(xR,E)isthatthereexisti

0∈IPsuchthatxi0



Ec i0,act=

0.Thus,there is

(

i0,j0

)

E

\

Ei0,act such thatxi0, j0 >0.Let(i0,j1)∈Ei,act (which isnonemptybydefinition)andletusconsiderthevectorxi

0 given by xi0,k=



x i0,k ifkI

\

{

j0,j1

}

, 0 ifk=j0, xi0, j1+xi0, j0 ifk=j1. Wehavethatxi

0≥ 0(sincexi0≥ 0)andalso

zi

(

x−i0

)

+  (k,i0)E xk,i0=  (i0, j)E xi0, j=  (i0, j)E xi 0, j. Thus, since x−i0 remains the same, xi

0 is a feasible point of Pi

(

xP−i

0,x

R,E

)

. Furthermore, denoting by

Cost i0= Costi0

(

xi0,xP−i0,x R,E

)

− Cost i0

(

xi0,xP−i 0,x R,E

)

,wehavethat

Costi0=  (i0, j)E

γ

i0, jxi0, j−  (i0, j)E

γ

i0, jxi0, j =



γi

0, j1−

γi

0, j0



xi0, j0 =



γ

γ

i0, j0



xi0, j0<0, since,byconstruction,

γ

i

0, j0>

γ

∗.Thisyieldsthatxi0 doesn’tsolve

Pi

(

xP−i

0,x

R,E

)

,whichisacontradiction.Thus,xPS(xR,E),finishing

theproof. 

Intuitively, the above theorem says that, given a topology E, each independent agent i IP will only use the connections of

minimalcost tosendtheexcessofflux,that is,shewilluseonly heractivearcs.Furthermore,eachindependentagentisindifferent tothedistributionoffluxesamongtheactivearcs,soanyfeasible vectorxPsatisfyingtheconstraintx

i



Ec i,act=

0foreveryiIPmust

beanequilibrium.Thissimplificationisstronglybasedonthe lin-earity ofthe costs functions withrespect to the agent’s variable

(9)

4.2.Mixed-integerformulation

Theorem4.1establishestheremarkablefactthattheMPEC for-mulationoftheauthority’sproblemcanbereformulatedasa “clas-sical” programmingproblem.Butactually,apartofthevariablesof thisprogrammingproblemliesinthesetoftopologiesofthe ex-changenetworkandso,itcanbe consideredasdifficultto imple-mentnumerically.Thisiswhy,in thissection, we willshowhow onecanfinallyworkwithamoreclassicalmixed-integer program-mingproblem.

Let us first introduce the key notion that we will use to ar-riveto thefinal formulation,that is,what we callarc classes:let (i,j)∈Emax.Wedefinethearcclassof(i,j)astheset

C

(

i,j

)

:=

{

(

i,k

)

Emax

γi,k

=

γi, j

}

ifiIP

{

(

i,k

)

Emax

}

ifiIR. (4.4)

Wedenote by Ci the familyof all arcclassesexiting fromi,that

is,Ci=

{

C

(

i,j

)

:

(

i,j

)

Emax

}

.Finally,forCCiwedefinethe

uti-lizationcostoftheclassby

γ

(

C

)

:=

γ

i, j,

where(i,j)isanyrepresentativeofC.

Observethat,fortwoarcs(i,j),(i,k)∈Emaxsuchthat

γ

i, j=

γ

i,k,

one hasthat C

(

i,j

)

=C

(

i,k

)

. Thus, a classCCi may havemany

representationsof theform C(i, j). Furthermore, thefamily Ci

in-ducesapartitionofthesetofarcs“exitingfrom” agenti,thatis

• C∈CiC=

{

eEmax : e=

(

i,j

)

forsome jI0

}

.

• ForanytwoclassesC,C∈Ci,eitherC=C orCC=∅.

Moreover, it isnot hard toverifythat foreach topology EE

andforeachagentiIP,thereexistsoneclassCCisuchthat

Ei,act⊆ C, (4.5)

andthisclassmustsatisfythat

γ

(

C

)

γ

(

C

(

i,0

))

. (4.6)

ThisclassisthengivenbyC=C

(

i,j

)

where(i,j)isanyelementof

Ei,act.WewillcallittheactiveclassofEoftheagenti,andwewill

denoteitbyCi(E).

Without loss of generality, we will assume that every class

CCi satisfies (4.6). If not, any connection in a class violating

(4.6)would neverbeen used,andtherefore,inpractice,they can beerasedfromEmaxwithoutchangingtheproblem.

Now, let D=iIPCi, the setof allarc classesof independent

agents.Weintroducethebooleanvariabley=

(

yC

)

CD

{

0,1

}

|D|in

thefollowingway:foreachindependentagentiIP andeacharc

classCCi,weset

yC=

1 ifC istheactiveclassofi,

0 otherwise.

Fromy{0,1}|D|,wewillbuildthegraphassociatedtoyas

E

(

y

)

=

(



{

: yC=1

}

)

{

,0

)

: iIP

}

{

(

r,j

)

Emax : rIR

}

. (4.7)

Weconsider thenthefollowing Mixed-Integeroptimization prob-lem: minxRN,y{0,1}|D| Z

(

x

)

s.t.

xX, zi

(

x−i

)

+  (k,i)Emax xk,i=  (i, j)Emax xi, j,

iI,  C∈Ci yC=1,

iIP,  (i, j)C xi, j≤ B· yC,

CD, gi

(

x−i

)

≤ 0,

iIP, zi

(

x−i

)

≥ 0,

iI, Costi

(

xi,xP−i,xR,E

(

y

))

α

i· STCi,

iIP, x≥ 0, (4.8)

where Bis a realnumber chosen arbitrarily, butbiggerthan the maximumofthetotalentering fluxover allenterprises. Asimple option to set Bis the value Z(0),which corresponds to the total consumption of the natural resource when there is no exchange network.

Here, the constraint C∈C

iyC=1 says that, for the ith agent,

onlyoneclassisactive.Also,theconstraint

 (i, j)C

xi, j≤ B· yC,

CD

ensures that, whenever(i, j) doesn’t belong tothe active classof theithagent,thenxi, j=0.

Theorem4.2. Foreveryfeasiblepoint(x,y)of(4.8),thepair(x,E(y))

isafeasiblepointof(4.3).Conversely,foreveryfeasiblepoint(x,E)of

(4.3),thepair(x,yE)isa feasiblepointof(4.8),whereyE {0,1}|D|

isgivenby yE C=

1 ifC=Ci

(

E

)

forsomeiIP, 0 otherwise.

Finally,onehasthat

1. if(x,E) isanoptimalsolutionof(4.3),then(x,yE)isan optimal solutionof(4.8).

2. if(x,y)isanoptimalsolutionof(4.8),then(x,E(y))isanoptimal solutionof(4.3).

Proof. Let(x, y) be a feasible point of(4.8). Letus fix an agent

i IP andlet Cibe theuniqueclass inCi suchthat yCi=1.Then,

byconstruction,weknowthat

E

(

y

)

i,act=Ciand  (i, j)Emax\Ci xi, j≤ B·  C∈Ci\{Ci} yC=0.

Wededucethenthat

xi



E(y)c i,act

=0.

SincethisconstraintisvalidforeveryactiveagentiIP,andsince E(y) containsall exitingarcs forevery regulated agentrIR,we

canrewritethebalanceconstraintinproblem(4.8)as

z

(

x−i

)

+  (k,i)E(y) xk,i=  (i, j)E(y) xi, j,

iI.

Wededucethenthat(x,E(y))isafeasiblepointofproblem(4.3). Now,let(x,E)beafeasiblepointofproblem(4.3).Byinclusion

(4.5),foreachindependentagentiIP,thereexistsauniqueactive

class Ci(E). LetusdefineyE ∈{0,1}|D|asin thestatementofthe

theorem.

Then,foreveryiIP,C∈Ciy

E

C=1.Now,fixaclassCD,and

letiIPsuchthatCCi.Wehavethat  (i, j)C xi, j

B=B· yE C ifC=Ci

(

E

)

, 0=B· yE C ifC=Ci

(

E

)

,

(10)

where thesecond inequality comes fromthe fact that,whenever

C=Ci(E),thenC⊆ Eic,act andsoxi



C=0.

ForanagentiIP,thefactthatEi,act⊆E(yE)leadustothefact

that

Costi

(

xi,x−iP,xR,E

(

yE

))

=Costi

(

xi,xP−i,xR,E

)

,

andso,theconstraint(3.10)issatisfied.We deducethat (x,yE)is

afeasiblepointof(4.8),sinceallotherconstraintsaredirectly sat-isfiedgiventhat(x,E)isfeasibleforproblem(4.3).

Now,letusassumethat(x,E)isalsooptimalforproblem(4.8). Fromthedevelopmentabove,foreveryotherfeasiblepoint(x,y) of(4.8),weknowthat(x,E(y))isalsoafeasiblepointofproblem

(4.3),andso,Z(x)≤ Z(x).Thus,(x,yE) isoptimalfortheproblem

(4.8).

Let nowassume that (x, y) is an optimal solutionof problem

(4.8)andsuppose,byabsurd,that(x,E(y))isnotoptimalfor prob-lem (4.3). Then, there exists a feasible point (x, E) of problem

(4.3) such that Z(x) < Z(x). But,asproved above,

(

x,yE

)

is also

feasible for problem (4.8), showing that (x, y) is not optimal for

(4.8),whichisacontradiction.Theproofisthencompleted.  Thereadercouldobservethat,apriori,themixed-integer prob-lem(4.8)issmallerthanproblem(4.3)insomesense,sinceit ad-mitsonlycertaintopologies(thoseonesoftheformE(y)forsome feasiblepointy{0,1}|D|).Howevertheabovetheoremshowsthat

thesetoffluxdistributionsxforwhich(x,E)isanoptimalsolution of(4.3) forat leastonetopology E coincides withtheset offlux distributionsxforwhich(x,y)isanoptimalsolutionof(4.8)forat leastoney.

4.3. Nullclassasexitoption

Physically, we know that the network has always a feasible point, which is the stand-alone configuration, that is, the topol-ogy Est and the fluxesgiven by the individual operationsof the

independentagentsandinactivityoftheregulatedones.However, when we include the individual rationality constraint (3.10), the problemmaybecomeinfeasible.

Infeasibilityofproblem(4.3)meansthattheauthorityisnot ca-pabletofindasolutionthatrespecttheBlind-Inputcontractswith alltheagents.Thus,weneedtoincludethepossibilityofexcluding someagentsfromthenetwork.

Formally, for each independent agent iIP, we include a

booleanvariableyi,null{0,1}suchthat

yi,null=

1 ifibreaks theBlind-Inputcontract,

0 otherwise.

Withthisnewvariable,wemodifyproblem(4.8)asfollows: 1. ForeachagentiIP,weput

yi,null+

 C∈Ci

yC=1,

meaningthat,eitheronearcclassisactiveortheagentis out-sidethenetwork.

2. ForeachagentiIP,weput  (i, j)C(i,0) xi, j≤ B·

(

yC(i,0)+yi,null

)

 (i, j)Emax, j=0 xi, j≤ B·

(

1− yi,null

)

Thisistoensurethat,iftheagentbreakstheBlind-Input con-tract,thenshewillusethedischargearc(i,0).

3. ForeachagentiIP,weput 

(k,i)Emax

xk,i≤ B·

(

1− yi,null

)

.

This constraintestablishes that, iftheagent breaksthe Blind-Inputcontract,thennobodycansendheranyflux.

4. ForeachagentiIP,weput

Costi

(

xi,xP−i,xR,E

(

y

))

αi

STCi·

(

1− yi,null

)

+STCi· yi,null.

(4.9)

Here, the individual rationality constraint is active only when

yi,null=0. Otherwise, since the agent isnot connected to the

network,hercostwillcoincidewithSTCi.

We set D=D

{

Nulli : iIP

}

, where Nulli is the null class,

associatedtoyi,null,andD0=D

\

{

C

(

i,0

)

: iIP

}

.Denoting STCi

(

yi,null

)

:=

αi

STCi·

(

1− yi,null

)

+STCi· yi,null,

thenewoptimizationproblembecomes

minxRN,y{0,1}|D|Z

(

x

)

s.t.

xX, zi

(

x−i

)

+  (k,i)Emax xk,i=  (i, j)Emax xi, j,

iI, yi,null+  C∈Ci yC=1,

iIP,  (i, j)C xi, j≤ B· yC,

CD0,  (i, j)C(i,0) xi, j≤ B·

(

yC(i,0)+yi,null

)

,

iIP,  (i, j)Emax, j=0 xi, j≤ B·

(

1− yi,null

)

,

iIP,  (k,i)Emax xk,i≤ B·

(

1− yi,null

)

,

iIP, gi

(

x−i

)

≤ 0,

iIP, zi

(

x−i

)

≥ 0,

iI,

Costi

(

xi,xP−i,xR,E

(

y

))

≤ STCi

(

yi,null

)

,

iIP,

x≥ 0.

(4.10)

Observethat, wheneveryi,null=0, then all constraintsfor the

ith agent are the same that those established in problem (4.8). Also,ifyi,null=1,theonlyfeasiblesolutionforiisthestand-alone

operation.Thus,inthisnewproblem,theauthorityfirstchooseall theagentsthatwillparticipateinthenetwork,representedbythe set

IP =

{

iIP : yi,null=0

}

,

and then it solves problem (4.8) replacing I by I=IP∪IR. Of

course,as itis formulated, the authority takesboth decisions si-multaneously, by solving problem (4.10). It is not hard to verify thatanyoptimalsolutionofproblem(4.10)isanoptimalsolution ofProblem(4.8)forthereducedsetofagentsI.Weleavethis ver-ificationtothereader.

5. Blind-Inputmodelforwaterexchangenetworks

In thissection we come back to our original motivation pre-sentedinSection2,thewaterexchangenetworksinEco-Industrial Parks.Wearenowreadytodescribeindetailthemodel,andhow itfitsintotheBlind-Inputmodeldevelopedsofar.

First, an EIP consists in a set of enterprises P:=

{

P1,...,Pn

}

,

thatareconnectedinanexchangenetwork.EachenterprisePican beconnectedeithertoother enterprises, ortosome regeneration units,which we denoteR:=

{

R1,...,Rm

}

.The regeneration units

arecontrolledby acentralauthority. Thisauthorityplaystherole ofdesigner (when deciding the connections within the network) and regulator of the park’s operation. Finally, we include a sink node0,thatrepresentsawastes’pittodischargeuseless polluted water.WeidentifyP withtheindexsetIP:=

{

1,...,n

}

andRwith IR:=

{

n+1,...,n+m

}

. We put I=IPIR and I0=

{

0

}

I. Finally,

Figure

Fig.  1.1. General scheme of SLMF game.
Fig.  5.1. Water mixture description for a given enterprise. Here C  i ,in  ≤ C  i ,out
Fig.  6.1. The configuration in the case without regeneration units,  α = 0 . 95 and  Coef = 1
Fig.  6.2. Sensitivity Analysis for  α ∈ [0.50, 0.99] and Coef = 1 . Total fresh water  consumption and number of stand-alone enterprises.
+3

Références

Documents relatifs

We tested the following factors as possible explanatory variables for the consumption of cocaine: (1) socio- demographic characteristics (sex, age, employment, housing (home owner

Dans de telles situations, le principe de subsidiarité, qui renvoie à la « recherche permanente du niveau le plus pertinent pour l’action » (Petit et al., 2011), peut être

We show that the carbon solid formation and condensed copper formation depends on the SF 6 proportions and the presence of the electronegative ions F -.. Key Words:

We postulate that a small audit firm's clients will retain a Big Eight acquirer following a merger if they benefit from the Big Eight firm's higher audit quality, or its network

Two QTLs detected on Omy1 explained up to 15% of the total genetic variance of maleness in the population used in this study and we identified three candidate genes that might

Transmission electron microscopy (TEM) images also showed that the cells suffered damage after 1 minute of exposure to NRC-03 (Fig. 3I,J), with many cells showing severe vacuolation

Occupants of similar houses who open windows to control temperatures and only use the A/C when necessary would likely incur smaller cooling loads that could result in smaller savings

Figure 3-1 depicts Chaos's high-level design. Chaos is composed of an Execution Monitor that monitors the behavior the application, an Input Specification