• Aucun résultat trouvé

Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota

N/A
N/A
Protected

Academic year: 2021

Partager "Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota"

Copied!
7
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 19897

To link to this article : DOI :

10.1016/j.copbio.2016.11.024

URL :

https://doi.org/10.1016/j.copbio.2016.11.024

To cite this version : Mottier, Antoine and Mouchet, Florence

and Pinelli, Eric and Gauthier, Laury and Flahaut, Emmanuel

Environmental impact of engineered carbon nanoparticles: from

releases to effects on the aquatic biota. (2017) Current Opinion in

Biotechnology, vol. 46. pp. 1-6. ISSN 0958-1669

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Environmental

impact

of

engineered

carbon

nanoparticles:

from

releases

to

effects

on

the

aquatic

biota

Antoine

Mottier

1,2

,

Florence

Mouchet

1,2

,

E´ric

Pinelli

1,2

,

Laury

Gauthier

1,2

and

Emmanuel

Flahaut

3,4

Nano-ecotoxicologyisanemergingsciencewhichaimsto assesstheenvironmentaleffectofnanotechnologies.The developmentofthisparticularaspectofecotoxicologywas madenecessaryinordertoevaluatethepotentialimpactof recentlyproducedandusedmaterials:nanoparticles(NPs). AmongallthetypesofNPs,carbonnanoparticles(CNPs) especiallydrawattentiongivingtheincreasingnumberof applicationsandintegrationintoconsumerproducts.However thepotentialimpactsofCNPsintheenvironmentremainpoorly known.Thisreviewaimstopointoutthecriticalissuesand aspectsthatwillgovernthetoxicityofCNPsintheenvironment.

Addresses

1ECOLAB,Universite´ deToulouse,CNRS,INPT,UPS,France 2

ENSAT,Avenuedel’Agrobiopoˆle,F-31326Castanet-Tolosan,France

3CIRIMAT,Universite´ deToulouse,CNRS,INPT,UPS,UMR

CNRS-UPS-INPN!5085,Universite´ Toulouse3PaulSabatier,Baˆt.

CIRIMAT,118,routedeNarbonne,31062Toulousecedex9,France

4CNRS,InstitutCarnotChimieBalardCIRIMAT,F-31062Toulouse,

France

Correspondingauthors:Gauthier,Laury(laury.gauthier@univ-tlse3.fr), Flahaut,Emmanuel(flahaut@chimie.ups-tlse.fr)

Introduction

Nanoparticles(NPs)areusuallydefinedasobjectswithat leastonedimensionbetween1and100nm.Theycanbe released into the environment from natural (volcanoes, forestfires, etc.) or anthropogenic (brakepads residues, welding,combustion,etc.)sources.Amonganthropogenic nanoparticles, engineered nanoparticles (ENPs) have recentlyemergedandquicklyshownaveryfast develop-ment [1]. Thefields ofapplications ofENPs aremany (automobile,medicine,optics,electronics,etc.)andENPs arenowintegratedindailylifeconsumerproducts.The

number of products integrating nanoparticles was esti-matedbetween1814[2"]and2332[3]andwasin2015 30-foldmoreimportantthanin2005[2"].Amongthewide variety of ENPs, Carbon-based nanoparticles (CNPs) representaspecificclass,especiallyinterestinginterms of rapid development and applications. Although all composed of carbon atoms, the different hybridization of the C–C bonds gives them very specific physical properties.CNPscanbedistinguishedbetween0D: full-erenes, onion-like carbon, carbon dots, nanodiamonds; 1D:nanofibers,nanotubesandnanohorns;2D:multilayer graphitic nanosheets, graphene nanoribbons, and grapheneandrelatedmaterials(GRMs).CNPswerefirst describedin1985withC60fullerene[4]butmost

applica-tions came later with carbon nanotubes (CNTs) in 1991 [5] and graphene more recently [6]. Given their unique properties, GRMs are currently subject to important research efforts to improve their large scale production [7,8]. CNPs are already used in daily life products(nanocomposites,paints,energystorage,waste water treatment [9], etc.). Depending on data sources, between89and217consumerproductsintegrate carbo-naceous nanomaterials[2",3] anditis likelythat CNPs willbereleasedintheenvironmentduringthelifecycle of manufactured products [9–11]. This review aims to reportthestateoftheartdealingwithCNPs effectson the environment with a special focus on the aquatic environmentbecauseof itsabilitytoconcentrate pollu-tion.Anemphasiswillbemadeonthefateanddetection ofCNPs inthe environmentandin complexbiological matrices.

Carbonnanoparticlesinthe environment

The risk posed by a xenobiotic in the environment is definedastheresultof environmentalexposureandits intrinsicdanger.Thereleases andfatewillgovern con-centrationsofCNPsintheenvironmentandarethuskey aspectsthatwilldeterminetheirecotoxicity.

AnalyticalmeasurementsofCNPsincomplexmatrix Severalexperimentaltechniquesarecurrentlyusedand developed in order to directly measure environmental concentrationsofCNPs.Mosttypesofnanoparticlessuch asmetalnanoparticlescan bemore easilydetectedand quantified in complex organic matrix (especially using single particles inductively-coupled plasma quadrupole mass spectrometer: sp-ICP-MS or synchrotron) [12].

(3)

reportedenvironmentalpredictedconcentrations(EPCs) in surface water between 0.23ng/L (Q0.15=0.17ng/L;

Q0.85=0.35ng/L) in 2012 [19] and 0.28ng/L

(Q0.15=0.04ng/L;Q0.85=0.65ng/L)in2014[20""].

Simi-larlysedimentconcentrationswereestimatedandranged from 0.79ng/L (Q0.15=0.61ng/L; Q0.85=1.2ng/L) in

2012[19]to6.34ng/L(Q0.15=4.32ng/L;Q0.85=9.24ng/

L) in2014[20""].Withanexpectedcontinuousincreasein needs, the concentration of CNPs will increase in all environmentalcompartments.Althoughveryuseful,these predictionsarenotvalidatedbyanalyticalmeasurements [22]andimprovementsareneededinbothfields[23].

Modelingmethodsarealsousedtodeterminethefateof engineeredCNPs[24],whichisgovernedbybothbiotic andabioticprocesses[25].Thesetransformationscould drasticallychangethebehaviorandthebioavailabilityof CNPs [9,15,26]. The review by Mitrano et al. gives a completeoverviewoftheagingandtransformationsthat CNTs mayexperience in theenvironmentand during the lifecycleofmanufacturedproducts[9].Becauseof transformations,thebehaviorandphysicalpropertiesof pristineCNPsmightbecompletelydifferentfollowing their release. A complete characterization of nanoma-terials has become a requirement to publish nano-ecotoxicological data.There is however some ambiva-lencebetweentheneedoffull characterizationof pris-tine CNPs(just manufactured) and transformations of these particles after interaction with exposure media and organisms during ecotoxicological trials. Physico-chemical characteristics are necessary to understand toxicological phenomena but, as reliable analytical

measurements and detection of CNPs in complex

However, the intrinsic nature of CNPs but also many technologicalbarrierspreventtheirreliabledetection in carbon-richcomplexenvironmentalmatrices: quantifica-tionof CNPs is often moredifficult than lookingfor a needleinahaystack.AmongCNPs,arealeffortwasput onthedetectionofCNTs.Recentreviews[13"",14,15,16] identifiedavailabletechnologiesforextraction(adozen) andmeasurement(aroundtwenty) ofCNPsinboth the environmentandinorganismsbutalsohighlightedallthe limitations of these techniques. The lack of hindsight concerningtherobustnessofthesemethodsbutalsothe lackofreproducibility ispointedout.Howeverthermal methodssuchasmicrowave-inducedheating(MIH)[17] orPTA(programmedthermalanalysis)seempromising and have also been successfully used to measure gra-pheneandgraphene oxideincomplex organic matrices [18].

Releaseandfate

Release of CNPs into the environment could occur at each stage of the life cycle of manufactured nano-products:production, use, waste, anddisposal [9,10,19] (Figure1).Withoutreliableandrobustanalyticalmethods fordetectingtraceconcentrationsofCNPs(apartfromthe specialcaseofisotopiclabelingwith13Cand14C), mathe-maticalmodelingisa usefultool topredictreleasesand environmentalconcentrations.Studiesmodelingthe CNPs releasemainlyfocusedonCNTsaswellasgraphenemore recently,andfewinformationisavailableforothertypesof CNPs[11,19,20"",21].Availabledatashowedthat world-wideproduction ofCNTs is closeto 3kt/year [10]and Europeanproductioncontributesabout0.38kt/year[19]. Based on European production data, latest estimations

Figure1

Effects on biota?

Chemical & biological transformations? Concentrations in the environment?

Transfers? CNPs releases ? Production Wastes Recycling Use of commercial products Primary producers Primary consumers Secondary consumers

Current Opinion in Biotechnology

(4)

matrices are still improving and mostly do not allow characterizationafterwards,theneedofcharacterization data of pristine materials sometimes sounds pointless. Transformations and aging of CNPs are challenging researchtopicsbuttheyareoffundamentalimportance in order to realistically assess the effects of CNPs in complex environments(Figure1).

Assessment ofCNPstoxicityinthe biota

Historically,assessmentofCNPsecotoxicologicaleffects relied upon methodologies used for ‘classical contam-inants’ (i.e. chemicals). For‘new’ contaminants such as CNPs,thesetestmethodshaveinitiallyplayedarolein ordertodefinetoxicitythresholds.Duetorecent devel-opmentsanduses,recentstudiesonCNPs’ ecotoxicolog-ical potential mainly focused on the effects of CNTs, grapheneandGRMs.

Photosyntheticmicroorganisms areatthe base ofmany trophic chains. Toxic effects on these micro-organisms couldleadto drasticeffects onthe wholetrophicchain (Figure1). These organismsarethus a criticalgroup to lookatforassessingtheeffectsofCNPsonthe environ-ment. Effects of twodifferent types of CNTs (double

walled: DWCNTs and multiwalled: MWCNTs) were

assessed on the benthic diatom Nitzschia palea [27,28]. Resultsshowedthatenvironmentallyrealistic concentra-tionsofnaturalorganicmatter (NOM)usedasa disper-sant could increase the short term growth inhibition induced by CNTs. Dispersion of CNPs is essential to characterizeasitwillgreatlydeterminethebioavailability oftheseparticles.Asecondessentialissueconcernsthe secretion of extracellular polymeric substances (EPS) whichhasa protectiverole againstCNTsandhelpsfor growthrecovery(Figure2).FurthermoretheEPS-coated

CNTs could potentially move to higher trophic levels (Figures1and2)ofthefoodchain,afterbeinggrazedby organisms.Oxidizednanomaterials(carboxylic function-containing single walled CNTs: C-SWCNTs and gra-pheneoxide:GO)exhibitadifferenttoxicologicalprofile with generation of reactiveoxygen species (ROS) from 0.01mg/L in the green algae Chlorella vulgaris [29]. Oxidative damages were also detected in the protozoa Euglena gracilis exposed to GO [30]. CNPs effects on photosynthetic organisms also depend on the intrinsic natureoftheCNPsandonthephysiologyandanatomyof theseorganisms.Forinstance,oxidized particlesappear moretoxicandareassociatedwithoxidativestress.Some characteristics,suchasthepresenceofthecellularwallor thesecretionofEPSseemtomakealgaemoreresistant [27–29]comparedtootherorganisms[30].Thequestion oftheroleofoxygen-containingfunctionsisstilldebated becausenotonlythismodifiesthe surfacechemistryon theCNPsandthustheirsurfacechargedependingonthe pH,butitalsocontributestomakethemmucheasierto disperseinwater.

Amphibian modelssuchas Xenopuslaevisarewell char-acterized(genetics,developmentandphysiology)andare very relevant candidates for ecotoxicology assessment. X.laevis wasusedto assessgenotoxicityandtoxicity of CNPsusingstandardizedprocedures[31–33].Ifoxidative stress and DNA damages (repairable) were evidenced aftershorttermexposure,CNTsexhibitednogenetoxic potential since no micronuclei (thus non-repairable damages) were observed after a 12-day exposure. Howevergrowthinhibitionwasobservedathigh concen-trations (from 10mg/L). Growth is a crucial parameter whose measurement integrates all modifications and disturbances undergone by an organism. Based on

Figure2

(a) (b)

10 µm 100 nm

Current Opinion in Biotechnology

(a)ScanningelectronmicroscopyimagesofNitzschiapalea(darkarrow)withextracellularpolymericsubstances(whitearrow)afterexposureto DWCNTs.(b)Scanningelectronmicroscopyimagesofexopolymericsubstances(EPS)(whitearrow)andCNTsembeddedbyEPS(darkarrow).

(5)

Classical monospecific tests reveal toxic effects at con-centrationsfarhigherthanthepredictedones.However severallimitationsshouldbetakenintoaccount suggest-ingthatthepotentialimpactmaybehigherthan expect-able. The use of the classical approach of mass-based concentration as the favorite metrics to express and comparetoxicityresultsshouldevolve,andsurface-based concentration should be seriously considered instead, especially in the case of CNPs. Ecotoxicology should move from the classical ‘toxicology’ approach toward a morerelevant‘eco’evaluationofCNPs’impacts. Identi-fication of specific toxic effects remains unavoidableto understand the mechanisms of intoxication of living systemsbutthesestudiesmustbecompletedwithmore complex butalsomorerealisticexposuresreflectingthe real environment. It may allow to uncover toxicity at levelswherenoeffectscouldbeobserveduntilnowwith simplerexposuremethodsliketheclassicalsinglespecies testsystems[41].Finallyweshouldgotowardtheuseof integrated biomarkers and approaches (i.e. biodegrada-tion, growth) reflecting allthe disturbances inducedby CNPs at lower levels of organization. This will give clearer responses for the environmental risks posed by CNPs,andnanoparticlesingeneral.

Fundingsources

Theresearchleadingtotheseresultshasreceived

fund-ing from the European Union Seventh Framework

Program under grant agreement n!604391 Graphene

Flagship.

Conflict ofinterest

Theauthorsdeclareno competingfinancialinterest.

Acknowledgements

WegratefullythankDr.LaurentVerneuilfortheSEMimagesusedin

Figure2.WethanktheEuropeanUnionSeventhFrameworkProgram undergrantagreementn!604391GrapheneFlagshipforfundingthis

research.

References andrecommendedreading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

" ofspecialinterest "" ofoutstandinginterest

1. PiccinnoF,GottschalkF,SeegerS,NowackB:Industrial productionquantitiesandusesoftenengineered

nanomaterialsinEuropeandtheworld.JNanopartRes2012, 14.

2. "

VanceME,KuikenT,VejeranoEP,McGinnisSP,HochellaMF, HullDR:Nanotechnologyintherealworld:redevelopingthe nanomaterialconsumerproductsinventory.BeilsteinJ Nanotechnol2015,6:1769-1780.

Inthisresearcharticletheauthorsprovidethemostrecentdataforthe marketing anddistributionofnano-enabledproductsincludingCNPs. Key informations concerning the integration of CNPs in consumer’s productsareprovided:categoriesandnumbersofnano-enabled pro-ducts, locationsof nanomaterials in consumer products,as well as potentialexposurepathways.

3. TheNanodatabase;URL:http://nanodb.dk/.

publications in the field of respiratory nano-toxicology [34] we recently evidenced that surface area of CNPs

(DWCNTs, MWCNTs, nanodiamonds and few layer

graphene)islikelytobethemainparameterdetermining thegrowthinhibitioninX. laevislarvae [35"]. Aspecial focusshould be madein thefuture on theuse of non-classicaldosemetricswhichcouldallowuncoveringsome toxicologicalprocessesbecausemass-basedconcentration isgenerallynotappropriate.

Toxicitydata of CNPsin single species tests couldbe gatheredinordertomathematicallymodelpredictedno effectconcentrations(PNECs)forthewholebiota.Using probabilisticspeciessensitivitydistribution(pSSD),Coll etal.derivedPNECsforCNTsandfullerenes[36].The PNECs values for these two CNPs were respectively 55.6mg/L (39.9–78.0) and 3.84mg/L (2.7–5.3). Using thesametype ofapproach(SSD),HC5 (predicted

con-centrationatwhich5%ofspeciesareharmed)valueswere calculatedforfullerenesandCNTsandrangedbetween 0.2and5mg/L, whichis also far abovePECs [37]. To date,PNECs values arefarmore importantthan PECs andbasedontheseapproaches,environmentaleffectsof CNPsseem limited.

Transformationsandagingarekeypointstofullyassess theenvironmentalimpactofCNPs.Classical ecotoxico-logicalstudiesusingsingle-species(i.e.normalizedtest) couldhelptounderstandtoxicitymechanismsoreffecton aparticulartaxa.Howeverthereisalackofenvironmental relevanceusingsuchtestsandcriticalparameterssuchas biotransformation,bioaccumulation, biomagnification or effectsofabiotic factorsareignored. Complexexposure systemsarethusincreasinglyusedtoassesstheeffectsof NPs [38]. The range from indoor trophic chains and multispeciesexposurestooutdoormicroandmesocosms exposures[39"]. Thesestudiesallow experimental con-ditions closer to the real ecosystem however with less control of both biotic and abiotic parameters. These complexsystemswereusedtoassesstheeffectsofvarious typesofnanomaterials[40–43]butonlyonepublicationis availableforCNPs[44],revealingthelowmobilityand bioavailabilityofCNTsinaquaticecosystems, whereas highpersistenceinsedimentwasobserved.

Conclusions

Mathematical modeling studies have shown that pre-dictedenvironmentalconcentrationsareexpectedtobe quitelowandtypicallycloseto1ng/L.Sinceapplications andproductionofCNPsareincreasing,itisexpectedthat environmental concentrations will also increase. The biggest challenges concern the direct measurement of CNPs in complex environmental matrices in order to validate calculated concentrations. Progresses in both modelingandanalytical measurement areneeded fora trustworthyassessment of the environmental impact of CNPs.

(6)

4. KrotoHW,HeathJR,O’BrienSC,CurlRF,SmalleyRE:C60: buckminsterfullerene.Nature1985,318:162.

5. IijimaS:Helicalmicrotubulesofgraphiticcarbon.Nature1991, 354:56-58.

6. NovoselovKS,GeimAK,MorozovSV,JiangD,ZhangY, DubonosSV,GrigorievaIV,FirsovAA:Electricfieldeffectin atomicallythincarbonfilms.Science2004,306:666-669.

7. GrapheneFlagship;URL:http://graphene-flagship.eu/. 8. ISBN:978-0-323-37521-4Copyrightã

2015ElsevierInc. 92pages.

9. MitranoDM,MotellierS,ClavagueraS,NowackB:Reviewof nanomaterialagingandtransformationsthroughthelifecycle ofnano-enhancedproducts.EnvironInt2015,77:132-147.

10. KellerAA,McFerranS,LazarevaA,SuhS:Globallifecycle releasesofengineerednanomaterials.JNanopartRes2013,15.

11. PetersenEJ,ZhangL,MattisonNT,O’CarrollDM,WheltonAJ, UddinN,NguyenT,HuangQ,HenryTB,HolbrookRDetal.: Potentialreleasepathways,environmentalfate,and ecologicalrisksofcarbonnanotubes.EnvironSciTechnol2011, 45:9837-9856.

12. LarueC,Castillo-MichelH,SteinR,FayardB:Innovative combinationofspectroscopictechniquestoreveal nanoparticlefateinacropplant.ActaPartBAt2016,119:17-24.

13. ""

PetersenEJ,Flores-CervantesDX,BucheliTD,ElliottLCC, FaganJA,GogosA,HannaS,Ka¨giR,MansfieldE,BustosARM etal.:Quantificationofcarbonnanotubesinenvironmental matrices:currentcapabilities,casestudies,andfuture prospects.EnvironSciTechnol2016http://dx.doi.org/10.1021/ acs.est.5b05647.

Thisrecentreviewlistsalltheavailableanalyticalmethodsforextraction andquantificationof CNTs incomplexorganic matrices.Thisallows havingaclearandcompleteoverviewoftheavailableanalyticaltools, withstrengthsand weaknessesinherenttoeachmethod (i.e.limitof detection,ease of use, etc.).Furthermore, the authorsprovide case studieswithdifferentscenariosinordertodescribethemethodsthat mayofferthemostsuitabletechniquesforangivenpurpose. 14. Herrero-LatorreC,Alvarez-MendezJ,Barciela-GarciaJ,

Garcia-MartinS,Pena-CrecenteRM:Characterizationofcarbon nanotubesandanalyticalmethodsfortheirdeterminationin environmentalandbiologicalsamples:areview.AnalChim Acta2015,853:77-94.

15. HuX,SunA,MuL,ZhouQ:Separationandanalysisofcarbon nanomaterialsincomplexmatrix.TrACTrendsAnalChem2016, 80:416-428.

16. JastrzebskaAM,OlszynaAR:Theecotoxicityofgraphene familymaterials:currentstatus,knowledgegapsandfuture needs.JNanopartRes2015,17.

17. BourdiolF,DubucD,GrenierK,MouchetF,GauthierL,FlahautE: Quantitativedetectionofcarbonnanotubesinbiological samplesbyanoriginalmethodbasedonmicrowave permittivitymeasurements.CarbonNY2015,81:535-545.

18. DoudrickK,NosakaT,HerckesP,WesterhoffP:Quantificationof grapheneandgrapheneoxideincomplexorganicmatrices. EnvironSciNano2015,2:60-67.

19. SunTY,GottschalkF,Hungerbu¨hlerK,NowackB: Comprehensiveprobabilisticmodellingofenvironmental emissionsofengineerednanomaterials.EnvironPollut2014, 185:69-76.

20. ""

SunTY,Bornho¨ftNA,Hungerbu¨hlerK,NowackB:Dynamic probabilisticmodelingofenvironmentalemissionsof engineerednanomaterials.EnvironSciTechnol2016, 50:4701-4711.

Thismathematicalmodelingstudyprovidesthemostrecentassessment todateconcerningtheconcentrationsofCNTsindifferentenvironmental compartment.AsdirectdetectionofCNPsbyanalyticaltoolsstillneed improvement,thisstudyallowsapredicted overviewofthe potential concentrationsinwater.Combinedwithsensitivityassessmentof organ-ismstoCNPs,thedataprovidedinthisstudyarethusveryvaluablefor environmentalriskassessmentofCNPs.

21. SunTY,ConroyG,DonnerE,Hungerbu¨hlerK,LombiE,NowackB: Probabilisticmodellingofengineerednanomaterialemissions totheenvironment:aspatio-temporalapproach.EnvironSci Nano2015,2:340-351.

22. HarperS,WohllebenW,DoaM,NowackB,ClancyS,CanadyR, MaynardA:Measuringnanomaterialreleasefromcarbon nanotubecomposites:reviewofthestateofthescience. JPhysConfSer2015,617:12026.

23. NowackB,BaaloushaM,Bornho¨ftN,ChaudhryQ,LeadJ, MitranoDM,DerKammerV,Wontner-smithT:Progresstowards thevalidationofmodeledenvironmentalconcentrationsof engineerednanomaterialsbyanalyticalmeasurements. EnvironSciNano2015,2:421-428.

24. DaleAL,CasmanEA,LowryGV,LeadJR,ViparelliE,BaaloushaM: Modelingnanomaterialenvironmentalfateinaquaticsystems. EnvironSciTechnol2015,49:2587-2593.

25. DwivediAD,DubeySP,SillanpaaM,KwonYN,LeeC,VarmaRS: Fateofengineerednanoparticles:implicationsinthe environment.CoordChemRev2015,287:64-78.

26. BundschuhM,SeitzF,RosenfeldtRR,SchulzR:Effectsof nanoparticlesinfreshwaters:risks,mechanismsand interactions.FreshwBiol2016,61:2185-2196http://dx.doi.org/ 10.1111/fwb.12701.

27. VerneuilL,SilvestreJ,RandrianjatovoI,Marcato-RomainC-E, Girbal-NeuhauserE,MouchetF,FlahautE,GauthierL,PinelliE: Doublewalledcarbonnanotubespromotetheoverproduction ofextracellularprotein-likepolymersinNitzschiapalea:an adhesiveresponseforanadaptiveissue.CarbonNY2015, 88:113-125.

28. VerneuilL,SilvestreJ,MouchetF,FlahautE,BoutonnetJ-C, BourdiolF,BortolamiolT,Baque´ D,GauthierL,PinelliE: Multi-walledcarbonnanotubes,naturalorganicmatter,and thebenthicdiatomNitzschiapalea:“astickystory”. Nanotoxicology2014,5390:1-11.

29. HuX,OuyangS,MuL,AnJ,ZhouQ:Effectsofgrapheneoxide andoxidizedcarbonnanotubesonthecellulardivision, microstructure,uptake,oxidativestress,andmetabolic profiles.EnvironSciTechnol2015,49:10825-10833.

30. HuC,WangQ,ZhaoH,WangL,GuoS,LiX:Ecotoxicological effectsofgrapheneoxideontheprotozoanEuglenagracilis. Chemosphere2015,128:184-190.

31. SariaR,MouchetF,PerraultA,FlahautE,LaplancheC, BoutonnetJ-C,PinelliE,GauthierL:Shorttermexposureto multi-walledcarbonnanotubesinduceoxidativestressand DNAdamageinXenopuslaevistadpoles.EcotoxicolEnvironSaf 2014,107:22-29.

32. BourdiolF,MouchetF,PerraultA,FourquauxI,DatasL,GancetC, BoutonnetJ,PinelliE,GauthierL,FlahautE:Biocompatible polymer-assisteddispersionofmultiwalledcarbon nanotubesinwater,applicationtotheinvestigationoftheir ecotoxicityusingXenopuslaevisamphibianlarvae.CarbonNY 2012,54:175-191.

33. MouchetF,LandoisP,PuechP,PinelliE,FlahautE,GauthierL: Carbonnanotubeecotoxicityinamphibians:assessmentof multiwalledcarbonnanotubesandcomparisonwith double-walledcarbonnanotubes.Nanomedicine2010,5:963-974.

34. StoegerT,ReinhardC,TakenakaS,SchroeppelA,KargE,RitterB, HeyderJ,SchulzH:Instillationofsixdifferentultrafinecarbon particlesindicatesasurfaceareathresholddoseforacute lunginflammationinmice.EnvironHealthPerspect2006, 114:328-333.

35. "

MottierA,MouchetF,LaplancheC,CadarsiS,LagierL,Arnault J-C,GirardHA,Leo´nV,Va´zquezE,SarrieuCetal.:Surfaceareaof carbonnanoparticles:adosemetricforamorerealistic ecotoxicologicalassessment.NanoLett2016,16:3514-3518.

Byusingamethodologypreviouslydescribedinaerialnanotoxicology studies,thisresearcharticlehighlightedtheimportanceofusing “non-classical”dosemetricsforstudyingtheecotoxicologicaleffectsofCNPs. Theauthorsevidencedusinganamphibianmodelthatthetoxicityof differentkindsCNPsismainlygovernedbysurfacearea.Moreoverthe differenttypesofCNPscouldbeconsideredasonewhentheirtoxic

(7)

effects are compared based on surface area concentrations, even makingpossibletopredictthepotentialtoxicity(growthinhibition). 36. CollC,NotterD,GottschalkF,SunT,SomC,NowackB:

Probabilisticenvironmentalriskassessmentoffive nanomaterials(nano-TiO2,nano-Ag,nano-ZnO,CNT,and fullerenes).Nanotoxicology2015,5390:1-9.

37. GarnerKL,SuhS,LenihanHS,KellerAA:Speciessensitivity distributionsforengineerednanomaterials.EnvironSci Technol2015,49:5753-5759.

38. AuffanM,TellaM,SantaellaC,BroussetL,Paille`sC,BarakatM, EspinasseB,ArtellsE,IssartelJ,MasionAetal.:Anadaptable mesocosmplatformforperformingintegratedassessments ofnanomaterialriskincomplexenvironmentalsystems.Sci Rep2014,4:5608.

39. "

BourA,MouchetF,SilvestreJ,GauthierL,PinelliE:

Environmentallyrelevantapproachestoassessnanoparticles ecotoxicity:areview.JHazardMater2015,283:764-777.

Inthisreviewtheauthorslistthemostrecentapproachesforan envir-onmentallyrelevantevaluationofNPsecotoxicity.Thisreviewhighlights theimportanceof“dustedoff”ecotoxicologywiththeuseofcomplex exposuresystemsandintegratedbiomarkersfortheevaluationofthe impactofNPs.

40. BourA,MouchetF,VerneuilL,EvaristeL,SilvestreJ,PinelliE, GauthierL:ToxicityofCeO2nanoparticlesatdifferenttrophic

levels—effectsondiatoms,chironomidsandamphibians. Chemosphere2015,120:230-236.

41. BourA,MouchetF,CadarsiS,SilvestreJ,VerneuilL, Baque´ D,ChauvetE,BonzomJ-M,PagnoutC,ClivotHetal.: ToxicityofCeO2nanoparticlesonafreshwaterexperimental trophicchain:astudyinenvironmentallyrelevantconditions throughtheuseofmesocosms.Nanotoxicology2015, 5390:1-11.

42. BuffetPE,Zalouk-VergnouxA,ChaˆtelA,BerthetB,Me´taisI, Perrein-EttajaniH,PoirierL,Luna-AcostaA,Thomas-GuyonH, Risso-deFaverneyCetal.:Amarinemesocosmstudyonthe environmentalfateofsilvernanoparticlesandtoxicityeffects ontwoendobenthicspecies:theragwormHediste

diversicolorandthebivalvemolluscScrobiculariaplana.Sci TotalEnviron2014,470–471:1151-1159.

43. BuffetP,RichardM,CauposF,VergnouxA,Perrein-ettajaniH, Luna-acostaA,AkchaF,AmiardJ,Amiard-triquetC,GuibboliniM etal.:AmesocosmstudyoffateandeffectsofCuO nanoparticlesonendobenthicspecies(Scrobiculariaplana, Hedistediversicolor).EnvironSciTechnol2013,47(3): 1620-1628.

44. SchierzA,EspinasseB,WiesnerMR,BisesiJH,Sabo-AttwoodT, FergusonPL:Fateofsinglewalledcarbonnanotubesin wetlandecosystems.EnvironSciNano2014,1:574-583.

Références

Documents relatifs

Whereas carbon dioxide is often stored and handled under 2-phase or supercritical conditions associated to storage under significant pressure, CO2 ice formation is possible

Unit´e de recherche INRIA Lorraine, Technopˆole de Nancy-Brabois, Campus scientifique, ` NANCY 615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES Unit´e de recherche INRIA

Many different sources, including the agricultural sector itself, emit and accumulate pollutants in different environmental compartments (soil, water and air).. When there are

In any case, monitoring concentrations, transformation processes and fate of airborne ENMs is relevant as atmospheric transformations can have a crucial impact on ENM’s role

Indeed, according to their respective water holding capacities (WHC), addition of growing media and food leads to a two phase system (e.g. water on top of the matrix). This can

Stacked radial over-density profiles of active (blue), transitioning (green), and passive (red) galaxies, as defined with the distance to the main sequence (detailed in Sect. 2.1.1

(2) observation of the homing flights of bees; (3) the analysis of the information encoded in the dances of re- turning foragers; and (4) recording of the conditioned

Fires are a detriment factor in many type of industries and constitutes a potential source of human loss, equipment damage and environmental impact and as the oil