• Aucun résultat trouvé

Role of the supplementary motor area in the automatic activation of motor plans in de novo Parkinson's disease patients

N/A
N/A
Protected

Academic year: 2021

Partager "Role of the supplementary motor area in the automatic activation of motor plans in de novo Parkinson's disease patients"

Copied!
5
0
0

Texte intégral

(1)

ContentslistsavailableatSciVerseScienceDirect

Neuroscience

Research

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / n e u r e s

Rapid

communication

Role

of

the

supplementary

motor

area

in

the

automatic

activation

of

motor

plans

in

de

novo

Parkinson’s

disease

patients

Kevin

D’Ostilio

a,∗

,

Benjamin

Deville

a

,

Julien

Cremers

a,b

,

Julien

Grandjean

c

,

Eva

Skawiniak

b

,

Valérie

Delvaux

b

,

Gaëtan

Garraux

a,b

aMoVeReGroup,CyclotronResearchCenter,UniversityofLiege,Liege,Belgium bDepartmentofNeurology,UniversityHospitalCenter,SartTilman,Liege,Belgium cCyclotronResearchCenter,UniversityofLiege,Liege,Belgium

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18December2012 Receivedinrevisedform3April2013 Accepted15April2013

Availableonline1May2013

Keywords: Subliminal Parkinson’sdisease Priming Reactiontime Neuroimaging

Supplementarymotorarea

a

b

s

t

r

a

c

t

Theroleofthebasalganglia-corticalmotorloopinautomaticandunconsciousmotorprocessesispoorly understood.Here,weusedevent-relatedfunctionalmagneticresonanceimagingin11denovo Parkin-son’sdiseasepatientsastheyperformedavisuomotormaskedprimingtask.Thestrongersubliminal primingeffectforthenon-dominantsideofmotorsymptomsthanforthedominantsidewasparalleled bystrongersupplementarymotorareaproperactivityinresponsetolateralizedvisualstimulipresented belowthethresholdofawareness.Thisnovelresultsupportsthepredictionthatthisareaisinvolvedin theautomaticactivationofmotorplansasafunctionofstriataldopaminelevels.

©2013ElsevierIrelandLtdandtheJapanNeuroscienceSociety.Allrightsreserved.

ThepathologicalhallmarkofParkinson’sdisease(PD)isa pro-gressivelossofneuronsinthelateralventraltiersofthesubstantia nigraparscompacta(FearnleyandLees,1991),leadingtoadecrease ofdopaminergicnigrostriatalterminalsthatistypicallymore pro-nouncedintheposterioraspectsofthestriatuminthehemisphere contralateraltothemostclinicallyaffectedbodyside(Kishetal., 1988).Sincetheposteriorputamenisthemaininputstructureof themotorloopinthemodelproposedbyAlexanderetal.(1990),the lossofstriataldopaminergicterminalsisexpectedtohaveremote influencesonothercomponentsofthemotorloopduringvoluntary movements.Accordingtothismodel,themajorprobleminmotor slownessisadeficiencyintheactivationofcorticalareasinvolved inthemotorloop,notablythemoreposteriorpartofthemedial pre-motorcortex,thesupplementarymotorareaproper(SMA),which isconsideredtobeakeystructureofthecortico-basalgangliamotor loop(Nachevetal.,2008;Aronetal.,2009).Thispredictionhasbeen supportedbymanyexperimentalresultsinPDpatients.Afailureto activatetheSMAduringtheexecutionofupperlimbmovements isaconsistentobservationinPDpatientsstudiedintheoffstate ascompared withcontrols(Jenkinset al.,1992; Playfordetal., 1992;Jahanshahietal.,1995).Apomorphine,anon-selectiveD1/D2

∗ Correspondingauthor.Tel.:+3243665475;fax:+3243662946. E-mailaddress:Kevin.dostilio@ulg.ac.be(K.D’Ostilio).

agonist(Albinetal.,1989;DeLong,1990;Jenkinsetal.,1992;Rascol etal.,1992),fetalmesencephalicdopaminergictransplantsintothe striatum(Piccinietal.,2000), pallidotomy(Graftonetal.,1995; Samueletal.,1997),pallidalandsubthalamicelectricstimulation (Limousinetal.,1997),allincreasethelevelofSMAactivityalong withresolutionofakinesia(i.e.delayedmovementinitiation).

Inhealthysubjects,weandothershaveshownthatSMA activ-itychangescanbeelicitedbythepresentationofvisualstimuliif thesehavebeenassociatedwithaspecificmotorresponse regard-lessofwhether(i)stimuliarepresentedbeloworabovethelevelof awarenessand(ii)thecorrespondingmotorresponseisexecuted ornot(Boyetal.,2010;D’OstilioandGarraux,2011;D’Ostilioetal., 2012).Moreprecisely,weprovidedfunctionalmagneticresonance imaging(fMRI)evidencesuggestingthatSMAactivityisinvolved intheprocessingofmotorplansautomaticallyelicitedby uncon-sciouslyperceivedvisualstimuli,evenifthecorrespondingplan isnotexecuted(D’OstilioandGarraux,2011).Inpatients,afocal lesionoftheposteriorpartoftheSMAhasbeenassociatedwitha deficitintheautomaticandunconsciousinhibitionofmovements (Sumneretal.,2007).

Here, we hypothesized that this SMA activity pattern is dependentonstriatal dopaminelevels.Thiswastested usinga within-subjectdesignin11denovo,drug-naïve,PDpatientsunder theassumptionthatstriataldopaminedeficiencyisasymmetrical, i.e.lesspronouncedinthemotorloopconcernedwiththecontrol

0168-0102/$–seefrontmatter©2013ElsevierIrelandLtdandtheJapanNeuroscienceSociety.Allrightsreserved.

(2)

maskandthetarget)inordertostudythepositivecompatibility effect(PCE)thatreflectstheautomaticactivationofmovements. Wedidnotexaminethenegativecompatibilityeffect(NCE) reflect-inganinhibitionprocessatlongerISIs(Sumneretal.,2007).To minimizeanybiasinmotorperformancebetweenleftandright handresponses,werestrictedfMRIdataanalysistotrialsthatdid notrequireanymotorresponse.

ElevendenovodrugnaïvePDpatients(3women/8men) par-ticipatedinthefMRIexperiment.Denovopatientswerepreferred asitisknownthatasymmetryismorepronouncedearlyoninthe disease(RiedererandSian-Hülsmann,2012).Agerangedfrom59 to80years,withamean±SDof68±7years.Allwererighthanded andhadnormalorcorrected-to-normalvisionandhearing.Global motorimpairmentwasassessedusingthemotorpart(partIII)of theUPDRS(Fahnetal.,1987)andtheHoehnandYahrscale(Hoehn andYahr,1967;Goetzetal.,2004).Thegroupmeanscoreonthese scaleswas15±6and1.4±0.5,respectively(Table1).Asexpected, compositeUPDRSIIIscores(sumofUPDRSIIIscoresfromitem22: rigidity+item 23:fingertaps+item 24:handmovements+item 25:pronation–supination movementsof hands)showed higher impairmentonthedominantside(median=8)ascomparedwith thenon-dominantside(median=2)ofmotorsymptoms(Wilcoxon test:Z=2.93,p=0.003).Allsubjectsprovidedinformedwritten con-sentinthisstudythatwasapprovedbytheethicscommitteeofthe UniversityofLiège.

Thevisuo-motortaskduringfMRIwassimilartothatpreviously reported(D’OstilioandGarraux,2011)(Fig.1).Briefly,eachtrial startedwithafixationdotdisplayedonthecenterofthescreen foradurationthatwaspseudo-randomlyjitteredbetween1500 and3000msacrosstrials.Thiswasfollowedbyablankscreen,a primestimulusand amaskstimulusalongwithtargetstimulus sequentiallydisplayedfor300ms,33ms,and100ms,respectively. Theprime stimulus waseither a double arrow pointing tothe leftor therightora plussign. The maskstimulusconsisted in

motorresponsefacilitationwasformallyassessedbycomparing behavioral performance between compatible and incompatible conditions(i.e.responsetrials).Reactiontimedataanalysisshowed aPCEforthenon-dominantsideofmotorsymptoms[PCE:19ms; t(10)=2.54, p=0.03] but notfor the dominantside [PCE=3ms; t(10)=0.14,p>0.05].Inaddition,asexpected,thepatientsmade moreerrorswhentheno-responseconditionswereprecededby anarrow prime (error ratefor primearrow no-response trials: 6.8%>neutralno-responsetrials:3.6%;p=0.045).

FunctionalMRItimeserieswereacquiredona3Thead-only scanner(MagnetomAllegra,SiemensMedicalSolutions,Erlangen, Germany) operatedwiththestandard transmit-receive quadra-turehead coil. MultisliceT2*-weighted functional imageswere acquiredwithagradient-echoecho-planarimagingsequenceusing axialsliceorientationandcoveringmostofthebrain(20slices, FoV=220mm×220mm,voxelsize3.4mm×3.4mm×5mm,25% interslicegap,matrixsize64×64×20,TR=1170ms,TE=30ms, FA=90◦). For each session, the first eight volumes acquired before the first trial onset were discarded to allow for T1 saturationeffects. Headmovementwas minimizedby restrain-ing the subject’s head using a vacuum cushion. Stimuli were displayed on a screen positioned at the rear of the scan-ner,which the subjectcould comfortablyseethrough a mirror mountedonthestandard headcoil.Foranatomical reference,a high-resolution T1-weightedimage wasacquired for each sub-ject (3D MDEFT, TR=7.92ms, TE=2.4ms, TI=910ms, FA=15◦, FoV=256mm×224mm×176mm,1mmisotropicspatial resolu-tion).

Data were preprocessed and analyzed using SPM8 (Wellcome Department of Imaging Neuroscience,

http://www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB 7.4.0(MathworksInc.,Sherbom,MA).Imagesofeachindividual subjectwerefirstcorrectedforslicetimingandrealigned(motion corrected).ThemeanEPIimagewasspatiallycoregisteredtothe

Table1

Demographicandclinicalpatients’data.

Patients Age(years) Gender GlobalRT DS NDSscore DSscore UPDRSpartIIIa HoehnandYahrscaleb

1 59 M 470.75 Right 2 8 11 1 2 66 M 479.09 Left 4 10 23 2 3 80 F 686.75 Left 3 9 23 2 4 66 M 483.43 Right 1 7 10 2 5 72 F 542.50 Left 1 3 9 1 6 59 M 502.29 Right 3 9 19 1 7 65 M 397.88 Left 4 12 22 2 8 63 M 552.03 Right 4 7 16 1 9 75 M 611.72 Left 1 3 4 1 10 78 F 961.87 Right 2 9 17 1.5 11 70 M 476.30 Right 1 7 15 1.5

DS=dominantsideofmotorsymptoms;NDS=non-dominantsideofmotorsymptoms.

aUPDRS:minimumscore=0,maximumscore=108.

b HoehnandYahrscale:stage0:nosignsofdisease;stage1.0:unilateraldisease;stage1.5:unilateralandaxialinvolvement;stage2.0:bilateralinvolvementwithout

impairmentofbalance;stage2.5:mildbilateraldiseasewithrecoveryonpulltest;stage3.0:mildtomoderatebilateraldisease;someposturalinstability;physically independent;stage4.0:severedisability;stillabletowalkorstandunassisted;stage5.0:wheelchairboundorbedriddenunlessaided.

(3)

Fig.1.Subliminalmaskedprimetask.Thetargetsstimuliweredisplayedtogetherwiththemask,directlyafterthesubliminalprimestimulus(apointingarroworaneutral stimulus),andwereeithercomposedofdoublepointingarrows(=responsetrials)ordouble“0”signs(=no-responsetrials).

anatomicalMRIimageandcoregistrationparameterswereapplied to the realignedBOLD time series. Individual anatomical MRIs werespatiallynormalizedintoMNIspace(MontrealNeurological Institute, http://www.bic.mni.mcgill.ca) and the normalization parametersweresubsequentlyappliedtotheindividually coreg-isteredBOLDtimesseries,whichwasthenreslicedtoavoxelsize of 2mm×2mm×2mm, and smoothed using an 6mm FWHM Gaussian kernel. In first level analyses, the six experimental conditionsweremodeledseparately.Eacheventwastime-locked tothetargetstimulusofeachtrialandconvolvedwithacanonical hemodynamic response function and its time and dispersion derivatives.Weusedthegeneralized linearmodeltomodelthe intensity level of each voxel as a linear combination, for each subjectandevent.

Theneuralcorrelatesofthedifferencein thelevel of prime-induced activation of motor plans between the dominant and non-dominantsideofmotorsymptomswasexaminedusing no-response trials. Since we postulated that the priming effect is asymmetricallyaffected,wecontrastedprime-inducedactivation

ofthemotorplanfor thenon-dominantand thedominantside ofmotorsymptoms(Fig.2).Contrastimagesfromallparticipants wereenteredinasecond-level randomeffectone-sample t-test analysis.Bycomparingthe11contrastimagesrelatedtothe non-dominantside(rightorleft)tothoseofthedominantsideofmotor symptoms(rightorleft),weexpectedastrongerbilateralactivity intheSMA.Resultsarereportedinthisregionatp<0.005, uncor-rectedwitha20voxelextentthresholdofactivation.Thepredicted activationsintheSMAwerefurthertestedusingaspherical small-volumecorrection(SVC)witharadiusof10mm(cut-offvalue:0.05, familywiseerror[FWE]corrected),centeredonthepeak coordi-natesfromourprevioussubliminalprimingstudies(rightSMA, MNI:8,−2,62)(D’OstilioandGarraux,2011,2012).

Asexpected,we foundstrongerbilateralSMA activitywhen the motor plan for the non-dominant side of motor symp-toms was subliminally activated (i.e. when the prime arrow pointed to the same side as this hand) compared with that for thedominantside[leftSMA-proper: (−10,−6,58), Z=3.93, p(unc.)=0.00004; right SMA-proper: (14, −12, 58), Z=3.50,

Fig.2.fMRIresults.ThefigureillustratesstrongerSMAactivitywhentheprimetriggeredanautomaticandunconsciousmotoractivationofthenon-dominantsideofmotor symptoms(NDS)incomparisontothedominantside(DS)forno-responsetrials.Resultsaredisplayedatapeakthresholdofp<0.005anda20voxelextentthresholdof activation.

(4)

effect.

AfterthefMRIsession,threepatientsintheexperimentalgroup performed a prime identification task consisting in 180 trials. Resultsshowedthattheycorrectlyidentifiedthesubliminal33 ms-stimulusinonly33%ofalltrials.Theidentificationperformance wasvery low because patientsdid not respondto some trials despiteclearinstructions.Resultsobtainedinaseparategroupof 15PDpatientsconfirmedthata33ms-primeisunlikelytobe con-sciouslyperceivedbyparticipants.Thiswasformallyassessedusing anidentificationtaskcontaining60trials. Thetaskdisplaywas exactlythesameasinthefMRIexperimentbutparticipantswere askedtoguessthedirectionoftheprimearrowstimulipresented beforethemask.Thepercentageofcorrectresponseswas calcu-latedand comparedtochancelevels.Participantsidentifiedthe primein47%ofalltrials(i.e.atchancelevels),supportingthe state-mentthattheprimestimuliwerenotconsciouslyperceivedinour task.

TheaimofthisstudywastoexamineSMAactivityrelatedtothe automaticandunconsciousmotoractivationprocessinearlystages PDpatientswhileadministeringasubliminalvisuomotorpriming task(EimerandSchlaghecken,1998).fMRIdataanalysisrevealed strongeractivationsintheposteriorpartoftheSMA,bilaterally, when theprime stimulustriggered a motor response withthe non-dominantsideascomparedwiththedominantsideofmotor symptoms.Thisresultisnotconfoundedbydifferenceinmotor performancebetweentheformerandthelattersincethefMRIdata analysiswasrestrictedtotrialsinwhichnomotorresponsewas required.Thisextendspreviousfindingsonimpaired-movement relatedSMAactivityinPDtounconsciousandautomaticmotor processes.Thisresult corroboratespreviousfindings suggesting thatthisregionparticipatesinautomaticactivationofmotorplans unconsciouslyelicitedbyvisualstimuli(GrezesandDecety,2002; D’OstilioandGarraux,2011).Ourdatadonotallowustoinvestigate therelativecontributionofothercomponentsofthe cortico-basal-corticalmotorloop.Sincethemedialfrontalcortexhypoactivation mayaccountforthepatients’difficultiesininitiatingmovements (Jenkinsetal.,1992;Playfordetal.,1992)andbecause sensorimo-torintegrationatthelevelofthemotorpreparationisimpaired inPDpatients(AbbruzzeseandBerardelli,2003),weproposethat lateralizedmotordeficitsofautomaticandunconsciousmotor acti-vationmightpartiallyexplaintheearlymotorsymptomsofthe diseasesuchastheslownessinselectingtheappropriatemotor response.

Authors’contributions

KevinD’Ostiliowasimpliedinconception,organizationand exe-cutionoftheresearchproject,designandexecutionofthestatistical analysis,aswellasindraftingthemanuscript.BenjaminDeville, JulienCremers,JulienGrandjean,EvaSkawiniak,andValérie Del-vauxwereimpliedintheexecutionof theresearchprojectand gaverevisionofthemanuscript.GaëtanGarrauxwasimpliedin

References

Abbruzzese,G.,Berardelli,A.,2003. Sensorimotorintegrationinmovement disor-ders.Mov.Disord.18,231–240.

Albin,R.L.,Young,A.B.,Penney,J.B.,1989. Thefunctionalanatomyofbasalganglia disorders.TrendsNeurosci.12,366–375.

Alexander,G.E.,Crutcher,M.D.,DeLong,M.R.,1990. Basalganglia-thalamocortical circuits:parallelsubstratesformotor,oculomotor,“prefrontal”and“limbic” functions.Progr.BrainRes.85,119–146.

Aron,A.R.,Wise,S.P.,Poldrack,R.A.,2009.Cognition:basalgangliarole.In:Squire, L.R.(Ed.),EncyclopediaofNeuroscience.AcademicPress,Oxford,pp.1069–1077.

Boy,F.,Husain,M.,Singh,K.D.,Sumner,P.,2010. Supplementarymotor area activationsinunconsciousinhibitionofvoluntaryaction.Exp.BrainRes.206, 441–448.

D’Ostilio,K.,Collette,F.,Phillips,C.,Garraux,G.,2012.Evidenceforaroleofa cortico-subcorticalnetworkforautomaticandunconsciousmotorinhibitionofmanual responses.PLoSONE7,e48007.

D’Ostilio,K.,Garraux,G.,2011.Automaticstimulus-inducedmedialpremotorcortex activationwithoutperceptionoraction.PLoSONE6,e16613.

D’Ostilio,K.,Garraux,G.,2012. Dissociationbetweenunconsciousmotorresponse facilitationandconflictinmedialfrontalareas.Eur.J.Neurosci.35,332–340.

DeLong,M.R.,1990.Primatemodelsofmovementdisordersofbasalgangliaorigin. TrendsNeurosci.13,281–285.

Eimer,M.,Schlaghecken,F.,1998. Effectsofmaskedstimulionmotoractivation: behavioralandelectrophysiologicalevidence.J.Exp.Psychol.Hum.Percept. Per-form.24,1737–1747.

Fahn,S.,Elton,R.,Committee,U.D.,1987. UnifiedParkinson’sdiseaseratingsclae. In:Fahn,S.,Marsden,C.D.,Calne,D.B.,Goldstein,M.(Eds.),RecentDevelopment inParkinson’sDisease.Macmillan,FlorhamPark,NJ,pp.153–164.

Fearnley,J.M.,Lees,A.J.,1991. AgeingandParkinson’sdisease:substantianigra regionalselectivity.Brain114(5),2283–2301.

Goetz,C.G.,Poewe,W.,Rascol,O.,Sampaio,C.,Stebbins,G.T.,Counsell,C.,Giladi,N., Holloway,R.G.,Moore,C.G.,Wenning,G.K.,Yahr,M.D.,Seidl,L.,2004.Movement disordersocietytaskforcereportontheHoehnandYahrstagingscale:status andrecommendations.Mov.Disord.19,1020–1028.

Grafton,S.T.,Waters,C.,Sutton,J.,Lew,M.F.,Couldwell,W.,1995. Pallidotomy increasesactivityofmotorassociationcortexinParkinson’sdisease:apositron emissiontomographicstudy.Ann.Neurol.37,776–783.

Grezes,J.,Decety,J.,2002.Doesvisualperceptionofobjectaffordaction?Evidence fromaneuroimagingstudy.Neuropsychologia40,212–222.

Hoehn,M.M.,Yahr,M.D.,1967. Parkinsonism:onset,progressionandmortality. Neurology17,427–442.

Jahanshahi,M.,Jenkins,I.H.,Brown,R.G.,Marsden,C.D.,Passingham,R.E.,Brooks, D.J.,1995. Self-initiatedversusexternallytriggeredmovements.I.An inves-tigationusingmeasurementofregionalcerebral bloodflowwithPETand movement-relatedpotentialsinnormalandParkinson’sdiseasesubjects.Brain 118,913–933.

Jenkins,I.H.,Fernandez,W.,Playford,E.D.,Lees,A.J.,Frackowiak,R.S.,Passingham, R.E.,Brooks,D.J.,1992. Impairedactivationofthesupplementarymotorarea inParkinson’sdiseaseisreversedwhenakinesiaistreatedwithapomorphine. Ann.Neurol.32,749–757.

Kish,S.J.,Shannak,K.,Hornykiewicz,O.,1988. Unevenpatternofdopaminelossin thestriatumofpatientswithidiopathicParkinson’sdisease.N.Engl.J.Med.318, 876–880.

Limousin,P.,Greene,J.,Pollak,P.,Rothwell,J.,Benabid,A.L.,Frackowiak,R.,1997.

Changesincerebralactivitypatternduetosubthalamicnucleusorinternal pallidumstimulationinParkinson’sdisease.Ann.Neurol.42,283–291.

Nachev,P.,Kennard,C.,Husain,M.,2008.Functionalroleofthesupplementaryand pre-supplementarymotorareas.Nat.Rev.Neurosci.9,856–869.

Piccini,P.,Lindvall,O.,Bjorklund,A.,Brundin,P.,Hagell,P.,Ceravolo,R.,Oertel,W., Quinn,N.,Samuel,M.,Rehncrona,S.,Widner,H.,Brooks,D.J.,2000. Delayed recoveryofmovement-relatedcorticalfunctioninParkinson’sdiseaseafter stri-ataldopaminergicgrafts.Ann.Neurol.48,689–695.

Playford,E.D.,Jenkins,I.H.,Passingham,R.E.,Nutt,J.,Frackowiak,R.S.,Brooks,D.J., 1992.ImpairedmesialfrontalandputamenactivationinParkinson’sdisease:a positronemissiontomographystudy.Ann.Neurol.32,151–161.

Rascol,O.,Sabatini,U.,Chollet,F.,Celsis,P.,Montastruc,J.L.,Marc-Vergnes,J.P., Rascol,A.,1992. Supplementaryandprimarysensorymotorareaactivityin

(5)

Parkinson’sdisease.Regionalcerebralbloodflowchangesduringfinger move-mentsandeffectsofapomorphine.Arch.Neurol.49,144–148.

Riederer,P.,Sian-Hülsmann,J.,2012. Thesignificanceofneuronallateralisationin Parkinson’sdisease.J.NeuralTransm.119,953–962.

Samuel,M.,Ceballos-Baumann,A.O.,Turjanski,N.,Boecker,H.,Gorospe,A., Linaza-soro,G.,Holmes,A.P.,DeLong,M.R.,Vitek,J.L.,Thomas,D.G.,Quinn,N.P.,Obeso, J.A.,Brooks,D.J.,1997. PallidotomyinParkinson’sdiseaseincreases supple-mentarymotorareaandprefrontalactivationduringperformanceofvolitional movementsanH2(15)OPETstudy.Brain120(Pt8),1301–1313.

Schlaghecken,F.,Munchau,A.,Bloem,B.R.,Rothwell,J.,Eimer,M.,2003. Slow fre-quencyrepetitivetranscranialmagneticstimulationaffectsreactiontimes,but notprimingeffects,inamaskedprimetask.Clin.Neurophysiol.114,1272–1277.

Seiss,E.,Praamstra,P.,2004. Thebasalgangliaandinhibitorymechanismsin responseselection:evidencefromsubliminalprimingofmotorresponsesin Parkinson’sdisease.Brain127,330–339.

Sumner,P.,Nachev,P.,Morris,P.,Peters,A.M.,Jackson,S.R.,Kennard,C.,Husain, M.,2007. Humanmedialfrontalcortexmediatesunconsciousinhibitionof voluntaryaction.Neuron54,697–711.

Figure

Fig. 1. Subliminal masked prime task. The targets stimuli were displayed together with the mask, directly after the subliminal prime stimulus (a pointing arrow or a neutral stimulus), and were either composed of double pointing arrows (=response trials) or

Références

Documents relatifs

http://cenicienta.eklablog.com Source: Fichier ressource interlignes CM1, SED Vrai ou faux.. Les CC donnent des précisions sur les circonstances

Parmi les demandeurs d’emploi tenus de faire des actes positifs de recherche d’emploi, le nombre de personnes sans emploi (catégorie A) en France métropolitaine est stable par

Elle contribue aussi à la signifiance des activités, car les jeunes interviennent en contexte réel pour tenter de résoudre des problèmes environnementaux jugés

[r]

ventral area 44 is involved in the analysis of nonspeech vocal and verbal feedback during conditional associative learning across all response modalities is congruent with both

Auch das Drama des Walliser Schriftstellers Zermatten ist Dich- tung, wenn auch sein eigentliches Arbeitsfeld die Erzählung ist. Während Hafner Georg Supersaxo nicht die Ehre antut,

ADAM, 2001; FAYER, 2009).Ces parasites sont une cause majeure de maladies diarrhéiques aussi bien chez les humains que les animaux à travers le monde, provoquant une forte

Note that this is made without the use of any type of fuel, because the energy, which moves the Gravitational Motor comes from Earth’s gravitational field, i.e., the