• Aucun résultat trouvé

Canonical Jahn-Teller Distortion Notations: Understanding Structural-Electronic Interplays in e1g Perovskites

N/A
N/A
Protected

Academic year: 2021

Partager "Canonical Jahn-Teller Distortion Notations: Understanding Structural-Electronic Interplays in e1g Perovskites"

Copied!
91
0
0

Texte intégral

(1)

Canonical Jahn-Teller Distortion Notations

Understanding Structural-Electronic Interplays in e

1

g

Perovskites

Michael-Marcus Schmitt,Yajun Zhang, Alain Mercy, Eric Bousquet, & Philippe Ghosez

2019 Workshop on Transition Metal Oxide Physics Hotel Bristol, Stresa, Italy

16th - 19th October 2019

Physique Théorique des Matériaux, Q-MAT, CESAM, Université de Liège

(2)

Outline

Canonical Jahn-Teller Distortion Notations Application I: Bulk Ground State of LaMnO3

Application II: [001] Epitaxial Strain Phase Diagram of CaFeO3

(3)

Canonical Jahn-Teller

Distortion Notations

(4)

Van Vleck: The octahedral Complex MX

6

John Hasbrouck Van Vleck

M

Crystal Fi eld Split ting

X

Oh

egeg=a1g+eg Q1 a1g Q2 Q3 eg t2gt2g=a1g+eg+t2g Q4,Q5,Q6 t2g

Many different Notations for this in the literature!

Chemists

Qθ,Q

O’Brien, M. C. & Chancey, C. Am. J. Phys., 1993, 61, 688-697 Labels of Irreducible Representation

M2+, M3+, R3-, R3+, R4-...

Carpenter, M. A. & Howard, C. J. Acta Crystallogr. B., 2009, 65, 134-146 Solid State Physicists

QM

1 ,Q1R,Q2+,Q−2,MJT,RJT,Qx,Qz,QxR,QRz... He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Varignon, J.; Bristowe, N. C. et al.; Sci. Rep., 2015, 5, 15364

Varignon, J.; Bristowe, N. C. & Ghosez, P. E Phys. Rev. Lett., 2016, 116, 057602 Ederer, C.; Lin, C. & Millis, A. J. Phys. Rev. B, 2007, 76, 155105

Perovskite Structure

Same Individual Distortion

Through Different Cooperative Arrangements

A Canonical Notation!

i = Vlecks Numbering ~q = q-vector in Cubic BZ α= orientation (x,y,z) Qi·eiq~R

Q

~

q

1 2 3 4 Γ = (0, 0, 0) = Strain X = (1 2,0, 0) M = (1 2,12,0) R = (1 2,12,12)

He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Kanamori, J. J. Appl. Phys., 1960, 31, 14-23 Schmitt, M. M., et al, arXiv:1909.06287 (2019)

(5)

Van Vleck: The octahedral Complex MX

6

John Hasbrouck Van Vleck

M

Crystal Fi eld Split ting

X

Oh

egeg=a1g+eg Q1 a1g Q2 Q3 eg t2gt2g=a1g+eg+t2g Q4,Q5,Q6 t2g

Many different Notations for this in the literature!

Chemists

Qθ,Q

O’Brien, M. C. & Chancey, C. Am. J. Phys., 1993, 61, 688-697 Labels of Irreducible Representation

M2+, M3+, R3-, R3+, R4-...

Carpenter, M. A. & Howard, C. J. Acta Crystallogr. B., 2009, 65, 134-146 Solid State Physicists

QM

1 ,Q1R,Q2+,Q−2,MJT,RJT,Qx,Qz,QxR,QRz... He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Varignon, J.; Bristowe, N. C. et al.; Sci. Rep., 2015, 5, 15364

Varignon, J.; Bristowe, N. C. & Ghosez, P. E Phys. Rev. Lett., 2016, 116, 057602 Ederer, C.; Lin, C. & Millis, A. J. Phys. Rev. B, 2007, 76, 155105

Perovskite Structure

Same Individual Distortion

Through Different Cooperative Arrangements

A Canonical Notation!

i = Vlecks Numbering ~q = q-vector in Cubic BZ α= orientation (x,y,z) Qi·eiq~R

Q

~

q

1 2 3 4 Γ = (0, 0, 0) = Strain X = (1 2,0, 0) M = (1 2,12,0) R = (1 2,12,12)

He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Kanamori, J. J. Appl. Phys., 1960, 31, 14-23 Schmitt, M. M., et al, arXiv:1909.06287 (2019)

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

(6)

Van Vleck: The octahedral Complex MX

6

John Hasbrouck Van Vleck

M

Crystal Fi eld Split ting

X

Oh

egeg=a1g+eg Q1 a1g Q2 Q3 eg t2gt2g=a1g+eg+t2g Q4,Q5,Q6 t2g

Many different Notations for this in the literature!

Chemists

Qθ,Q

O’Brien, M. C. & Chancey, C. Am. J. Phys., 1993, 61, 688-697 Labels of Irreducible Representation

M2+, M3+, R3-, R3+, R4-...

Carpenter, M. A. & Howard, C. J. Acta Crystallogr. B., 2009, 65, 134-146 Solid State Physicists

QM

1 ,Q1R,Q2+,Q−2,MJT,RJT,Qx,Qz,QxR,QRz... He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Varignon, J.; Bristowe, N. C. et al.; Sci. Rep., 2015, 5, 15364

Varignon, J.; Bristowe, N. C. & Ghosez, P. E Phys. Rev. Lett., 2016, 116, 057602 Ederer, C.; Lin, C. & Millis, A. J. Phys. Rev. B, 2007, 76, 155105

Perovskite Structure

Same Individual Distortion

Through Different Cooperative Arrangements

A Canonical Notation!

i = Vlecks Numbering ~q = q-vector in Cubic BZ α= orientation (x,y,z) Qi·eiq~R

Q

~

q

1 2 3 4 Γ = (0, 0, 0) = Strain X = (1 2,0, 0) M = (1 2,12,0) R = (1 2,12,12)

He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Kanamori, J. J. Appl. Phys., 1960, 31, 14-23 Schmitt, M. M., et al, arXiv:1909.06287 (2019)

(7)

Van Vleck: The octahedral Complex MX

6

John Hasbrouck Van Vleck

M

Crystal Fi eld Split ting

X

Oh

egeg=a1g+eg Q1 a1g Q2 Q3 eg t2gt2g=a1g+eg+t2g Q4,Q5,Q6 t2g

Many different Notations for this in the literature!

Chemists

Qθ,Q

O’Brien, M. C. & Chancey, C. Am. J. Phys., 1993, 61, 688-697 Labels of Irreducible Representation

M2+, M3+, R3-, R3+, R4-...

Carpenter, M. A. & Howard, C. J. Acta Crystallogr. B., 2009, 65, 134-146 Solid State Physicists

QM

1 ,Q1R,Q2+,Q−2,MJT,RJT,Qx,Qz,QxR,QRz... He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Varignon, J.; Bristowe, N. C. et al.; Sci. Rep., 2015, 5, 15364

Varignon, J.; Bristowe, N. C. & Ghosez, P. E Phys. Rev. Lett., 2016, 116, 057602 Ederer, C.; Lin, C. & Millis, A. J. Phys. Rev. B, 2007, 76, 155105

Perovskite Structure

Same Individual Distortion

Through Different Cooperative Arrangements

A Canonical Notation!

i = Vlecks Numbering ~q = q-vector in Cubic BZ α= orientation (x,y,z) Qi·eiq~R

Q

~

q

1 2 3 4 Γ = (0, 0, 0) = Strain X = (1 2,0, 0) M = (1 2,12,0) R = (1 2,12,12)

He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Kanamori, J. J. Appl. Phys., 1960, 31, 14-23 Schmitt, M. M., et al, arXiv:1909.06287 (2019)

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

(8)

Van Vleck: The octahedral Complex MX

6

John Hasbrouck Van Vleck

M

Crystal Fi eld Split ting

X

Oh

egeg=a1g+eg Q1 a1g Q2 Q3 eg t2gt2g=a1g+eg+t2g Q4,Q5,Q6 t2g

Many different Notations for this in the literature!

Chemists

Qθ,Q

O’Brien, M. C. & Chancey, C. Am. J. Phys., 1993, 61, 688-697 Labels of Irreducible Representation

M2+, M3+, R3-, R3+, R4-...

Carpenter, M. A. & Howard, C. J. Acta Crystallogr. B., 2009, 65, 134-146 Solid State Physicists

QM

1 ,Q1R,Q2+,Q−2,MJT,RJT,Qx,Qz,QxR,QRz... He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Varignon, J.; Bristowe, N. C. et al.; Sci. Rep., 2015, 5, 15364

Varignon, J.; Bristowe, N. C. & Ghosez, P. E Phys. Rev. Lett., 2016, 116, 057602 Ederer, C.; Lin, C. & Millis, A. J. Phys. Rev. B, 2007, 76, 155105

Perovskite Structure

Same Individual Distortion

Through Different Cooperative Arrangements

A Canonical Notation!

i = Vlecks Numbering ~q = q-vector in Cubic BZ α= orientation (x,y,z) Qi·eiq~R

Q

~

q

1 2 3 4 Γ = (0, 0, 0) = Strain X = (1 2,0, 0) M = (1 2,12,0) R = (1 2,12,12)

He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Kanamori, J. J. Appl. Phys., 1960, 31, 14-23 Schmitt, M. M., et al, arXiv:1909.06287 (2019)

(9)

Van Vleck: The octahedral Complex MX

6

John Hasbrouck Van Vleck

M

Crystal Fi eld Split ting

X

Oh

egeg=a1g+eg Q1 a1g Q2 Q3 eg t2gt2g=a1g+eg+t2g Q4,Q5,Q6 t2g

Many different Notations for this in the literature!

Chemists

Qθ,Q

O’Brien, M. C. & Chancey, C. Am. J. Phys., 1993, 61, 688-697 Labels of Irreducible Representation

M2+, M3+, R3-, R3+, R4-...

Carpenter, M. A. & Howard, C. J. Acta Crystallogr. B., 2009, 65, 134-146 Solid State Physicists

QM

1 ,Q1R,Q2+,Q−2,MJT,RJT,Qx,Qz,QxR,QRz... He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Varignon, J.; Bristowe, N. C. et al.; Sci. Rep., 2015, 5, 15364

Varignon, J.; Bristowe, N. C. & Ghosez, P. E Phys. Rev. Lett., 2016, 116, 057602 Ederer, C.; Lin, C. & Millis, A. J. Phys. Rev. B, 2007, 76, 155105

Perovskite Structure

Same Individual Distortion

Through Different Cooperative Arrangements

A Canonical Notation!

i = Vlecks Numbering ~q = q-vector in Cubic BZ α= orientation (x,y,z) Qi·eiq~R

Q

~

q

1 2 3 4 Γ = (0, 0, 0) = Strain X = (1 2,0, 0) M = (1 2,12,0) R = (1 2,12,12)

He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Kanamori, J. J. Appl. Phys., 1960, 31, 14-23 Schmitt, M. M., et al, arXiv:1909.06287 (2019)

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

(10)

Van Vleck: The octahedral Complex MX

6

John Hasbrouck Van Vleck

M

Crystal Fi eld Split ting

X

Oh

egeg=a1g+eg Q1 a1g Q2 Q3 eg t2gt2g=a1g+eg+t2g Q4,Q5,Q6 t2g

Many different Notations for this in the literature!

Chemists

Qθ,Q

O’Brien, M. C. & Chancey, C. Am. J. Phys., 1993, 61, 688-697 Labels of Irreducible Representation

M2+, M3+, R3-, R3+, R4-...

Carpenter, M. A. & Howard, C. J. Acta Crystallogr. B., 2009, 65, 134-146 Solid State Physicists

QM

1 ,Q1R,Q2+,Q2−,MJT,RJT,Qx,Qz,QxR,QRz... He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Varignon, J.; Bristowe, N. C. et al.; Sci. Rep., 2015, 5, 15364

Varignon, J.; Bristowe, N. C. & Ghosez, P. E Phys. Rev. Lett., 2016, 116, 057602 Ederer, C.; Lin, C. & Millis, A. J. Phys. Rev. B, 2007, 76, 155105

Perovskite Structure

Same Individual Distortion

Through Different Cooperative Arrangements

A Canonical Notation!

i = Vlecks Numbering ~q = q-vector in Cubic BZ α= orientation (x,y,z) Qi·eiq~R

Q

~

q

1 2 3 4 Γ = (0, 0, 0) = Strain X = (1 2,0, 0) M = (1 2,12,0) R = (1 2,12,12)

He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Kanamori, J. J. Appl. Phys., 1960, 31, 14-23 Schmitt, M. M., et al, arXiv:1909.06287 (2019)

(11)

Van Vleck: The octahedral Complex MX

6

John Hasbrouck Van Vleck

M

Crystal Fi eld Split ting

X

Oh

egeg=a1g+eg Q1 a1g Q2 Q3 eg t2gt2g=a1g+eg+t2g Q4,Q5,Q6 t2g

Many different Notations for this in the literature!

Chemists

Qθ,Q

O’Brien, M. C. & Chancey, C. Am. J. Phys., 1993, 61, 688-697 Labels of Irreducible Representation

M2+, M3+, R3-, R3+, R4-...

Carpenter, M. A. & Howard, C. J. Acta Crystallogr. B., 2009, 65, 134-146 Solid State Physicists

QM

1 ,Q1R,Q2+,Q2−,MJT,RJT,Qx,Qz,QxR,QRz... He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Varignon, J.; Bristowe, N. C. et al.; Sci. Rep., 2015, 5, 15364

Varignon, J.; Bristowe, N. C. & Ghosez, P. E Phys. Rev. Lett., 2016, 116, 057602 Ederer, C.; Lin, C. & Millis, A. J. Phys. Rev. B, 2007, 76, 155105

Perovskite Structure

Same Individual Distortion

Through Different Cooperative Arrangements

A Canonical Notation!

i = Vlecks Numbering ~q = q-vector in Cubic BZ α= orientation (x,y,z) Qi·eiq~R

Q

~

q

1 2 3 4 Γ = (0, 0, 0) = Strain X = (1 2,0, 0) M = (1 2,12,0) R = (1 2,12,12)

He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Kanamori, J. J. Appl. Phys., 1960, 31, 14-23 Schmitt, M. M., et al, arXiv:1909.06287 (2019)

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

(12)

Van Vleck: The octahedral Complex MX

6

John Hasbrouck Van Vleck

M

Crystal Fi eld Split ting

X

Oh

egeg=a1g+eg Q1 a1g Q2 Q3 eg t2gt2g=a1g+eg+t2g Q4,Q5,Q6 t2g

Many different Notations for this in the literature!

Chemists

Qθ,Q

O’Brien, M. C. & Chancey, C. Am. J. Phys., 1993, 61, 688-697 Labels of Irreducible Representation

M2+, M3+, R3-, R3+, R4-...

Carpenter, M. A. & Howard, C. J. Acta Crystallogr. B., 2009, 65, 134-146 Solid State Physicists

QM

1 ,Q1R,Q2+,Q2−,MJT,RJT,Qx,Qz,QxR,QRz... He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Varignon, J.; Bristowe, N. C. et al.; Sci. Rep., 2015, 5, 15364

Varignon, J.; Bristowe, N. C. & Ghosez, P. E Phys. Rev. Lett., 2016, 116, 057602 Ederer, C.; Lin, C. & Millis, A. J. Phys. Rev. B, 2007, 76, 155105

Perovskite Structure

Same Individual Distortion

Through Different Cooperative Arrangements

A Canonical Notation!

i = Vlecks Numbering ~q = q-vector in Cubic BZ α= orientation (x,y,z) Qi·eiq~R

Q

~

q

1 2 3 4 Γ = (0, 0, 0) = Strain X = (1 2,0, 0) M = (1 2,12,0) R = (1 2,12,12)

He, Z. & Millis, A. J. Phys. Rev. B, 2015, 91, 195138 Kanamori, J. J. Appl. Phys., 1960, 31, 14-23 Schmitt, M. M., et al, arXiv:1909.06287 (2019)

(13)

Q

1

-Modes and Strains

Schmitt, M. M., et al, arXiv:1909.06287 (2019)

(14)

Q

1

-Modes and Strains

RNiO3

Mercy, A.et al., Nat. Commun., 2017, 8, 1677 Schmitt, M. M., et al, arXiv:1909.06287 (2019)

(15)

Q

1

-Modes and Strains

Schmitt, M. M., et al, arXiv:1909.06287 (2019)

(16)

Q

1

-Modes and Strains

(17)

Q

1

-Modes and Strains

Park, S. Y. et al. Phys. Rev. Lett., 2017, 118, 087602

Schmitt, M. M., et al, arXiv:1909.06287 (2019)

(18)

Q

2

/

Q

3

-Modes and Strains

(19)

Q

2

/

Q

3

-Modes and Strains

RMnO3

QM 2z & Q3zΓ

KCuF3

QR 2z & QΓ3z

KCrF3

QR 2z & QΓ3z

Schmitt, M. M., et al, arXiv:1909.06287 (2019)

(20)
(21)

Q

4

,

Q

5

,

Q

6

-Modes and Strains

0.84 0.86 0.88 0.9 0.92 0.94 Goldschmidt Factor t -0.02 0 0.02 0.04 Am p. Y Lu Yb Lu Yb Tm Er Ho C e TbTm Er Ho Tb Nd Pr Ce La Y 0.82 0.84 0.86 0.88 0.9 0.92 Y Gd Sm Nd La a) RVO3 b) RTiO3 QΓ3 Q4zΓ

Martínez-Lope, M. J. et al. Inorg. Chem., 2008, 47, 2634-264 Komarek, A. C. et al. Phys. Rev. B, 2007, 75, 224402

(22)

CJTN - Strain Basis

a

1g QΓ 1

e

g QΓ 2α& Q3αΓ

t

2g QΓ 4x,y,z ˆ =    xx xy xz yy yz sym zz   =(ˆ 1, 2, 3, 4, 5, 6)

(23)

Application I: Bulk Ground

(24)

JTD In LaMnO

3 GS Pnma aac+ + JTD Metallic O-Phase 750K < T < 1200K ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Mn3+=d4

Ins. O’-Phase T < TJT =750K - AFM-A T < 140K

QM

2z QΓ3z QΓ4z

How do structural and electronic degrees of freedom interact ?

Let’s ask DFT!

K-Mesh 14x14x14 - Ecut =600eV Exc = PBEsol + (U|J)

U=5.5 eV J=1.5 eV Ground State Structure Band Gap (1.1 eV - Exp 1.1 - 1.9 eV)

Anistropy of Dielectric Tensor Magnetic Exchange Constants

(25)

JTD In LaMnO

3 GS Pnma aac+ + JTD Metallic O-Phase 750K < T < 1200K ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Mn3+=d4

Ins. O’-Phase T < TJT =750K - AFM-A T < 140K

QM

2z QΓ3z QΓ4z

How do structural and electronic degrees of freedom interact ?

Let’s ask DFT!

K-Mesh 14x14x14 - Ecut =600eV Exc = PBEsol + (U|J)

U=5.5 eV J=1.5 eV Ground State Structure Band Gap (1.1 eV - Exp 1.1 - 1.9 eV)

Anistropy of Dielectric Tensor Magnetic Exchange Constants

(26)

JTD In LaMnO

3 GS Pnma aac+ + JTD Metallic O-Phase 750K < T < 1200K ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Mn3+=d4

Ins. O’-Phase T < TJT =750K - AFM-A T < 140K

QM

2z QΓ3z QΓ4z

How do structural and electronic degrees of freedom interact ?

Let’s ask DFT!

K-Mesh 14x14x14 - Ecut =600eV Exc = PBEsol + (U|J)

U=5.5 eV J=1.5 eV Ground State Structure Band Gap (1.1 eV - Exp 1.1 - 1.9 eV)

Anistropy of Dielectric Tensor Magnetic Exchange Constants

(27)

JTD In LaMnO

3 GS Pnma aac+ + JTD Metallic O-Phase 750K < T < 1200K ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Mn3+=d4

Ins. O’-Phase T < TJT =750K - AFM-A T < 140K

QM

2z QΓ3z QΓ4z

How do structural and electronic degrees of freedom interact ?

Let’s ask DFT!

K-Mesh 14x14x14 - Ecut =600eV Exc = PBEsol + (U|J)

U=5.5 eV J=1.5 eV Ground State Structure Band Gap (1.1 eV - Exp 1.1 - 1.9 eV)

Anistropy of Dielectric Tensor Magnetic Exchange Constants

(28)

JTD In LaMnO

3 GS Pnma aac+ + JTD Metallic O-Phase 750K < T < 1200K ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Mn3+=d4

Ins. O’-Phase T < TJT =750K - AFM-A T < 140K

QM

2z QΓ3z QΓ4z

How do structural and electronic degrees of freedom interact ?

Let’s ask DFT!

K-Mesh 14x14x14 - Ecut =600eV Exc = PBEsol + (U|J)

U=5.5 eV J=1.5 eV Ground State Structure Band Gap (1.1 eV - Exp 1.1 - 1.9 eV)

Anistropy of Dielectric Tensor Magnetic Exchange Constants

(29)

JTD In LaMnO

3 GS Pnma aac+ + JTD Metallic O-Phase 750K < T < 1200K ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Mn3+=d4

Ins. O’-Phase T < TJT =750K - AFM-A T < 140K

QM

2z QΓ3z QΓ4z

How do structural and electronic degrees of freedom interact ?

Let’s ask DFT!

K-Mesh 14x14x14 - Ecut =600eV Exc = PBEsol + (U|J)

U=5.5 eV J=1.5 eV Ground State Structure Band Gap (1.1 eV - Exp 1.1 - 1.9 eV)

Anistropy of Dielectric Tensor Magnetic Exchange Constants

(30)

ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic F ∝ αelQM2z+ β1QM2z2 F ∝ αelQM2z+ β1Q2zM2+ β2φ2QM2z2 β2<0 F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−QM 2z F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−QM 2z+ β3Q3zΓQ2zM2+ β4Q3zΓ2QM2z2 |β3| > |β4|

Tetragonal Strain Q

Γ 3z

controls MO !

In FM thin films Q

Γ 3z

u 0

Marton, Z., et al., J. Cryst. Growth 312.20 (2010) Hou, Y. S., et al. Phys. Rev. B 89.6 (2014) Roqueta, J., et al., Cryst Growth & Des 15.11 (2015) Vila-Fungueiriño, J.M. et al. ACS Appl. Mater. Interfaces 7.9 (2015)

(31)

ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic F ∝ αelQM2z+ β1QM2z2 F ∝ αelQM2z+ β1Q2zM2+ β2φ2QM2z2 β2<0 F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−QM 2z F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−QM 2z+ β3Q3zΓQ2zM2+ β4Q3zΓ2QM2z2 |β3| > |β4|

Tetragonal Strain Q

Γ 3z

controls MO !

In FM thin films Q

Γ 3z

u 0

Marton, Z., et al., J. Cryst. Growth 312.20 (2010) Hou, Y. S., et al. Phys. Rev. B 89.6 (2014) Roqueta, J., et al., Cryst Growth & Des 15.11 (2015) Vila-Fungueiriño, J.M. et al. ACS Appl. Mater. Interfaces 7.9 (2015)

Rivero, P., et al., Phys. Rev. B 93.9 (2016)

(32)

ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic F ∝ αelQM2z+ β1QM2z2 F ∝ αelQM2z+ β1Q2zM2+ β2φ2QM2z2 β2<0 F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−QM 2z F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−QM 2z+ β3Q3zΓQ2zM2+ β4Q3zΓ2QM2z2 |β3| > |β4|

Tetragonal Strain Q

Γ 3z

controls MO !

In FM thin films Q

Γ 3z

u 0

Marton, Z., et al., J. Cryst. Growth 312.20 (2010) Hou, Y. S., et al. Phys. Rev. B 89.6 (2014) Roqueta, J., et al., Cryst Growth & Des 15.11 (2015) Vila-Fungueiriño, J.M. et al. ACS Appl. Mater. Interfaces 7.9 (2015)

(33)

ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic F ∝ αelQM2z+ β1QM2z2 F ∝ αelQM2z+ β1Q2zM2+ β2φ2QM2z2 β2<0 F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−Q2zM F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−QM 2z+ β3Q3zΓQ2zM2+ β4Q3zΓ2QM2z2 |β3| > |β4|

Tetragonal Strain Q

Γ 3z

controls MO !

In FM thin films Q

Γ 3z

u 0

Marton, Z., et al., J. Cryst. Growth 312.20 (2010) Hou, Y. S., et al. Phys. Rev. B 89.6 (2014) Roqueta, J., et al., Cryst Growth & Des 15.11 (2015) Vila-Fungueiriño, J.M. et al. ACS Appl. Mater. Interfaces 7.9 (2015)

Rivero, P., et al., Phys. Rev. B 93.9 (2016)

(34)

ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic F ∝ αelQM2z+ β1QM2z2 F ∝ αelQM2z+ β1Q2zM2+ β2φ2QM2z2 β2<0 F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−Q2zM F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−QM 2z+ β3Q3zΓQ2zM2+ β4Q3zΓ2QM2z2 |β3| > |β4|

Tetragonal Strain Q

Γ 3z

controls MO !

In FM thin films Q

Γ 3z

u 0

Marton, Z., et al., J. Cryst. Growth 312.20 (2010) Hou, Y. S., et al. Phys. Rev. B 89.6 (2014) Roqueta, J., et al., Cryst Growth & Des 15.11 (2015) Vila-Fungueiriño, J.M. et al. ACS Appl. Mater. Interfaces 7.9 (2015)

(35)

ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic F ∝ αelQM2z+ β1QM2z2 F ∝ αelQM2z+ β1Q2zM2+ β2φ2QM2z2 β2<0 F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−Q2zM F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−QM 2z+ β3Q3zΓQ2zM2+ β4Q3zΓ2QM2z2 |β3| > |β4|

Tetragonal Strain Q

Γ 3z

controls MO !

In FM thin films Q

Γ 3z

u 0

Marton, Z., et al., J. Cryst. Growth 312.20 (2010) Hou, Y. S., et al. Phys. Rev. B 89.6 (2014) Roqueta, J., et al., Cryst Growth & Des 15.11 (2015) Vila-Fungueiriño, J.M. et al. ACS Appl. Mater. Interfaces 7.9 (2015)

Rivero, P., et al., Phys. Rev. B 93.9 (2016)

(36)

ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic F ∝ αelQM2z+ β1QM2z2 F ∝ αelQM2z+ β1Q2zM2+ β2φ2QM2z2 β <0 F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−Q2zM F ∝ αelQM2z+ β1QM2z2+ β2φ2QM2z2+ γ1AXφ−QM 2z+ β3Q3zΓQ2zM2+ β4Q3zΓ2QM2z2 |β | > |β |

Tetragonal Strain Q

Γ 3z

controls MO !

In FM thin films Q

Γ 3z

u 0

Marton, Z., et al., J. Cryst. Growth 312.20 (2010) Hou, Y. S., et al. Phys. Rev. B 89.6 (2014) Roqueta, J., et al., Cryst Growth & Des 15.11 (2015) Vila-Fungueiriño, J.M. et al. ACS Appl. Mater. Interfaces 7.9 (2015)

(37)

Application II: [001] Epitaxial

Strain Phase Diagram of

(38)

GS of CaFeO

3 GS Pnma aac+ + QR 1 →P21/n Metallic Pnma T > 290K ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Fe4+=d4

Ins. P21/n T < TMIT u 290K AFM T < 120K QR 1

Effect of [001] epitaxial strain?

Q

Γ

(39)

GS of CaFeO

3 GS Pnma aac+ + QR 1 →P21/n Metallic Pnma T > 290K ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Fe4+=d4

Ins. P21/n T < TMIT u 290K AFM T < 120K QR 1

Effect of [001] epitaxial strain?

Q

Γ

3z

6=

0

(40)

GS of CaFeO

3 GS Pnma aac+ + QR 1 →P21/n Metallic Pnma T > 290K ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Fe4+=d4

Ins. P21/n T < TMIT u 290K AFM T < 120K QR 1

Effect of [001] epitaxial strain?

Q

Γ

(41)

GS of CaFeO

3 GS Pnma aac+ + QR 1 →P21/n Metallic Pnma T > 290K ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Fe4+=d4

Ins. P21/n T < TMIT u 290K AFM T < 120K QR 1

Effect of [001] epitaxial strain?

Q

Γ

3z

6=

0

(42)

GS of CaFeO

3 GS Pnma aac+ + QR 1 →P21/n Metallic Pnma T > 290K ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Fe4+=d4

Ins. P21/n T < TMIT u 290K AFM T < 120K QR 1

Effect of [001] epitaxial strain?

Q

Γ

(43)

[001] Epitaxial Strain Tuning: From Charge- to

Orbital-Order

F ∝ β3QΓ3zQM 2 2z + β4QΓ3z2QM 2 2z |β3| >> |β4| F ∝ β5Q3zΓ2QR 2 1 β5>0 Experimental

Paul C. Rogge et al Phys. Rev. Materials 2, 015002 (2018)

Zhang, Schmitt et al. Phys. Rev. B 98, 081108(R), (2018)

(44)

[001] Epitaxial Strain Tuning: From Charge- to

Orbital-Order

F ∝ β3QΓ3zQM 2 2z + β4QΓ3z2QM 2 2z |β3| >> |β4| F ∝ β5Q3zΓ2QR 2 1 β5>0 Experimental

Paul C. Rogge et al Phys. Rev. Materials 2, 015002 (2018)

(45)

[001] Epitaxial Strain Tuning: From Charge- to

Orbital-Order

F ∝ β3QΓ3zQM 2 2z + β4Q3zΓ2QM 2 2z |β3| >> |β4| F ∝ β5Q3zΓ2QR 2 1 β5>0 Experimental

Paul C. Rogge et al Phys. Rev. Materials 2, 015002 (2018)

Zhang, Schmitt et al. Phys. Rev. B 98, 081108(R), (2018)

(46)

[001] Epitaxial Strain Tuning: From Charge- to

Orbital-Order

F ∝ β3QΓ3zQM 2 2z + β4Q3zΓ2QM 2 2z |β3| >> |β4| F ∝ β5Q3zΓ2QR 2 1 β5>0 Experimental

(47)

Application III: [001] vs [111]

Epitaxial Strain in NdNiO

3

(48)

GS of NdNiO

3 GS Pnma aac+ + QR 1 →P21/n T > 200K Metallic Pnma ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Ni3+=d7

T < TMIT u 200K Ins. P21/n AFM T < TN u 200K QR 1

(49)

GS of NdNiO

3 GS Pnma aac+ + QR 1 →P21/n T > 200K Metallic Pnma ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Ni3+=d7

T < TMIT u 200K Ins. P21/n AFM T < TN u 200K QR 1

Effect of [001] vs [111] epitaxial strain?

(50)

GS of NdNiO

3 GS Pnma aac+ + QR 1 →P21/n T > 200K Metallic Pnma ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Ni3+=d7

T < TMIT u 200K Ins. P21/n AFM T < TN u 200K QR 1

(51)

GS of NdNiO

3 GS Pnma aac+ + QR 1 →P21/n T > 200K Metallic Pnma ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Ni3+=d7

T < TMIT u 200K Ins. P21/n AFM T < TN u 200K QR 1

Effect of [001] vs [111] epitaxial strain?

(52)

GS of NdNiO

3 GS Pnma aac+ + QR 1 →P21/n T > 200K Metallic Pnma ϕz+ AX x y z x y z b a c b a c ϕ -xy x Cubic Ni3+=d7

T < TMIT u 200K Ins. P21/n AFM T < TN u 200K QR 1

(53)

[001] vs. [111] Epitaxial Strain

Catalano, S., et al. APL materials 3.6 (2015)

(54)

[001] vs. [111] Epitaxial Strain

(55)

[001] vs. [111] Epitaxial Strain

Catalano, S., et al. APL materials 3.6 (2015)

(56)

[001] vs. [111] Epitaxial Strain

QΓ

1 6=0 & Q3zΓ 6=0 QΓ1 6=0 & QΓ4x,y,z6=0

QΓ 4x,y,z =0 Q3zΓ =0 NNO NNO /NGO[001]pc /NGO[111]pc QΓ 1 0.014 0.014 QΓ 3z -0.029 0.000 QΓ 4z 0.009 0.026 QΓ 4x,y 0.000 0.016

Tetragonal Strain Q

Γ 3z

hinders MIT

Q

Γ

3z

competes with Q

and increased rotations

On NGO [111] Q

Γ

(57)

[001] vs. [111] Epitaxial Strain

QΓ

1 6=0 & Q3zΓ 6=0 QΓ1 6=0 & QΓ4x,y,z6=0

QΓ 4x,y,z =0 Q3zΓ =0 NNO NNO /NGO[001]pc /NGO[111]pc QΓ 1 0.014 0.014 QΓ 3z -0.029 0.000 QΓ 4z 0.009 0.026 QΓ 4x,y 0.000 0.016

Tetragonal Strain Q

Γ 3z

hinders MIT

Q

Γ

3z

competes with Q

and increased rotations

On NGO [111] Q

Γ

3z

=

0 while Q

φ

and Q

Γ1

same as on [001] NGO

(58)

[001] vs. [111] Epitaxial Strain

QΓ

1 6=0 & Q3zΓ 6=0 QΓ1 6=0 & QΓ4x,y,z6=0

QΓ 4x,y,z =0 Q3zΓ =0 NNO NNO /NGO[001]pc /NGO[111]pc QΓ 1 0.014 0.014 QΓ 3z -0.029 0.000 QΓ 4z 0.009 0.026 QΓ 4x,y 0.000 0.016

Tetragonal Strain Q

Γ 3z

hinders MIT

Q

Γ

3z

competes with Q

and increased rotations

On NGO [111] Q

Γ

(59)

[001] vs. [111] Epitaxial Strain

QΓ

1 6=0 & Q3zΓ 6=0 QΓ1 6=0 & QΓ4x,y,z6=0

QΓ 4x,y,z =0 Q3zΓ =0 NNO NNO /NGO[001]pc /NGO[111]pc QΓ 1 0.014 0.014 QΓ 3z -0.029 0.000 QΓ 4z 0.009 0.026 QΓ 4x,y 0.000 0.016

Tetragonal Strain Q

Γ 3z

hinders MIT

Q

Γ

3z

competes with Q

and increased rotations

On NGO [111] Q

Γ

3z

=

0 while Q

φ

and Q

Γ1

same as on [001] NGO

(60)

[001] vs. [111] Epitaxial Strain

QΓ

1 6=0 & Q3zΓ 6=0 QΓ1 6=0 & QΓ4x,y,z6=0

QΓ 4x,y,z =0 Q3zΓ =0 NNO NNO /NGO[001]pc /NGO[111]pc QΓ 1 0.014 0.014 QΓ 3z -0.029 0.000 QΓ 4z 0.009 0.026 QΓ 4x,y 0.000 0.016

Tetragonal Strain Q

Γ 3z

hinders MIT

Q

Γ

3z

competes with Q

and increased rotations

On NGO [111] Q

Γ

(61)

[001] vs. [111] Epitaxial Strain

QΓ

1 6=0 & Q3zΓ 6=0 QΓ1 6=0 & QΓ4x,y,z6=0

QΓ 4x,y,z =0 Q3zΓ =0 NNO NNO /NGO[001]pc /NGO[111]pc QΓ 1 0.014 0.014 QΓ 3z -0.029 0.000 QΓ 4z 0.009 0.026 QΓ 4x,y 0.000 0.016

Tetragonal Strain Q

Γ 3z

hinders MIT

Q

Γ

3z

competes with Q

and increased rotations

On NGO [111] Q

Γ

3z

=

0 while Q

φ

and Q

Γ1

same as on [001] NGO

(62)

Conclusions

• Canonical Jahn-Teller Distortion Notations Q~q

for anaylizing

Perovskite Materials

→Schmitt, M. M., et al, arXiv:1909.06287 (2019) • Tetragonal Strain QΓ

3αcooperative with orbital-ordered

(Jahn-Teller distorted) phases in e1

g perovskites

• Tetragonal Strain QΓ

anti-cooperative with charge-ordered

(QR

1-distorted) phases in e1g perovskites

• Strain and Rotation state in thin film can be engineered by choice of substrate:

→Space-Group of Substrate (Rotations/No-Rotations) →Surface of Substrate [001],[011],[111]..

(63)

Thank you for your attention!

Questions?

(64)
(65)
(66)
(67)

Ferromagnetic LaMnO

3

on SrTiO

3

c c

Roqueta J.,et al. Cryst. Growth Des. 15.11 (2015)

STO a=b=c 3.905 Å c0 a0 b0 a b c LMO-STO LMO-Bulk P-1 Pnma FM AFM-A QΓ 3 -0.005 -0.04 QΓ 4z -0.018 -0.036 QM 2 (Å) 0.117 0.19 QR 3 (Å) 0.077 -φ+z (Å) 0.44 0.49 φ−xy(Å) 0.62 0.65 AX(Å) 0.26 0.33

(68)

Ferromagnetic LaMnO

3

on SrTiO

3

c c

Roqueta J.,et al. Cryst. Growth Des. 15.11 (2015)

STO a=b=c 3.905 Å c0 a0 b0 a b c LMO-STO LMO-Bulk P-1 Pnma FM AFM-A QΓ 3 -0.005 -0.04 QΓ 4z -0.018 -0.036 QM 2 (Å) 0.117 0.19 QR 3 (Å) 0.077 -φ+z (Å) 0.44 0.49 φ−xy(Å) 0.62 0.65 AX(Å) 0.26 0.33

(69)

Ferromagnetic LaMnO

3

on SrTiO

3

c c

Roqueta J.,et al. Cryst. Growth Des. 15.11 (2015)

STO a=b=c 3.905 Å c0 a0 b0 a b c LMO-STO LMO-Bulk P-1 Pnma FM AFM-A QΓ 3 -0.005 -0.04 QΓ 4z -0.018 -0.036 QM 2 (Å) 0.117 0.19 QR 3 (Å) 0.077 -φ+z (Å) 0.44 0.49 φ−xy(Å) 0.62 0.65 AX(Å) 0.26 0.33

(70)

Ferromagnetic LaMnO

3

on SrTiO

3

c c

Roqueta J.,et al. Cryst. Growth Des. 15.11 (2015)

STO a=b=c 3.905 Å c0 a0 b0 a b c LMO-STO LMO-Bulk P-1 Pnma FM AFM-A QΓ 3 -0.005 -0.04 QΓ 4z -0.018 -0.036 QM 2 (Å) 0.117 0.19 QR 3 (Å) 0.077 -φ+z (Å) 0.44 0.49 φ−xy(Å) 0.62 0.65 AX(Å) 0.26 0.33

(71)

Ferromagnetic LaMnO

3

on SrTiO

3

c c

Roqueta J.,et al. Cryst. Growth Des. 15.11 (2015)

STO a=b=c 3.905 Å c0 a0 b0 a b c LMO-STO LMO-Bulk P-1 Pnma FM AFM-A QΓ 3 -0.005 -0.04 QΓ 4z -0.018 -0.036 QM 2 (Å) 0.117 0.19 QR 3 (Å) 0.077 -φ+z (Å) 0.44 0.49 φ−xy(Å) 0.62 0.65 AX(Å) 0.26 0.33

(72)

Q

R 3

JTD

∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R 0% a-a-c+ 50% a-a-c+ 100% a-a-c+ ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R

(73)

Q

R 3

JTD

∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R 0% a-a-c+ 50% a-a-c+ 100% a-a-c+ ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R

(74)

Q

R 3

JTD

∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R 0% a-a-c+ 50% a-a-c+ 100% a-a-c+ ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R

(75)

Q

R 3

JTD

∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R 0% a-a-c+ 50% a-a-c+ 100% a-a-c+ ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R

(76)

Q

R 3

JTD

∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R 0% a-a-c+ 50% a-a-c+ 100% a-a-c+ ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R

(77)

Q

R 3

JTD

∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R 0% a-a-c+ 50% a-a-c+ 100% a-a-c+ ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M -80 -60 -40 -20 0 20 40 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R ∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R

(78)

Q

R 3

JTD

∆ Ε [meV] -2 -1 0 1 2 No Q2M With Q2M -80 -60 -40 -20 0 20 40 -2 -1 0 1 2 Amp. Q3R -2 0 2 -2 0 2 -2 0 2 E - E F [eV] -2 0 2 Γ X S Y Γ Z U R T Z Y T U X S R -2 0 2 Cubic a-a-c+ a-a-c+ + Q3R a-a-c+ + Q2M a-a-c+ +Q2M+Q3R

(79)

Strain Engineering in LaMnO

3 LaMnO3 Substrate -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] Pnma c AFM-A P-1 c FM -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c 0.25 0.5 0.75 Amp. [Å] ϕ+ z ϕ− xy AX -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] Pnma c AFM-A P-1 c FM -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c -0.04 -0.02 0 0.02 Amp. Q3Γ Q2Γ 0.25 0.5 0.75 Amp. [Å] ϕ+ z ϕ− xy AX -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] 0 0.1 0.2 Amp. [Å] QR3 QM2 Pnma c AFM-A P-1 c FM 0.25 0.5 0.75 1 1.25 1.5 EGap [eV] FM cAFM-A c -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] 4 6 8 10 ε∞ εaa εbb εcc Pnma c AFM-A P-1 c FM

(80)

Strain Engineering in LaMnO

3 LaMnO3 Substrate -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] Pnma c AFM-A P-1 c FM -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c 0.25 0.5 0.75 Amp. [Å] ϕ+ z ϕ− xy AX -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] Pnma c AFM-A P-1 c FM -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c -0.04 -0.02 0 0.02 Amp. Q3Γ Q2Γ 0.25 0.5 0.75 Amp. [Å] ϕ+ z ϕ− xy AX -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] 0 0.1 0.2 Amp. [Å] QR3 QM2 Pnma c AFM-A P-1 c FM 0.25 0.5 0.75 1 1.25 1.5 EGap [eV] FM cAFM-A c -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] 4 6 8 10 ε∞ εaa εbb εcc Pnma c AFM-A P-1 c FM

(81)

Strain Engineering in LaMnO

3 LaMnO3 Substrate -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] Pnma c AFM-A P-1 c FM -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c 0.25 0.5 0.75 Amp. [Å] ϕ+z ϕ− xy AX -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] Pnma c AFM-A P-1 c FM -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c -0.04 -0.02 0 0.02 Amp. Q3Γ Q2Γ 0.25 0.5 0.75 Amp. [Å] ϕ+ z ϕ− xy AX -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] 0 0.1 0.2 Amp. [Å] QR3 QM2 Pnma c AFM-A P-1 c FM 0.25 0.5 0.75 1 1.25 1.5 EGap [eV] FM cAFM-A c -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] 4 6 8 10 ε∞ εaa εbb εcc Pnma c AFM-A P-1 c FM

(82)

Strain Engineering in LaMnO

3 LaMnO3 Substrate -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] Pnma c AFM-A P-1 c FM -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c 0.25 0.5 0.75 Amp. [Å] ϕ+z ϕ− xy AX -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] Pnma c AFM-A P-1 c FM -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c -0.04 -0.02 0 0.02 Amp. Q3Γ Q2Γ 0.25 0.5 0.75 Amp. [Å] ϕ+z ϕ− xy AX -1.5 -1 -0.5 0 0.5 1 1.5 0 0.1 0.2 Amp. [Å] QR3 QM2 Pnma c AFM-A P-1 c FM 0.25 0.5 0.75 1 1.25 1.5 EGap [eV] FM cAFM-A c -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] 4 6 8 10 ε∞ εaa εbb εcc Pnma c AFM-A P-1 c FM

(83)

Strain Engineering in LaMnO

3 LaMnO3 Substrate -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] Pnma c AFM-A P-1 c FM -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c 0.25 0.5 0.75 Amp. [Å] ϕ+z ϕ− xy AX -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] Pnma c AFM-A P-1 c FM -20 0 20 40 60 E/fu [meV] 3.875 3.895 3.915 3.935 3.955 3.975 3.995 Lattice Constant a0[Å] FM c AFM-A c -0.04 -0.02 0 0.02 Amp. Q3Γ Q2Γ 0.25 0.5 0.75 Amp. [Å] ϕ+z ϕ− xy AX -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] 0 0.1 0.2 Amp. [Å] QR3 QM2 Pnma c AFM-A P-1 c FM 0.25 0.5 0.75 1 1.25 1.5 EGap [eV] FM cAFM-A c -1.5 -1 -0.5 0 0.5 1 1.5 Epitaxial Strain [%] 4 6 8 10 ε∞ εaa εbb εcc Pnma c AFM-A P-1 c FM

(84)

Modes and Strains across T

MIT

LaMnO

3 300 400 500 600 700 800 900 1000 T (K) -0.04 -0.03 -0.02 -0.01 0 0.01 A m p. 300 400 500 600 700 800 900 1000 T (K) 0 0.1 0.2 0.3 0.4 0.5 0.6 A m p. (Å ) AX Q2M Q3Γ Q4zΓ ϕxy -ϕ+z Modes Strains O' O O' O

(85)

Modes and Strains across T

MIT

LaMnO

3 300 400 500 600 700 800 900 1000 T (K) -0.04 -0.03 -0.02 -0.01 0 0.01 A m p. 300 400 500 600 700 800 900 1000 T (K) 0 0.1 0.2 0.3 0.4 0.5 0.6 A m p. (Å ) AX Q2M Q3Γ Q4zΓ ϕxy -ϕ+z Modes Strains O' O O' O

(86)

Full Potential Energy Surface LaMnO

3 -1 0 1 -2 -1,5 -1 -0,5 0 0,5 Energy [eV] -1 0 1 AFM-A FM -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 0,75 1 -1,65 -1,6 -1 0 1 0,75 1 -1,9 -1,85 0,75 1 -1,2 -1,15 -1 0 1 0,75 1 -0,95 -0,9 1 1,25 -1,15 -1,1 1 1,25 -1,8 -1,75 0 a-a-c++ A 0 X a-a-c+ a-a-c+ a-a-c++ A X 0 a-a-c+ a-a-c++ A X Cubic-LC Cubic -LC + QΓ 3 + QΓ4z a) b) c) Amp. QM 2 Cubic - LC + QΓ 3

(87)

Full Potential Energy Surface LaMnO

3 -1 0 1 -2 -1,5 -1 -0,5 0 0,5 Energy [eV] -1 0 1 AFM-A FM -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 0,75 1 -1,65 -1,6 -1 0 1 0,75 1 -1,9 -1,85 0,75 1 -1,2 -1,15 -1 0 1 0,75 1 -0,95 -0,9 1 1,25 -1,15 -1,1 1 1,25 -1,8 -1,75 0 a-a-c++ A 0 X a-a-c+ a-a-c+ a-a-c++ A X 0 a-a-c+ a-a-c++ A X Cubic-LC Cubic -LC + QΓ 3 + QΓ4z a) b) c) Amp. QM 2 Cubic - LC + QΓ 3

(88)

Strain PES

-0.03 -0.015 0 0.015 -25 -12.5 0 12.5 25

∆E /fu [meV]

±0.03 -0.015 0 0.015 0.03 Amp. Q3Γ- AFM-A Q3Γ- FM Q4zΓ Q4zΓ -AFM-A -FM a) P-1 b) Pnma +Δ Q3 R +Δ Q2 M

(89)

LaMnO

3

LaNiO

3

Bilayers on SrTiO

3

(90)

Projected Band Structure

Γ X S Y Γ Z U R T Z Y T U X S R -3 -2 -1 0 1 2 3 E - E F [eV] O- p Mn-eg Mn-t2g La-f

(91)

Influence of U|J Parameters

AFM-A FM U=5, J=1.5 U=8, J=2 Energy [e V] 0 -0.2 -0.4 -0.6 -1 -0.5 0 0.5 ±1 -0.5 0 0.5 1 Amp. QM 2

Références

Documents relatifs

For the orbital doublet E state (and also for the triplet coupled to a T, mode) the approach to the static Jahn-Teller effect is more complicated because an

- Nuclear energy levels and Mossbauer spectrum of model system, showing the splitting caused by the quadrupole coupling in the electric field gradient resulting from

Here we report on a neutron scattering study of a single crystal of PrCu, in which we have determined the symmetry and the temperature dependence of the structural distor- tion

Nous avons fait, par ailleurs [2] le calcul de la distor- tions d'onde ; nous avons donc repris les calculs de sion pour les monolacunes Va, V' par cette méthode

At an electric field of 0.063 V=Å, the polarization P, the in-plane antiphase oxygen octahedra tilting Φ, and the magnetic easy axis are all switched by 90° with respect to the

The large probability of a non-radiative internal conversion process in highly excited vibronic states of the excited ~E electronic manifold yields the significant difference

It exhibits an original evolution of the cooperative Jahn-Teller distortion in its Pnma phase, a polar monoclinic phase at high pressure and an insulator-to- metal transition.. BiMnO

2014 Following the recent publication of infra-red measurements on crystals of Al2O3 containing Mn3+ ions, a detailed theoretical analysis of the system has