• Aucun résultat trouvé

Modeling the correlation between the energy consumption and the end-to-end traffic of services in large telecommunication networks

N/A
N/A
Protected

Academic year: 2021

Partager "Modeling the correlation between the energy consumption and the end-to-end traffic of services in large telecommunication networks"

Copied!
84
0
0

Texte intégral

(1)

HAL Id: tel-01762147

https://tel.archives-ouvertes.fr/tel-01762147

Submitted on 9 Apr 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

Modeling the correlation between the energy

consumption and the end-to-end traffic of services in

large telecommunication networks

Wilfried Yoro

To cite this version:

Wilfried Yoro. Modeling the correlation between the energy consumption and the end-to-end traffic of

services in large telecommunication networks. Networking and Internet Architecture [cs.NI]. Institut

National des Télécommunications, 2018. English. �NNT : 2018TELE0005�. �tel-01762147�

(2)

Spec

ia

lty

:

Computer

sc

ience

and

Networks

PhD

schoo

l

: Computer

sc

ience

,

Te

lecommun

icat

ions

,

E

lectron

ics

o

f

Par

is

De

fended

by

W

i

l

fr

ied

YORO

To

be

awarded

the

degree

o

f

PhD

o

f

TELECOM

SUDPAR

IS

Mode

l

ing

the

corre

lat

ion

between

the

energy

consumpt

ion

and

the

end

-to-end

tra

f

f

ic

o

f

serv

ices

in

large

te

lecommun

icat

ion

networks

De

fended

on

08

March

2018

In

front

o

f

the

jury

composed

o

f

:

PhD

Superv

isor

T

i

jan

i

CHAHED

-

Pro

fessor

-

Te

lecom

SudPar

is

Rev

iewers

Laurent

LEFEVRE

-

Researcher

-

INR

I

A

Patr

ick

MA

ILLE

-

Pro

fessor

-

IMT

At

lant

ique

Exam

iners

C

icek

CAVDAR

-

Researcher

-

KTH

-

Roya

l

Inst

itute

o

f

Techno

logy

-

Sweden

Guy

PU

JOLLE

-

Pro

fessor

-

Par

is

6

Un

ivers

ity

(3)

Contents

1 Introduction 10

1.1 Context... 10

1.2 Motivationand methodology ... 13

1.3 Contributionsand manuscriptorganization ... 15

2 Sharingthe ResponsibilityofService Categoriesinthe Fixed Energy Consumptionofa Radio Access Network 17 2.1 Contextandproblemstatement... 17

2.2 Relatedwork... 18

2.3 Sharingtheresponsibilityofservicecategoriesinthefixedenergy consumption ... 18

2.4 Shapleyvalue... 19

2.5 Sharingscenarios... 21

2.5.1 Casewithno mandatoryplayers... 21

2.5.2 Casewitha mandatoryplayer ... 22

2.5.3 Casewithonly mandatoryplayers... 23

2.5.4 Heterogeneousradioaccessnetwork ... 23

2.5.5 Evolvingnetworkinfrastructure... 24

2.6 Implementationissues... 24

2.7 Numericalapplications... 26

2.7.1 Casewithno mandatoryplayer... 27

2.7.2 Casewitha mandatoryplayer ... 28

2.7.3 Caseofanevolvingnetworkinfrastructure... 29

2.8 Conclusion ... 31

3 Sharingthe ResponsibilityofService Categoriesinthe Fixed Energy Consumptionofa End-to-End Network 32 3.1 Contextandproblemstatement... 32

3.2 Sharing model... 33

3.2.1 Componentsofablockenergyconsumption... 33

3.2.2 Sharingtheresponsibilityofservicecategoriesinablock fixedenergyconsumption... 33

3.3 Numericalapplications... 34

3.3.1 Shapleyvalueappliedtotraffic... 34

3.3.2 Shapleyvalueappliedtousefuloutputs ... 37

(4)

4 EnergyEfficiencyoftheService Categories Deliveredbya

Mo-bile Access Network 42

4.1 Contextandproblemstatement... 42

4.2 Relatedwork... 43

4.3 Energyefficiencyofservicecategoriesdeliveredbyaradioaccess equipment... 44

4.3.1 Model... 44

4.3.2 Numericalapplications... 46

4.3.3 4Gbasestationwithoutsleep modefeature... 47

4.3.4 4Gbasestationwithsleep modefeature... 48

4.4 Energyefficiencyofservicecategoriesdeliveredbyaradioaccess network... 48

4.4.1 Energyefficiency models... 48

4.4.2 Numericalapplications... 50

4.5 Howtonotdeteriorateamobilenetworkenergyeffic iencyunder-goingnetworkupgrades... 51

4.5.1 Energyconsumedpertransmittedbit ... 51

4.5.2 Energyefficiencyversustrafficrate... 52

4.5.3 Upgradingaradioaccessnetwork... 53

4.6 Conclusion ... 56

5 Conclusionandperspectives 58 5.1 Conclusion ... 58

5.2 Perspectives... 60

ListofFigures 61 Listof Tables 63 Appendices 64 A Closed-formexpressionforShapleyvalueofaplayerinthecase without mandatoryplayers 64 B Case witha mandatoryplayer 66 B.1 Closed-formexpressionforShapleyvalueofthe mandatoryplayer 66 B.2 Closed-formexpressionforShapleyvalueofanon mandatory playerinthecasewitha mandatoryplayer ... 67

C Closed-formexpressionforShapleyvalueofaplayerinthecase

withonly mandatoryplayers 69

D Energyconsumptionofnetworkequipment 70

E Network’straffic 74

Bibliography 77

(5)
(6)

Educationisthe mostpowerful weaponwhichyoucanuseto changetheworld.

(7)

Acknow

ledgment

IwouldliketoexpressmydeepgratitudetoDoctor MamdouhElTabach,Doctor

TaoufikEn-Najjary, Doctor Azeddine Gati,andProfessorTijaniChahed, my

researchsupervisors,fortheirpatientguidance,constantencouragementand

usefulcriticsofthisresearch work. I wouldalsoliketothank Ms Olfa Ben

Haddada, manageroftheteam whereIconducted my PhDstudies,forher

valuablesupportinprovidingmewiththeresourcesindealingwithmyproject.

Finally,specialthanksshouldbegivento myfamilyandfriendsforthe

(8)

Abstract

Internettrafficisgrowingexponentially. AccordingtoCisco,mobiledatatraffic

willincreasesevenfoldbetween2016and2021,grow

ingatacompoundan-nualgrowthrate(CAGR)of47%.Inordertoimproveorkeepupwithusers

qualityofexperience(QoE), mobilecarriersupgradethenetwork withadd

i-tionalequipment. Asaconsequence,thenetworkcarbonfootprintincreases

overtime,alongsidewithitsenergyconsumption.Inaddition, mobilecarriers

marginsaredecreasing. Globaltelecommunicationrevenuesdecl

inedby4%be-tween2014and2015basedontheinternationaltelecommunicationunion(ITU)

figures. Theseconcernsfosteredagreatinterestintheresearchcommunityfor

reducingnetworksenergyconsumption.Inthisregard, manyworksinthel

it-eratureinvestigatetheenergyconsumedbyservicesonnetworkequipmentfor

optimizationpurposesnotably,focusingonthevariablecomponentofenergy

consumption. Energyconsumptionofanetworkequipmentiscomposedofa

variableandafixedcomponents. Thevariablecomponentisconsumedtoserve

traffic. Thefixedcomponentisconsumedirrespectiveoftraffic.Inth

isthe-sis,ourobjectiveistosharetheresponsibilityofservicecategoriesinthefixed

energyconsumption. Todoso,weusetheShapleyvalue.

First, weconsideraradioaccessnetworkandsharetheresponsibilityof

theservicecategoriesitdeliversinthefixedenergyconsumption. Theservices

areclassifiedintofivecategories,namely,Streaming, Web, Download, Voice

andotherdataservices.Inaddition,weconsiderthecasewhensomeservice

categoriesare mandatorytobeprovided,suchasVoiceduetolegalconstraints

forinstance. BecausetheShapleyvaluehasahugecomputationalcomplexity,

weintroduceclosed-formexpressionsinordertosignificantlyreduceit.

Next,weconsidertheend-to-endnetworkandallitssegments,thatis,the

mobileaccess,thefixedaccess,thecollect,themobilecore,theregisters,theIP

coreandtheserviceplatforms.Foreachsegment,wesharetheresponsibilityof

theservicecategoriesinthefixedenergyconsumptionwiththeShapley-based

modelintroducedintheprecedingchapter. WefindthatStreamingistheservice

thatconsumesthe mostwhateverthenetworksegment,exceptforregisters,as

itrepresentsthevast majorityofInternettraffic.

Eventually, wefocusontheservicecategoriesenergyefficiency. First, we

considerabasestationandcomputetheservicesenergyefficiencyforthecases

withandwithoutsleep mode. Then, weconsideraradioaccessnetworkand

computetheservicesenergyefficiencywithandwithouta mandatoryplayer.

Moreover,wediscusstheconditionstonotdeter

(9)

Résumé

D’après Cisco,letrafic mobilededonnéesaugmenterad’unfacteur7entre

2016et2021. Pourfairefaceàl’augmentationdutrafic,lesopérateurs

mo-biledimensionnentleréseau,cequis’accompagned’uneaugmentationdesa

consommationd’énergieetdesonempreinteCarbonne. Enoutre,les marges

financièresdesopérateursbaissent. Ainsi,lerevenuglobalgénéréparlesecteur

destélécommunicationsaconnuunebaissede4%entre2014et2015d’après

l’unioninternationaledestélécommunications(UIT). Cespréoccupationsont

suscitél’intérêtdelacommunautéscientifiquepourlaréduct

iondelaconsom-mationélectriquedesréseaux. Desétudesdanslalittératureestimentl’énergie

consomméeparlesservicessurleséquipementsréseauxensefocalisantsurla

consommationvariable.Laconsommationénergétiqued’unéquipementréseau

estcomposéed’unecomposantefixeetd’unecomposantevariable. Danscette

thèse,nouspartageonslaresponsabilitédescatégoriesdeserv

icedanslacon-sommationfixeduréseauenutilisantlavaleurdeShapley.

Dansunpremiertemps,nousconsidéronsunréseaud’accèsmobi

leetparta-geonslaresponsabilitédescatégoriesdeservicequ’ilfourn

itdanslaconsomma-tionfixe. Nousdéfinissons5catégoriesdeservice,àsavoir,le«Streaming»,

le Web,letéléchargement,lavoixetlesautresservicesdedonnées. Enoutre,

noustraitonslecasdefigureoùcertainescatégoriesdeservicesontobligatoires.

EtantdonnélacomplexitéalgorithmiquedelavaleurdeShapley

,nousenpro-posonsuneformeapprochéequipermetd’enréduireconsidérablementletemps

decalcul.

Ensuite,nousconsidéronsleréseaudebout-en-bout,c’est-à-dire,l’accès

mobile,l’accèsfixe,lacollecte,lecœurIP,lecœur mobile,lesregistresetles

plateformesdeservice.Pourchaquesegment,nouspartageonslaresponsabilité

descatégoriesdeservicedanslaconsommationfixeenappliquantnotremodèle

departagebasésurlavaleurdeShapley.L’analysedesrésultats montrequele

service«Streaming»consommeleplusd’énergiequelquesoitlesegmentde

réseauconsidéré,àl’exceptiondesregistres.

Pourfinir,noustraitonsdela modélisationdel’efficacitéénergétiquedes

catégoriesdeservice. Dansunpremiertemps,nouscalculonsl’efficac

itéénergé-tiquedescatégoriesdeserviceétantdonnéunestationdebaseavecetsans«

sleep mode». Ensuite,nouscalculonsl’efficacitéénergétiquedescatégoriesde

serviceétantdonnéunréseaud’accès mobileetconsidérantlescasavecetsans

catégoriesdeserviceobligatoires. Aussiétudions-nouslesconditionspourne

pasdétériorerl’efficacitéénergétiqueduréseauaucoursdutempsenfonction

(10)
(11)

Chapter1

Introduct

ion

1

.1 Context

AccordingtoCiscovisualnetworkingindex(VNI)2017[1],global mobiledata

trafficgrew63%in2016,ascomparedto2015figures. Mobiledatatraffic

hasgrown18-foldoverthepast5years. Almosthalfabillion mobiledevices

andconnectionswereaddedin2016.Smartphonesaccountedfor mostofthat

growth. Mobilenetwork(cellular)connectionspeedsgrew morethan3-foldin

2016. Mobilevideotrafficaccountedfor60%oftotalmobiledatatrafficin2016.

Averagesmartphoneusagegrew38%in2016.

Global mobiledatatraffic willincreasesevenfoldbetween2016and2021,

growingatacompoundannualgrowthrate(CAGR)of47percent,Fig. 1.1.

Mobilenetworkconnectionspeeds willincreasethreefoldby2021, Fig. 1.2.

Mobilevideowillincrease9-foldbetween2016and2021,accountingfor78%of

total mobiledatatrafficbytheendof2021,Fig. 1.3. Global mobiledevices

andconnectionsCAGRwillbe8%onthesameperiod,Fig.1.4.

Figure1.1: Mobiledatatrafficfrom2016to2021

Accordingtotheinternationaltelecommunicationunion(ITU),information

andcommunicationtechnologies(ICTs)havebeenestimatedtocurrent

lycon-tribute2%to2.5%ontheglobalgreenhousegas(GHG)emissions. Thisshare

isexpectedtoincreaserapidlywithbusinessasusualduetotheexponentia

lin-creaseofinternettraffic[2,3].InternationalInternetbandwidthgrewworldwide

(12)

Figure1.2: MobileSpeedsbyTechnology:2GVersus3GVersus4Gfrom2016 to2021

Figure1.3: Mobilevideotrafficfrom2016to2021

Figure1.4: Global mobiledevicesandconnectionsgrowthfrom2016to2021

(13)

1.6. Meanwhile,globaltelecommunicationrevenuesdeclinedby4%between

2014and2015,Fig.1.7.

Figure1.5:InternationalInternetbandwidthperregionfrom2008to2016,

sourceITU

Figure1.6: Yearlypowerconsumptionforecastfrom2007to2020,sourceITU

Manyworks intheliteratureaddressedtheissueofenergyconsumptionin

networksingeneralandin mobilenetworksinparticular[4,5,6,7,8,9].It

hasbeenshownthatthemostpowerconsumingpartofthenetworkistheradio

accessincludingbasetransceiverstations. Modelshavealsobeengiventoassess

thepowerconsumptionofamobileaccessnetworkatcountrylevel. Wecanalso

find morefined-grainedpowerconsumption modelswh

(14)

Figure1.7: Telecommunicationrevenues, worldandbylevelofdevelopment

from2007to2015,sourceITU

consumptionof microbasestationsisstudiedinthecontextofheterogeneous

networks.

Fewerworksconsideredenergyconsumptionoftheservicestransportedby

thenetwork[10,11,12,13,14].Ithasbeenshownthatitisnota

lwaysenergy-wisetousethe Cloud;performingcertaintaskslocallycanbe

moreenergy-efficient. Theenergyconsumptionofinformationandcommunicationtechno

l-ogyservicesand CO2emissionatlife-cycleofequipmentisalsodiscussedin

termsofnegativeandpositiveimpacts:positiveimpactreferstopotentialgains

duetodematerialization,suchasphysicaltransportsubstitution. Negat

iveim-pactreferstoCO2emissionsnotably.

In[15,16,17,18,19,20],theauthorsassesstheenergyconsumptionof

serviceson mobiledevices. Theyprovide modelsusefultodevelopersandhelp

themtounderstandapplicationenergyconsumptionbehavior.Itisshowedthat

3Gand GSMinterfacesconsume moreenergythan WiFi,whichadvocatesfor

thedeploymentof WiFiinHeterogeneousnetworks.Inaddition,itresultsfrom

theseinvestigationsthatfreeapplicationsconsumesign

ificantenergyconsump-tionduenotablytothird-partyadvertisement modules. Moreover,itisshowed

thatenergyconsumedforsignalingtrafficcanrepresentalargepartinthe

energyconsumption,notablyforalways-onapplicationswhichsendkeep-alive

signalsonacontinuousbasis.

1

.2 Mot

ivat

ionand methodo

logy

Basedonfield measurements,thepowerconsumptionofanetworkequipment

canbe modeledasalinearfunctionoftheloadasillustratedin Fig. 1.8.

Itconsistsoftwocomponents: avariablecomponent whichisconsumedto

servetraffic,andafixedcomponentconsumedirrespectiveoftraffic. Asa

networkequipmentisacommonresourcetypicallysharedbyseveralservices,it

isworthtodeterminethepartofeachserviceintheoverallequipmentenergy

consumptionforoptimizationoreco-designpurposesforexample. Mostauthors

assigntoeachserviceashareinthevariableenergyconsumptionequaltoits

trafficproportionasthisenergycomponentisload-dependent[10,11]. Thefixed

(15)

traffic.

Fixed power consumption Fixed power consumption Fixed power consumption Fixed power consumption Fixed power consumption Fixed power consumption Fixed power consumption Fixed power consumption Fixed power consumption Fixed power consumption Fixed power consumption

Variable power consumption Variable power consumption Variable power consumption Variable power consumption Variable power consumption Variable power consumption Variable power consumption Variable power consumption Variable power consumption Variable power consumption Variable power consumption

0 400 800 1200 0% 25% 50% 75% 100% Trafficload e No de B po we r co ns u mp ti on ( Wa tt)

Figure1.8:Exampleofpowerconsumptionofa4Gbasestation.

Inthisthesis,ourobjectiveistosharetheresponsibilityofservicecategories

inthefixedenergyconsumption,knowingthatitcanrepresentupto80%of

thetotalenergyconsumption.It mayseemintuitivetoassignthefixedenergy

consumptionequallytotheservicecategoriesasitisconsumedirrespectiveof

traffic. However,thisenergycomponentincreases withtrafficovertimedue

tonetworkupgradeoperationsasdepictedinFig.1.9,andso,itissomehow

relatedtoservices.Becauseofthis,weproposetoassigntoeachservicecategory

ashareofthefixedenergyconsumptionbasedonitsimpactonthisincrease.

Weconsiderthattheservicecategoriescooperatetousethenetworkasthe

fixedenergyconsumptiongetsamortized withtraffic. Cooperationbehaviors

amongdifferentplayers,inourcaseservicecategories,arestudiedunderthe

frameworkofcooperativegametheory.Incooperativegames,asolutionconcept

isafunctionthatallowstoshareacommoncostorrevenueamongdifferent

players. Theshareofaplayeriscalleditspayoff,andthevectorofpayoffsis

anallocation. Somesolutionconceptsfocusonallocationswhichstabilizethe

grandcoalition,thatis,thecoalitionofalltheplayers,andaresuchthatno

subsetofplayerscanimproveitspayoffbyleavingthegrandcoalition. Some

othersolutionconceptsdealwithallocationshavingsome"fairness"properties.

Weassumeinourcasethattheservicecategoriescannotformcoalitionsinthe

network,andso,onlythegrandcoalitioncanbeformed. Therefore,thereisno

needforstudyingthestabilityofthegrandcoalition. Weproposeinsteadtouse

theShapleyvaluebecauseofits"fairness"propertyaxiomaticallydefinedbyL.

Shapleyasonethatsatisfiesthefollowingproperties[21,22,23]:i.Symmetry:

onlytheroleofaplayerinthegameshould matter,nothisspecificnamesor

label;ii. Carrier:onlyplayerscontributingtothecostshouldbeallocateda

(16)

Inthissense,thefairnesspropertyoftheShapleyvalueisnotafairness

measuresuchas theonesbelongingtoα-fairness[24,25,26,27]oryetthe

Jain’sfairnessindex[28,29].

ItisagoodoutcomethatourmodelsatisfiestheaxiomsoftheShapleyvalue

astheseaxiomsconveyrationalfairnessproperties.

Fixed energy consumption ofthe network

Traffic evolution ofthe network

0 1 2 3 4 5

Upgrade epochs

Figure1.9:Evolutionoftheloadandnetworkinfrastructure.

AnappreciableoutcomeofourShapley-based modelisthatitisatrade-off

betweenanequalsharing(uniformsharing)andasharingassigningtoeach

servicecategoryashareequaltoitstrafficproportion(proportionalsharing).

Auniformsharingfavorsservicecategorieshavingalargetraffic

,andapropor-tionalsharingfavorsthosehavingasmalltraffic.

Then,wederivetheenergyefficiencyofservicecategor

iesbasedontheout-putofourShapley-based model.

Theproposed modelsarevalidatedwithrea

ldatasetstakenfromanoper-ationalEuropeannetwork.

1

.3 Contr

ibut

ionsand manuscr

iptorgan

izat

ion

Inchapter2,wesharetheresponsibilityofservicecategoriesinthefixedenergy

consumptionofaradioaccessnetwork withtheShapleyvalue. Weconsider

thecasewhensomeservicecategoriesare mandatorytobeprovided. Taking

intoaccountthe mandatorynatureofaservicecategoryintheShapley-based

modelincreasesitsshareascomparedtothecasewhenitisnotconsideredtobe

mandatory. BecausetheShapleyvalueisofhugecomputationalcomplexity,we

introduceclosed-formexpressionswhichsignificantlyreducethecomputational

complexitywhilebeingspecifictotheproposed model. Moreover,westudythe

(17)

Then,inchapter3,weconsidertheend-to-endnetworkandallitssegments,

thatis,the mobileaccess,thefixedaccess,thecollect,the mobilecore,the

registers,theIPcoreandtheserviceplatforms. Foreachsegment, weshare

theresponsibilityoftheservicecategoriesinthefixedenergyconsumptionwith

theShapley-based modelintroducedintheprecedingchapter. Weapplyour

Shapley-based modeltotraffic,toso-calledusefuloutputs(accordingtoETSI

[30],theusefuloutputofanequipmentisdefinedasitsmaximumcapacity,and

isexpressedasthenumberofErlangs,packets/s,subscribers,orsimultaneously

attachedusers)andtobothofthem.Thelasttwocasesimpactonlythesharesin

the mobilecoreenergyconsumptioncomparedwiththefirstcase. Wefindthat

Streamingistheservicethatconsumesthemostwhateverthenetworksegment,

exceptforregisters,asitrepresentsthevast majorityofInternettraffic.

Next,inchapter4,wederivetheenergyefficiencyoftheservicecategories.

Accordingtothe Europeantelecommunicationsstandardsinstitute’s(ETSI)

[31],theenergyefficiencyofamobileaccessequipmentisdefinedtobetheratio

ofitstrafficvolumetoitsenergyconsumption. Weextendthisdefinitionand

definetheenergyefficiencyofaservicecategorytobetheratioofitstrafficvo

l-umetoitsenergyconsumption. Weconsiderfirstabasestation. Considering

the meantrafficthroughputand meanpowerconsumption, weexpressedthe

energyefficiencyofaservicecategoryastheratioofitstrafficthroughputto

itspowerconsumption. Wesharetheresponsibilityoftheservicecategoriesin

theequipmentfixedpowerconsumptionusingourShapley-based model. A

fter-ward, westudythecasewhenthebasestationisputintosleep modeduring

idleperiods. Weintroducetheanalyticalexpressionoftheequipmentpower

consumptioninthisscenarioandassignittotheservicecategoriesusinganew

Shapley-basedmodelconsistentwiththisexpression.Inaddition,weconsidera

radioaccessnetworkandcomputetheenergyefficiencyoftheservicecategories

itdelivers. Weconsiderthecasewhennoservicecategoryis mandatory,and

thecasewhensomeservicecategoriesare mandatory. Moreover,wediscussthe

conditionstonotdeteriorateanetworkenergyefficiencyovertime. Weconsider

thecasewhenthenetworkisupgradedwiththesameradiotechnology,andthe

case whenitisupgraded withanewradiotechnology,typically moreenergy

andspectralefficient.

Eventually,chapter5concludesthe manuscriptandgivessomehintson

(18)

Chapter2

Shar

ingthe Respons

ib

i

l

ity

ofServ

ice Categor

iesinthe

F

ixedEnergy Consumpt

ion

ofa Rad

io Access Network

2

.1 Contextandprob

lemstatement

Inthischapter,weconsideraradioaccessnetworkandsharetheresponsibi

l-ityoftheservicecategoriesitdeliversinthefixedenergyconsumption. We

classifytheservicesintocategoriesbasedoncriteriasuchastraffic,originating

serviceprovidersand/ordevices. Basedontraffic,wesegmenttheservicesinto

5categories,namely,Streaming, Web,Download,otherdataservicesandVoice.

Weconsidertwosettings:thefirstonewithaconstantnetworkinfrastructure

andtheotheronewithanevolvinginfrastructure,overalargertimescale,in

termsofadditionaland/orchangingequipmentsoastokeepup withtraffic

loadincrease.

Westudytwovariantsofthesharingmodel:onewherenoservicecategoryis

mandatoryandanotheronewithmandatoryplayer(s)whichreflectstherealistic

casewhensomeoperatorsmaybelegallymandatedbythestatetoofferacertain

service,suchasVoice.

Theremainderofthischapterisorganizedasfollows.Insection2.2, we

reviewsomeliteraturerelatedtocostsharing. Insection2.3, weintroduce

our methodologyforassigningashareofthefixedenergyconsumptiontoeach

servicecategory.Insection2.4, wegivesome materialontheShapleyvalue

concept.Insection2.5,weproposea modelforassigningashareofthefixed

energyconsumptiontoeachservicecategorywiththeShapleyvalue,considering

differentscenarios. WediscusssomeimplementationissuesoftheShapley-based

modelandhow wetackletheseissuesinsection2.6. Insection2.7, werun

numericalapplicationsbasedonourShapley-basedproposal,onarealdata

settakenfromanoperationalEuropeannetworktransportingthree maindata

services:Streaming, Weband Download,inadditionto Voiceandotherdata

(19)

2

.2 Re

lated work

In[32,33,34,35,36,37,38],theauthorsdiscusscostsharinginajobscheduling

problemusingtheShapleyvalue. Theyhoweverdonotdistinguishbetweenthe

variableandfixedcostcomponents,asopposedtoourworkwherewefocuson

thefixedenergycomponent. Forinstance, Mishraetal.[32]considerasetof

jobsthatneedtobeservedbyasingleserverwhichcanserveonlyonejobata

time.Jobshaveprocessingtimesandincurwaitingcosts. Thejobssharetheir

coststhroughcompensationusingmonetarytransfers. Theauthorscharacterize

theShapleyvalueruleforthis modelusingfairnessaxioms. Theydefinethe

worthofacoalitionasthecostincurredbyjobsinthecoalitionifthesearethe

onlyjobsservedinthequeue. Theyprecisethatthereare manyotherwaysto

definetheworthofacoalition,likeconsideringthedualoftheirdefinition,or

byassumingthatacoalitionofjobsareservedafterthejobsnotinthecoalition

areserved.

Yet,otherauthorsconsiderexplicitlyafixedcostcomponentintheircost

sharing.In[39]forinstance,Anshelevichetal.studytheproblemoffaircost

allocationinnetworkdesign. Theauthorsshowthatsharingequallythedesign

costofeachnetworkedgebetweenuserswhoseconnections makeuseofitlead

tonear-optimal Nashequilibria. Anequalsharingofthedesigncostseems

rationalasitisnotdirectlyrelatedtoauser.Inourwork,anequalsharingof

thefixedenergyconsumptionbetweentheservicecategories maylookrational

tooasitisconsumedirrespectiveoftraffic. However,weconsiderthatanequal

sharingdoesnotreflecttheimpactoftrafficonthefixedenergyconsumption

increase,andso,weproposeasharingofthefixedcostbasedonShapleyvalue.

2

.3 Shar

ingtherespons

ib

i

l

ity ofserv

icecate-gor

iesinthefixedenergyconsumpt

ion

Again,basedon[10]and measurementscarriedoutonarealoperationa

lEu-ropeannetworkbythenetworkoperator,thepowerconsumptionofanetwork

equipmentcanbe modeledasalinearfunctionoftheloadwithavariableand

afixedcomponents.

LetPk(t)denotethepowerconsumptionofanetworkequipmentatinstant

t.Itisgivenby:

Pk(t)=Pkf(t)+(Pkmax(t)−Pkf(t))ρk(t) (2.1)

wherePkf(t)isthefixedpowercomponent,Pmax

k (t)the max

imumpowercon-sumption,ρk(t)theloadand(Pkmax(t)−Pkf(t))ρk(t)thevariab

lepowercom-ponent.

LetEkdenotetheenergyconsumptionofthenetworkequipmentkoverthe

timeperiod ∆T.Itisgivenby:

Ek = ∆TPk(t)dt = ∆T(P f k(t)+(Pkmax(t)−Pkf(t))ρk(t))dt

LetE denotestheenergyconsumptionofanetworkcomposedofK equ

(20)

LetEvandEfdenotethevariableandfixedenergycomponentsofthe networkrespectively: Ev= K k=1 ∆T (Pmax k (t)−Pkf(t))ρk(t)dt (2.2) Ef= K k=1 ∆T Pf k(t)dt (2.3)

Letusfirstconsideraradioaccessnetworkwithonlyoneradiotechnology

(homogeneousnetwork)transportingasetN ofN servicecategories,consuming

energyEwhichistobeassignedtotheservicecategories. Wehave,

E=Ev+Ef (2.4)

LetEidenotetheenergyconsumptionassignedtoservicecategoryi,with

variableandfixedcomponentsEv

iandEif,respectively,

Ei=Eiv+Eif (2.5)

Theshareofservicecategory iinthevariableenergyconsumptionisits

trafficproportionϕiasitisload-dependent. Thatis,

Ev

i=ϕi×Ev (2.6)

Asofthefixedenergycomponent,it mayseemrationaltoshareitequally

betweentheservicecategoriesasitisconsumedirrespectiveoftraffic. This

isactuallytheoutcome whenapplyingtheShapleyvaluetothetotalenergy

consumptionofthenetwork(thefixedcomponentisequallyassignedtothe

servicecategoriesandthevariablecomponentisassignedproportionallytotheir

traffic). However,thisenergycomponentincreaseswithtrafficovertimedue

tonetworkupgradeoperationsasdepictedinFig.1.9,andso,itissomehow

relatedtotheservices. Weproposethentoassigntoeachservicecategorya

shareofthefixedenergyconsumptionbasedonitsimpactonthisincrease. To

doso,weusetheShapleyvalueforitsfairnesspropertyasaxiomaticallydefined

byL.Shapleyandpresentedinthenextsection. Thatis,

Eif=φi×Ef (2.7)

whereφiistheShapleyvalueofservicecategoryi.

2

.4 Shap

leyva

lue

Ingametheory,acooperativegame(orcoalitionalgame)isagamewhichallows

groupingofplayerswithinso-calledcoalitions

,thanksforinstancetothepos-sibilityofexternalenforcementofcooperativebehavior(e.g.,throughcontract

law)[40,41,42]. Theseareopposedtonon-cooperativegamesinwhichthere

isnopossibilitytoforgealliances. Thepayoffofaplayerinacooperativegame

representsitsgainorlossinthegame. Anallocationrepresentsavectorof

payoffs. Cooperativegamesaretypicallyanalyzedintheframeworko

(21)

jointactionsthatgroupstakeandtheresultingcollectivepayoffs.Itisopposed

tonon-cooperativegametheorywhichfocusesonpredictingindividualplayers’

actionsandpayoffsandanalyzingNashequilibria.

Incooperativegametheory,asolutionisavectorofRN thatrepresents

anallocationtotheplayers,withN thesetofplayers,andN thenumberof

players. Therearetwotypesofsolutionconceptsincooperativegames:the

unobjectionablesolutionsandtheequitablesolutions. Theformerguaranteea

sharingbetweentheplayerssuchthatanycoalition(groupingofplayers)cannot

increaseitsgainbyleavingthecoalitioncomposedofalltheplayers,called

thegrandcoalition. Animputationisasolutionthatexactlysplitsthetotal

valueofthegrandcoalitionamongtheplayers,suchthatnoplayerreceives

lessthan whathecouldgetonhisown. Thecoreisthesetofimputations

under whichnocoalitionhasavaluegreaterthanthesumofits members’

payoffs. Unobjectionablesolutionsincludethecore. Therefore,nocoalitionhas

anincentivetoleavethegrandcoalitionandreceivealargerpayoff. Equitable

solutionstakeintoaccountsomeconsiderationofequitybetweenplayers.Such

solutionsincludetheShapleyvalue.

ThecharacteristicfunctionVinacooperativegameisafunctionwh

ichas-sociatestoeachcoalitionanumbercorrespondingtoitsvalue. Acooperative

gameiswithtransferableutilitywhentheplayerscansharetheircommonvalue

amongtheminanyway. Acooperativegamewithtransferableutil

ityisrep-resentedbythenumberofplayersinthegameandthecharacteristicfunction.

LetL(N)denotethesetofsubsetsofN. Acharacteristicfunctionisanelement

ofRL(N).

L.ShapleyapproachestheShapleyvalueaxiomatically. Thatis,heasked

whatkindofpropertieswe mightexpectsuchasolutionconcepttosatisfy,and

hecharacterizedthe mappingφthatsatisfiestheseproperties.

Shapley’sfirstaxiomassertsthatonlytheroleofaplayerinthegameshould

matter,nothisspecificnameorlabelintheset N.

Axiom1 (Symmetry).ForanyV inRL(N),anypermutationπ:N → N,

andanyplayeriinN,φπ(i)(πV)=φi(V)

ApermutationofthesetofplayersN isanyfunctionπ:N →N suchthat,

foreveryjinN,thereexistsexactlyoneiinN suchthatπ(i)=j. Givenany

suchpermutationπandanycoalitionalgameV,weletπV bethecoalitional

gamesuchthat

πV({π(i)|i∈S})=V(S),∀S⊆N

Thatis,theroleofanyplayeriinV isessentiallythesameastheroleof

theplayerπ(i)inπV.

Shapley’ssecondaxiomassertsthattheplayersinacarriersetshoulddivide

theirjoint worth(whichisequaltothe worthofthegrandcoalition)among

themselves,andallocatenothingtothedummies.

Axiom2 (Carrier).ForanyVinRL(N)andanycoalitionR,ifRisacarrier

ofV,then i∈Rφi(V)=V(R).

Wesaythatacoalition RisacarrierofacoalitionalgameV iff

V(S∩R)=V(S),∀S⊆N (2.8)

IfRisacarrierofV,thenalltheplayerswhoarenotinRarecalleddummies

(22)

Axiom3 (Linearity).ForanytwocoalitionalgamesV andW inRL(N),any

numbersuchthat0≤p≤1,andanyplayeriinN,

φi(pV+(1−p)W)=pφi(V)+(1−p)φi(W) (2.9)

Shapleyshowedthatthereisaunique mappingφcalledtheShapleyvalue

thatsatisfiesthesethreeaxioms.

Theorem1. Thereisexactlyonefunctionφ:RL(N)→ RN thatsatisfiesthe

threeaxiomsoftheShapleyvalue. Thisfunctionsatisfiesthefollowingequation,

foreveryiinN andeveryV inRL(N):

φi(V)=

S⊆N−i

|S|!(|N|−|S|−1)!

|N|! (V(S∪{i})−V(S)) (2.10)

VissuperadditiveifforanycoalitionsSandTinL(N)suchthatS∩T=∅,

wehave

V(S∪T)≥V(S)+V(T)

IfV issuperadditive,thentheShapleyvalue mustbeindividuallyrational,

inthesensethat

φi(V)≥V({i}),∀i∈N

TheformulafortheShapleyvaluecanbeequivalentlywritten

φi(V)=

S⊆N−i

|S|!(|N|−|S|−1)!

|N|! (V(N\S)−V(S)) (2.11)

2

.5 Shar

ingscenar

ios

2

.5

.1 Case w

ithno mandatoryp

layers

Sharesoftheservicecategoriesandvaluesofthecoalitionsarenormalizedby

thefixedenergyconsumption,unlessotherwisestated.

LetSdenoteasetofservicecategories,whichwedenotea"coalition",and

sitssize,i.e.,thenumberofservicecategoriesinthecoalition.

Weassumethatthevalueofcoalition Sistheratioofitstrafficvolumeto

thetrafficvolumeofcoalitionshavingthesamesizeasS. Thatis,

V(S)= s k1=1vk1,S (N s) j2=1 s k1=1vk1,Sj2 (2.12) where N

s isthenumberofcoalitionsofsizesandvk,Sisthetrafficvolume

ofthekthelementofacoalition.k

1spansovertheservicecategoriesinsidea

coalition,j2spansovercoalitionsofsizesand(·)isthebinomialcoefficient.

Theintuitionbehindthecharacteristicfunctioncanbeseenasfollows. Over

thelongterm,trafficofdifferentservicecategoriesincreases,andsodoesthe

energyconsumption. Ourfocusisonthefixedcomponentofth

isenergycon-sumption. Weassumethattheimpactofaservicecategoryinthefixedenergy

consumptionincreaseisequaltoitstrafficproportion. Andso, wesharethe

fixedcomponentoftheenergyconsumptionbetweentheservicecategor

(23)

theshortterm,thefixedenergycomponentisconstant,andso,atthisscale,

what mattersisthenumberofplayerspercoalition,andnotthetrafficvolume

ofeachplayer. Andso,theproportionalsharingdoneatthelongerscaleisdone

onlyoncoalitionsofthesamesize.

Thischaracteristicfunctionisaparticularchoice motivatedbytheabove

rationale. Otherchoicesforothercharacteristicfunctionsarepossible.

Thischaracteristicfunctioncanbeexpressedasfollows:

V(S)=ϕ(S)N−1

s−1

whereϕ(S)isthetrafficproportionofcoalitionS.

ThederivationofthisexpressioncanbefoundinAppendixA.

BasedonEqn.(2.10),theshareφiofplayericanbeequivalentlywritten

asEqn.(2.13)[43], φi(V,S)=N!1 N s=1 (N −s)!(s−1)! (N −1 s−1) j1=1 δ({i},S) (2.13)

where δ({i},S) =V(Sj1,{i})−V(Sj1,{i}\{i})isthe marginalcontributionof

playeriincoalitionS. ItrepresentsthecostgainedorlostbycoalitionS

becauseofplayeri.

Thecomputationalcomplexityof(2.13)growsexponentiallyinthenumber

ofservicecategories,whichcouldrepresentanobstacleforimplementation.So,

weproposeaclosed-formexpressionwhichlowerthecomputationalcomplexity,

derivedfrom(2.13).

Theclosed-formexpressionoftheShapleyvalueofplayeriisgivenby:

φi(N,ϕi)=( N s=1 1 sN s )ϕi+( N s=2 (N−1 s−2 − N−1s−1)N−2s−2 N−1 s−1 N−1s−2sNs )(1−ϕi) (2.14)

ThederivationofthisexpressioncanbefoundinAppendixA.

2

.5

.2 Case w

itha mandatoryp

layer

Letusnowconsiderascenariowitha mandatoryplayer. Thisisthecasefor

instance whenanoperatorhastheobligation,bythestate,toofferagiven

service,notably Voice, whendeployinganetworkinfrastructure. Therefore,

wesupposethatthenetworkcannotprovideasetofservicecategoriesnot

containingthe mandatoryservicecategory. Thatis:

V(S) = (ϕ(S)N −1

s−1) ifi

∈S

V(S) = 0 ifi∗∈S (2.15)

wherei∗denotethe mandatoryplayer.

Sharesφi∗ andφoofthe mandatoryplayeri∗andanon mandatoryplayer

o,respectively,areobtainedfrom(2.13).

Theclosed-formexpressionoftheShapleyvalueofthe mandatoryplayeris

(24)

φi∗(N,ϕi∗)=( N s=1 1 sN s )ϕi∗+( N s=2 N−2 s−2 N−1 s−1 sNs )(1−ϕi∗) (2.16)

ThederivationofthisexpressioncanbefoundinAppendixB.1.

Theclosed-formexpressionoftheShapleyvalueofanon mandatoryplayer

isgivenby: φo(N,ϕi∗,ϕo)=( N s=2 (N−1 s−2 − N−1s−1)N−2s−2 N−1 s−1 N−1s−2sNs )ϕi∗+( N s=2 N−2 s−2 N−1 s−1 sNs )ϕo +(N s=3 (N−1 s−2 − N−1s−1)N−3s−3 N−1 s−1 N−1s−2sNs )(1−ϕi∗−ϕo) (2.17)

ThederivationofthisexpressioncanbefoundinAppendixB.2.

2

.5

.3 Case w

ithon

ly mandatoryp

layers

Letusconsiderascenariowherealltheplayersaremandatory. Theclosed-form

Shapleyvalueofplayeriisgivenby:

φi(N)=N1 (2.18)

ThederivationofthisexpressioncanbefoundinAppendixC.

Thus, whenalltheplayersare mandatory,thefixedenergycomponentis

equallyassignedtotheservicecategories. Auniformsharingisthenaspecial

caseoftheShapley-based model.

2

.5

.4 Heterogeneousrad

ioaccessnetwork

Whenthenetworkiscomposedofseveralradioaccesstechnologies, weshare

theresponsibilityoftheservicecategoriespertechnology.

LetT denotethesetofradiotechnologies,Ftthesetofservicecategories

providedbythesub-networkimplementingtheradiotechnologyt,Ev

t(Etf)

thevariable(fixed)energyconsumptionofsub-networktandϕi,tthetraffic

proportionofservicecategoryiregardingthesub-networkt. Thetotalnetwork

energyconsumption(variableandfixed)assignedtoservicecategoryiisgiven

by:

Ei=

t∈T

ϕi,tEtv+φi,tEtf (2.19)

Ifθtistheshareofthevariablecomponent,then,

Ei=

t∈T

(θtϕi,t+(1−θt)φi,t)Et (2.20)

(25)

2

.5

.5 Evo

lv

ingnetworkinfrastructure

Overlongperiodsoftime,typicallyontheorderofyears,thenetworkin

fras-tructureneedstobeupgradedinordertokeepupwithloadincrease,asdepicted

inFig.1.9.

Whenthereareseveralupgradelevels,theshareofaservicecategoryinthe

fixedenergycomponentofthenetworkisderivedfromitssharespertechnology

andperupgradelevel. LetLdenotethesetofupgradelevels,ϕi,t,lthetraffic

proportionofservicecategoryionsub-networktconsideringupgradelevell

andEv

t,l(Eft,l)thevariable(fixed)energyconsumedbysub-networktregarding

upgradelevell.

Ei=

l∈Lt∈T

(ϕi,t,lEt,lv+φi,t,lEt,lf) (2.21)

Trafficvariationsstronglyimpactnetworkupgrade,andso,oneneedsto

makeasharingofenergyandequipmentcosts whichtakesintoaccountthis

aspect. Forthispurpose,onecanconsiderthevariationsoftraffic,δv,instead

ofthetrafficvolumes,v,inthe model. Trafficvariationδvofaservicecategory

representsitstrafficincreasebetweentwoupgradelevels. Atthefirstupgrade

level,trafficvariationscorrespondtotrafficvolumes.

Ei= l∈Lt∈T ( δvi,t,l k∈Ftδvk,t,l Ev t,l+φi,t,lEt,lf) (2.22)

2

.6 Imp

lementat

ionissues

Fig.2.1showstheruntime(inseconds)oftwoalgorithmsforthecomputation

oftheShapleyvaluesoftheservicecategories,oneusingtheShapleyvalue

function (2.13)-denotedby Classical-andtheotherusingtheclosed-form

expressionoftheShapleyvalue(2.14)-denotedbyOptimized.

Thealgorithmusingtheclosed-formexpression(2.14)hasaruntimealmost

independentofthenumberofservicecategoriesinthenetwork(lessthan1

secondforupto50servicecategories,themaximumnumberofservicecategories

we measureintheconsiderednetwork), whilethealgorithmusing(2.13)has

acomputationalcomplexitygrowingexponentiallyinthenumberofservice

categories,doesnotconvergeandhassomeresourcelimitationstartingfroma

certainnumberofservicecategories(dependingonthesimulationenvironment).

ThisisbecausetheShapleyvaluefunctioncomputesthemarginalcontributions

ofeachservicecategoryin2N−1coalitions,unliketheclosed-formexpressions

wederivefromit. Theseexpressionsarelinearintrafficproportionandcanbe

writteninthefollowinggeneralforms:

φi(N,ϕi)=A(N)ϕi+B(N) (2.23)

for(2.14),

φi∗(N,ϕi∗)=C(N)ϕi∗+D(N) (2.24)

for(2.16)and

(26)

0 100 200 300 0.08 0.10 0.12 0.14 0.16 Cla ssi cal alg orit h m Opti miz ed alg orit h m 0 10 20 30 40 50

Number of service categories

Ru

nti

me

(

s)

Figure2.1: Runtimesoftheclassical-basedandclosed-form-basedShapleyvalue

algorithms.

for(2.17),whereA(N)istheimpactofplayeritrafficinitsshare,C(N)the

impactofthe mandatoryplayeri∗trafficinitsshare,E(N)theimpactofthe

mandatoryplayer i∗trafficinanoptionalplayeroshare,andF(N)theimpact

ofanoptionalplayeroinitsshare.B(N)isthelowerboundonplayerishare,

D(N)thelowerboundonthe mandatoryplayeri∗shareandG(N)thelower

boundonanoptionalplayeroshare.

Forexample,forN =5, φi(ϕi) =A(5)ϕi+B(5) =0.417ϕi+0.117. As

depictedinFigs.2.2and2.3,A(N),B(N),C(N),D(N),G(N)areasymptot

i-callyequivalentto1/N.E(N)andF(N)tendfasterto0. Thatis(2.14),(2.16)

and(2.17)becomerespectivelyφi(N,ϕi) =1+ϕNi,φi∗(N,ϕi∗) =1+ϕNi∗ and

φo(N)=N1foralargenumberofservicecategories.

Itis worthtonotethatφi(ϕi) =A(2)ϕi+B(2) =ϕiforN =2, which

meansthattheShapley-based modelisequivalenttoaproportionalsharing

whenconsideringjust2servicecategoriesandifnoneiscons

ideredasamanda-toryservice.

Inaddition,besidesthereductionofthecomputationalcomplexity,the

closed-formexpressionsgivethelowerboundontheplayerssharesinthefixed

energyconsumption. Consideringforinstancethescenariowithouta

manda-toryplayer,and5servicecategories,thelowerboundontheplayerssharesis

B(5)=12%.

AsillustratedinFig.2.3,thelowerboundontheplayerssharesisafunction

ofthenumberofservicecategoriesdefinedinthe model. Consideringagainthe

scenariowithouta mandatoryplayer,thelowerboundontheplayerssharesis

thehighestwhenconsidering5servicecategories(12%)andthelowestwhen

(27)

0% 25% 50% 75% 100% 0 10 20 30 40 50

Number of service categories

I mp ac t of tr aff ic o n f ix ed e ne rg y sh ar es 1/N A(N) C(N) E(N) F(N)

Figure2.2:Impactoftrafficproportionsonsharesinfixedenergyconsumption.

0% 10% 20% 30% 40% 50% 0 10 20 30 40 50

Number of service categories

Lo we r bo un d on fi xe d en er gy s ha re s 1/N B(N) D(N) G(N)

Figure2.3:Lowerboundonsharesinfixedenergyconsumption.

2

.7 Numer

ica

lapp

l

icat

ions

We considerarealoperationalEuropeanradioaccessnetwork. Theperiodof

thestudycoverstwoyearsrepresentinga mature2G/3Gnetwork withearly

(28)

servicesthataretransmittedinthenetwork withthefollowingsegmentation

fortheservicecategories:twolargeones,namelystreamingandwebbrowsing,

andthreesmallerones:download,voiceandotherdataservices.Fig.2.4shows

theirtrafficproportionsastakenfromtherealdataset. Weconsidertrafficand

energyconsumptionofthe3Gsub-network.

Voice 9% Download 13% Other data 13% Web 30% Streaming 35%

Figure2.4: Trafficproportionsperservicecategory.

Theshareofaservicecategoryinthevariableenergyconsumptionequals

itstrafficproportionasthisenergycomponentisload-dependent. Thisimplies

thatdataservicesareresponsibleforabout90%oftheUMTSTerrestrialRadio

Access Network(UTRAN)variableenergyconsumption. Theseservicesare

dominatedbyOverTheTop(OTT)actorslikeGoogle.

Wenextturntothesharingoftheresponsibilityoftheservicecategoriesin

thefixedenergyconsumption.

2

.7

.1 Case w

ithno mandatoryp

layer

WeshowinFig. 2.5thesharingachieved withourShapley-basedproposal

alongsidewithtwootherapproaches:uniformandproportionalsharing. Again,

auniformsharingconsistsinassigningthefixedenergyconsumptionequallyto

theservicecategories,andaproportionalsharingconsistsinassigningtoeach

servicecategoryashareequaltoitstrafficproportion.

Auniformsharingfavorsservicecategorieshavingalargetrafficvolumeas

(29)

20% 20% 20% 20% 20% 15% 17% 17% 24% 26% 9% 13% 13% 30% 35% Unif or m Sh apl ey −b as ed Pr op orti on al

Streaming Web DownloadOther data Voice

Sh ar es i n f ix ed e ne rg y co ns u mp ti on

Figure2.5: Sharesinfixedenergyconsumption: uniform,proportionaland

Shapley-basedsharing.

havingasmalltrafficvolume. OurShapley-based modelachievesatrade-off

giventhatservicecategorieshavingalargetrafficvolume,namelystreaming

and web,areassignedalowersharethan withaproportionalapproach,and

thosehavingasmalltrafficvolume,namelyvoice,downloadandotherdata

servicesareassignedalowersharewithregardtoauniformsharing.

Thisisanappreciableoutcomeforstreamingandwebasitdoesnotpenalize

themalotandacknowledgesthefactthattheyare majordriversfornetwork

activity,andsoitisforservicecategorieshavingasmalltrafficvolumeasit

doesnotmakethemtoomuchresponsibleforthefixedenergyconsumptionand

encouragestheirtransportaswellastheintroductionofnewones.

BasedonourShapley-based model,dataservicesareresponsiblefor85%of

theUTRANfixedenergycomponent.

2

.7

.2 Case w

itha mandatoryp

layer

WenowturntothecasewhenVoiceis mandatoryduetolegalconstraints.

AsdepictedinFig.2.6,the mandatorynatureof Voiceisreflectedinour

Shapley-based modelwhichincreasessignificantlyitssharefrom15%to29%.

Itisanexpectedoutcomebecausetheoperatorwouldbe mandatedbythelaw

toimplementandofferitonanationalbasis.Indeed,toofferthisservice,the

operator wouldneedtodeployanetworkanddimensionitinsucha wayto

reachallthecitizensofthegivencountry.Inthiscase,thenetworkcanbeseen

asinitiallydeployedtotransportprimarily Voice,andsoitisnaturalthatit

wouldtakealargepartoftheshareintheenergyconsumption(yetnotallof

(30)

TheaimoftheregulatorisnotnecessarilytoincreasetheshareofVoicein

theenergyconsumptionofthenetwork,butnotablytoguaranteesomebasic

servicesonanationalbasis.

Heretoo,theShapley-basedmodelisatrade-off. Atrade-offisnotrequired

forVoiceasa mandatoryplayerbecauseitisobligedtobedeliveredwhatever

thesharing model.

20% 20% 20% 20% 20% 29% 17% 17% 19% 19% 9% 13% 13% 30% 35% Unif or m Sh apl ey −b as ed Pr op orti on al

Streaming Web DownloadOther data Voice

Sh ar es i n f ix ed e ne rg y co ns u mp ti on

Figure2.6:Sharesinfixedenergyconsumption-Voiceisa mandatoryplayer.

2

.7

.3 Caseofanevo

lv

ingnetworkinfrastructure

Wenowstudythecasewhenthenetworkinfrastructureisupgradedinorder

tokeepupwithtrafficincrease. Fig.2.7depictsthetrafficproportionsofthe

sameservicecategoriesovertwoperiodsoftimecorrespondingtotwonetwork

upgradelevels,termedlevels1and2inthefigure. Weconsidertrafficprediction

inthisscenario.

Heretoo,eachservicecategoryisassignedashareinthevariableenergy

consumptionequaltoitstrafficproportion,andso,thecorrespondingfigureis

omitted. Asofthefixedenergyconsumption,Fig. 2.8showsthenewshares

basedonourShapley-basedmodel(2.14),ateachupgradelevel,consideringthe

trafficvolumesandthetrafficvariationsatlevel2.

Consideringthetrafficvolumesputstheweightonservicecategorieshaving

alargetrafficvolume. Consideringthetrafficvariationsputsthe weighton

servicecategorieswhosetrafficincreasesrapidly,reflectingtheiractualrolein

thenecessityofupgradingthenetworkinfrastructure(addingnewequipment

inthenetwork),whichinturnincreasesthenetworkenergyconsumption.

Itisimportanttonotethattrafficincreaseandtrafficvolumesarecorrelated

(31)

9% 13% 13% 30% 35% 4% 13% 12% 32% 39% Le vel 1 Le vel 2

Streaming Web DownloadOther data Voice

Tr aff ic p ro po rti on s

Figure2.7:Trafficperservicecategory-caseofevolvingnetworkinfrastructure.

toincreasefasterintermsoftraffic. Asaresult, wenoteasimilarsharing

(intermsofweights)oftheresponsibilityoftheservicecategoriesinthefixed

energyconsumptionwhetherweconsidertrafficvolumesortrafficincreases.

15% 17% 17% 24% 26% 13% 17% 17% 25% 28% 12% 16% 17% 25% 30% Le vel 1 Le vel 2 ( ab sol ut e tr affi c) Le vel 2 (i ncr ea sin g tr affi c)

Streaming Web Download Other data Voice

Sh ar es i n f ix ed e ne rg y co ns u mp ti on

Figure2.8:Sharesinfixedenergyconsumption-caseofevolv

(32)

2

.8 Conc

lus

ion

Weinvestigated inthischapterhowtosharetheresponsibilityofserv

icecate-goriesinthefixedenergyconsumptionofaradioaccessnetwork.It mayseem

rationaltoequallyassignedthefixedenergyconsumptiontoservicecategories

asitisconsumedirrespectiveoftraffic. However,itincreaseswithtrafficover

timeduetonetworkupgradeoperationsandisthensomehowrelatedtoservices.

Becauseofthis,weassignedtoeachservicecategoryashareofthefixedenergy

consumptionbasedonitsimpactonthisincrease. WeusedtheShapleyvalue

todoso. OurShapley-basedmodelputslessweightonservicecategorieshaving

asmallamountoftrafficthananequalsharing,andlessweightonserv

icecat-egorieshavingalargeamountoftrafficthanasharingproportionaltotraffic.

Thisisanappreciableoutcomeasitencouragestransportandintroductionof

smallservices,andacknowledgestheroleoflargerservicesas majordriversfor

networkactivity.

AstheShapleyvaluehasahugecomputationalcomplexity, weprovided

closed-formexpressionsallowingtocomputethesharesoftheservicecategories

withsignificantlesscomplexity.

Weconsideredtwosettings:onewithaconstantnetworkinfrastructureand

onewithanevolvingnetworkinfrastructureoverlongerperiodsoftime.

More-over,weconsideredthecasewhensomeservicecategoriesarelegallyobligedto

beprovided,suchas Voiceinseveraldeployedoperatornetworks. Theshare

ofa mandatoryservicecategoryincreasessignificantlyascomparedtothecase

(33)

Chapter3

Shar

ingthe Respons

ib

i

l

ity

ofServ

ice Categor

iesinthe

F

ixedEnergy Consumpt

ion

ofaEnd-to-End Network

3

.1 Contextandprob

lemstatement

Thischapterisageneralizationofchapter2whosemotivationconsistsinsharing

theresponsibilityofservicecategoriesinthefixedenergyconsumptionofaradio

accessnetwork.Inthischapter,weconsiderthewholenetworkinfrastructure.

Wedecomposethenetworkinto7blocks,namely,theradioaccess,thefixed

access,theaggregation,themobilecore,theregisters,theIPcoreandtheservice

platforms. Weconsider5servicecategories:Streaming, Web,Download,other

dataandVoice. AccordingtoETSI[30],theusefuloutputofanequipmentis

definedtobeitsmaximumcapacity,andisexpressedasthenumberofErlangs,

packets/s,subscribers,orsimultaneouslyattachedusers.Eachservicecategory

isassignedashareinthefixedenergyconsumptionofablockwithourShap

ley-based modelintroducedin[44]. Wefirstapplyittotraffic,thentoso-called

usefuloutputs.

ApplyingourShapley-based modeltousefuloutputsinsteado

ftrafficim-pactsthesharesoftheservicecategoriesregardingthe mobilecoreonly.In

fact,the mobilecoreiscomposedofequipmentwhoseusefu

loutputisnotnec-essarilytrafficthroughput.Forexample,theusefuloutputoftheservingGPRS

supportnode(SGSN)isthenumberofsimultaneouslyattachedusersandnot

trafficthroughput[30].

Theremainderofthischapterisorganizedasfollows.Insection3.2

,wein-troduceourmodelforsharingtheresponsibilityofservicecategoriesinthefixed

energyconsumptionofaend-to-endnetwork.Section3.3showssomenumer

i-calapplicationsofour modelrunonarealdatasettakenfromanoperational

(34)

3

.2 Shar

ing mode

l

Atypicalnetworkiscomposedofanumberofblocks,asillustratedinFig.3.1. A

blockisasetofelementswithacommongeneralfunctionfromanarchitectural

pointofview. Forexample,forradioaccessnetworks,wecandefinetwo main

blocks:theblockofbasestationsandtheblockofcontrollers,whenapplicable.

End-usersshouldalsobeconsideredasoneormoreblocks. Thepartitionofone

blockintosub-blocksshouldbepossiblefollowingtheneedandthecoherence

ofthe model. Eachblockorsub-blockiscomposedofalistofelements. An

elementmaybeanetworkequipment,aserveroradevicethatisusedtodeliver

theservicetotheend-user. Onebasestationisforexampleanelement.

Figure3.1:Exampleofa mobilenetworkdecompositionperblock.

3

.2

.1 Componentsofab

lockenergyconsumpt

ion

Asstatedearlier,theenergyconsumptionofanetworkequipmentiscomposed

of2components:avariableandafixedone. LetEfkdenotethefixedenergy

componentofequipmentkovertimeperiod ∆T,andEv

kitsvariableenergy

component.

Theoverallenergyconsumptionofablockisthesumofindividualenergy

consumptionsofitselements.LetK denotethenumberofelementsinblockj,

andEjtheenergyconsumptionofblockj. Wehave:

Ej=

K k=1

Ef

k+Ekv (3.1)

Hence,thevariableenergycomponentofblockjisgivenbyEv

j= Kk=1Ekv

anditsfixedcomponentisgivenbyEjf= Kk=1Ekf.

3

.2

.2 Shar

ingtherespons

ib

i

l

ityofserv

icecategor

iesina

b

lockfixedenergyconsumpt

ion

Letidenoteaservicecategory,Efi,jthefixedenergyassignedtoservicecategory

iregardingblockjandEv

i,jthevariableenergyassignedtoservicecategoryi

regardingblockj. Letϕi,jdenotethetrafficproportionofservicecategoryi

(35)

Aservicecategoryisassignedashareinthevariableenergyconsumption

equaltoitstrafficproportionsincethisenergycomponentisload-dependent.

So,

Ev

i,j=ϕi,j×Ejv (3.2)

Eachservicecategoryisassignedashareinthefixedenergyconsumption

withourShapley-based modelintroducedintheprecedingchapter. So,the

shareofservicecategoryiinthefixedenergyconsumptionofblockjisgiven

by:

Ef

i,j=(A(N)ϕi,j+B(N))×Ejf (3.3)

where A(N)=N1+ N s=2 1 sN s −(N−1s−2N−1− N−1s−1)N−2s−2 s−1 N−1s−2sNs (3.4) B(N)= N s=2 (N−1 s−2 − N−1s−1)N−2s−2 N−1 s−1 N−1s−2sNs (3.5)

whereN isthenumberofservicecategoriesand(·)isthebinomialcoefficient.

3

.3 Numer

ica

lapp

l

icat

ions

Inthissection, weconsiderthearchitectureofareal Europeannetworkas

illustratedinFig.3.2.

Figure3.2:End-to-endarchitectureofatelecommunicationnetwork.

Thestudiednetworkconsistsofafixedaccess,a mobileaccess

,anaggrega-tion,amobilecore,theregisters,anIPcoreandastreamingserver. We,again,

consider5servicecategories,namely,Streaming, Web, Download,otherdata

servicesandVoice.

3

.3

.1 Shap

leyva

lueapp

l

iedtotraffic

Thenumberofservicecategories N tobeconsideredinthesharingdepends

ontheequipmentunderconsideration. Forexample, mobileswitchingcenters

(36)

Table3.1:Sharing modelparameters Parameters Values A(1) 1 B(1) 0 A(4) 0.556 B(4) 0.111 A(5) 0.417 B(5) 0.117

Table3.2: Weightcoefficients

Networkblock Weight

CScoreenergyconsumption 0.21×Mobilecoreenergyconsumption

PScoreenergyconsumption 0.21×Mobilecoreenergyconsumption

EPCcoreenergyconsumption 0.48×Mobilecoreenergyconsumption

IMScoreenergyconsumption 0.10×Mobilecoreenergyconsumption

SGSNnetworkenergyconsumption 0.16×PScoreenergyconsumption

HSSnetworkenergyconsumption 0.92×Registersenergyconsumption

work,Voicereferstocircuitswitchedvoice. BasedonthepossiblevaluesofN

inourstudy,thevaluesofparametersA(N)ofEqn.(3.4)andB(N)ofEqn.

(3.5)canbefoundinTab.3.1.

The mobilecoreiscomposedofdifferentsub-blocks,namely,thecircuit

switchedcore(CScore),packetswitchedcore(PScore),evolvedpacketcore

(EPC)andIP multimediasubsystemcore(IMScore). Thesesub-blockshave

theirowntrafficproportions,andso,theservicecategoriesareassigneddifferent

shares.Inordertocomputethesharesoftheservicecategoriesregardingthe

mobilecore,weneedtoknowtheweightsofthesub-blocksinthe mobilecore

energyconsumption. ValuesoftheseweightsaredepictedinTab.3.2. They

comefrom measurementscarriedoutonthestudiednetworkandcanbefound

inAppendixD(weconsiderenergyconsumptionvaluesofyear2016,knowing

thattheIMSenergyconsumptionwas619 MWhthesameyear).

Givenablock,theshareofaservicecategoryisthe weightedsumofits

sharesinthefixedandvariableenergycomponentsoftheblock. Itsshare

inthevariableenergycomponentisweightedwiththeproportionofvariable

energyinthetotalenergyconsumptionoftheblock. Weconsiderthevariable

energycomponenttoaccountfor20%ofablockenergyconsumption[11,45].

Fig.3.3depictsthesharesoftheservicecategor

iesintheenergyconsump-tionofthestudiedoperationalEuropeannetworkperblock. Weobservethe

following:

•Energyconsumptionofthestreamingserverisallocatedintotaltothe

streamingservice.

(37)

30% 50% 49% 36% 20% 49% 100% 24% 16% 16% 27% 20% 16% 0% 11% 17% 17% 9% 20% 16% 0% 16% 18% 18% 14% 20% 18% 0% 19% 0% 0% 14% 20% 0% 0% Str ea min g We b Do wnl oa d Ot her d at a Voi ce RAN Fixed acce ss Aggre gatio n Mobil e core Regis ters IP cor e Strea ming serv er Sh ar es i n en er gy c on su mp ti on

Figure3.3:Sharesinend-to-endnetworkenergyconsumption.

sincewedonotconsider mobilecontrollers,i.e.,BSCsandRNCs,inthe

scopeofthisinvestigation. So,theaggregationnetworkiscomposedof

Ethernetswitchestransportingthetrafficoriginatingfromthefixedaccess.

Asaresult,theseblockshavethesametrafficdistribution,andso,the

samesharesfortheservicecategories.

•Streamingistheservicethatconsumesthe most,whatevertheb

lockun-derconsideration,exceptfortheregistersgiventhattheirtrafficconsists

essentiallyofrequeststhataresupposedtobeevenlydistributedamong

theservicecategories.Streamingconsumesnearlyhalftheenergyofthe

fixedaccess,aggregationandIPcore.Infact,Streamingrepresentsthe

vast majorityoftrafficinthenetwork,around60%ofthefixedaccess,

aggregationandIPcoretrafficregardingthestudiednetwork.

•Sharesregardingthe mobilecorearedifferentfromthoseofthe mobile

access(RAN),althoughtheseblocksdealwiththesametraffic.Indeed,

trafficoriginatingfromthe mobileaccessisnotoperatedbythesame

equipmentinthe mobilecoredependingonthenatureoftheservice.

Be-causeofthis,the mobilecorehasdifferentsharespersub-block,resulting

inglobalsharesdifferentfromthoseofthe mobileaccess.

•SharesregardingtheIPcorearequitesimilartothoseofthefixedaccess,

eventhoughtheIPcoredealswithtrafficoriginatingbothfromthefixed

and mobileaccesses. Indeed,thisoutcomeisbecausethefixedtraffic

accountsforahugeamountofIPtraffic. Forexample,thefixedtraffic

(including WiFitraffic)accountsforaround80%ofoverallIPtrafficon

(38)

3

.3

.2 Shap

leyva

lueapp

l

iedtousefu

loutputs

Intheaboveanalysis, weassignedashareoftheblocksenergyconsumption

toeachservicecategorybasedontraffic.Inthissection, wecons

idertheso-calledusefuloutputstoassigntoeachservicecategoryashareintheend-to-end

networkenergyconsumption. Again,theusefuloutputofanequ

ipmentisde-finedtobeits maximumcapacityandisexpressedasthenumberofErlangs,

packets/s,subscribers,orsimultaneouslyattachedusersaccordingtoETSI[30].

It mightbe morerationaltoconsiderusefuloutputinsteadoftrafficforsome

equipment. Forexample,it makes moresensetod

iscusstheenergyconsump-tionofthehomesubscriberserver(HSS)intermsofnumberofsubscribers

insteadoftrafficthroughput,becausethisequipmentisdesignedforregistering

subscribers.

Simulationsetup

TheusefuloutputsofnetworkequipmentunderinvestigationaregiveninTab.

3.3. Thefirstcolumnshowsthenetworkequipmentweconsiderinthescope

ofthisinvestigation,column2givesthecorrespondingusefuloutput,basedon

ETSI[30].Incolumn3,wegivethenumberofservicecategoriesoperatedby

thegivenequipment. Thelastcolumnshowstheusefuloutputproportionsof

theservicecategories.

Trafficproportionsofthemobileandfixedaccessescomefrommeasurements

carriedoutonthenetworkunderinvestigationbythenetworkoperator.

MSCsdealwithcircuitswitchedservices,andso,wesupposethatonlyVoice

impactstheseequipment.

Weassumethateveryend-userusesallthedataservices,andso,dataservice

categorieshavethesameimpactonSGSNsintermsofsimultaneouslyattached

users. VoicedoesnotimpactSGSNsgiventhattheseequipmentprovidedata

servicesonly. Thesamereasoningappliesforgateway GPRSsupportnodes

(GGSNs),mobilitymanagemententities(MMEs),packetgateways(PGWs)and

signalinggateways(SGWs).

Wealsoassumethatdataserviceshavethesame meanpacketsize,andso,

proportionswhichshouldbecomputedbasedonthroughputexpressedinpacket

persecondcanbeapproximatedwithtrafficproportions,whichare moreeasily

measurable.InthecaseofGGSNs,weconsider3Gdatatrafficproportionsonly.

Infact, GGSNsdeliver2Gand3Gdatatraffic,however,the2Gdatatrafficis

negligiblecomparedtothe3Gtraffic. Forexample,we measured1%2Gdata

trafficversus34%3Gdatatrafficonthestudiednetwork. Whenitcomesto

PGWsandSGWs,weconsider4Gtrafficproportionsinstead.

UsersregisteredintheHSSusealltheservicecategories(Voiceanddata),

andso,theservicecategorieshavethesameimpactonthisequipmentinterms

ofnumberofregisteredsubscribers.Infact,2Gsubscriberscannotbeconsidered

asvoice-onlyusersgiventhattheydogeneratedatatraffic;Forexample,there

are4%of2Gsubscribersonthestudiednetwork,andtheygenerate1%oftotal

datatraffic. Wekeepthesamereasoning withequipmentidentityregisters

(EIRs)intermsofnumberofregistered mobilephones.

Ethernetswitchescarrytrafficoriginatingfromthefixedaccess,andso,

thesetwoblockshavethesametrafficproportions.

(39)

accessestrafficproportions;Thefixedtrafficaccountingfor80%oftotaltraffic,

basedon measurementscarriedoutontheinvestigatednetworkbythenetwork

operator. Weconsider WiFitraffictobepartofthefixedaccesstraffic.

Asweconsiderastreamingserver,100%ofitstrafficisduetoStreaming.

Useful-output-basedsharingoftheresponsibilityofservicecategories

inthe mobilecoreenergyconsumption

Asstatedabove,onlythesharesofthemobilecoreareimpactedwhenapplying

ourShapley-based modeltousefuloutputsinsteadoftraffic.Infact,theuseful

outputofthenetworkblocks,exceptthe mobilecoreandregisters,istraffic

throughput,andso,thesharesoftheservicecategoriesarenotalteredcompared

tothecasewhenweapplytheShapley-basedmodeltotraffic. Whenitcomesto

the mobilecoreblock,someequipmentusefuloutputisnottrafficthroughput.

ThisisthecaseforSGSNs,forexample,whoseusefuloutputisthenumberof

simultaneouslyattachedusers.

Althoughtheusefuloutputofregistersisnottrafficthroughput,westillhave

anequalsharingoftheenergyconsumptiongiventhatthenumberofregistered

subscribersinthe HSSandthenumberof mobiledevicesinEIRsareequally

distributedovertheservicecategories,liketherequests. Asaresult,onlythe

figureofthe mobilecoreblockis modifiedasshowninFig.3.4.

Itisimportanttonotethattheuseful-output-basedsharingisbeneficial

toservicecategorieshavingalargetrafficvo

lumeascomparedtothetraffic-basedsharing.Indeed, moreequipmenthavetheirenergyconsumptionequally

assignedtotheservicecategoriessincetheirusefuloutputisuniformlyd

is-tributed. ThisisthecasefortheSGSN,the HSSandtheEIRforexample.

Replacingasharingproportionaltotrafficproportionswithauniformsharing

isnaturallybeneficialtoservicecategorieshavingalargetrafficvolumeasi

l-lustratedinthefigure. However,theshareofVoiceremainsunchangedbecause

theenergyconsumptionoftheCScoreisthesame.

Hybridsharingoftheresponsibilityofservicecategoriesinthe mobile

coreenergyconsumption

Sincethevariableenergyconsumptionisconsumedproportionallytotheload

[10],theshareofaservicecategoryinthisenergycomponentisequaltoits

trafficproportion.

Asofthefixedenergyconsumption, weassignittotheservicecategories

basedontheirutilityfortheblock,expressedbytheusefuloutput.

Forexam-ple,theshareofadataservicecategoryinthevariableenergyconsumptionof

SGSNsisequaltoitstrafficproportion,whilethefixedenergyconsumptionis

equallyassignedsincethesimultaneouslyattachedusersonaSGSNareequally

distributedoverthedataservicecategories.

Asaresult,wehaveahybridsharingofthemobilecoreenergyconsumption

inthesensethatitsvariableenergyconsumptionisassignedtotheservice

categoriesbasedontheirtrafficproportions,whileitsfixedenergyconsumption

isassignedbasedonusefuloutputs. Thesharesoftheservicecategoriesinthe

mobilecoreenergyconsumptionconsideringahybridsharingareshowninFig.

(40)

22%

20%

17% 18%

23%

Streaming Web Download Other data Voice

Sh ar es i n en er gy c on su mp ti on

Figure3.4: Sharesin mobilecoreenergyconsumption: useful-output-based

sharing.

Letusnotethatthehybridsharingliesbetweenthetraffic-basedandusefu

l-output-basedsharing,soitisatrade-offbetweentheservicecategoriesinthe

sensethatthosehavingalargevolumeoftrafficgetalowersharethanwitha

traffic-basedsharing,andsoitisforservicecategorieshavingasmallervolume

oftrafficascomparedtoauseful-output-basedsharing.

3

.4 Conc

lus

ion

Inthischapter, wesharedtheresponsibilityofservicecategoriesinthefixed

energyconsumptionofaend-to-endnetwork. Wedecomposedtheent

irenet-workinto7blocks,namely,theradioaccess,thefixedaccess,theaggregation,

themobilecore,theregisters,theIPcoreandtheserviceplatforms. Weapplied

ourShapley-basedmodelperblock. Weconsidered5servicecategories,namely,

Streaming, Web,Download,otherdataandVoice.

Streamingistheservicethatconsumesmostwhateverthenetworkblock.In

fact,thisserviceaccountsforthevast majorityofInternettraffic,around60%

ofthefixedaccess,aggregationandIPcoretrafficregardingtheoperational

Europeannetworkunderinvestigation.

The mobileaccessand mobilecorehavenotthesamesharesalthoughthey

dealwiththesametraffic.Indeed,the mobilecoreiscomposedofsub-blocks

withdifferenttrafficproportionsresultingindifferentglobalsharesascompared

tothe mobileaccess.

WealsoappliedourShapley-basedmodeltousefuloutputs. Onlytheshares

ofthe mobilecoreare modified,consideringthestudiednetwork.Indeed,the

(41)

24%

21%

15% 17%

23%

Streaming Web Download Other data Voice

Sh ar es i n en er gy c on su mp ti on

Figure3.5:Sharesin mobilecoreenergyconsumption:hybridsharing.

(42)

Ta ble 3.3: Use ful out put s

Usefuloutputproportionsperservicecategory

Networkequipment Usefuloutput Numberofplayers Streaming Web Download Otherdata Voice

MobileBasestations Datathroughput 5 43% 31% 8% 16% 3%

DSLAM/OLT Datathroughput 4 63% 10% 12% 14% 0%

MSC Subscriber 1 0% 0% 0% 0% 100%

SGSN SimultaneouslyAttachedUsers 4 25% 25% 25% 25% 0%

GGSN Paquets/s 4 43% 32% 9% 16% 0%

GGSN SimultaneouslyAttachedUsers 4 25% 25% 25% 25% 0%

MME SimultaneouslyAttachedUsers 4 25% 25% 25% 25% 0%

PGW/SGW Paquets/s 4 45% 32% 8% 15% 0%

PGW/SGW SimultaneouslyAttachedUsers 4 25% 25% 25% 25% 0%

HSS/AuC Subscriber 5 20% 20% 20% 20% 20%

EIR Mobilephones 5 20% 20% 20% 20% 20%

Ethernetswitch Datathroughput 4 63% 10% 12% 14% 0%

IProuter Datathroughput 5 59% 15% 11% 15% 0%

StreamingServer Datathroughput 1 100% 0% 0% 0% 0%

(43)

Chapter4

EnergyEffic

iencyofthe

Serv

iceCategor

ies

De

l

iveredbya Mob

i

le

Access Network

4

.1 Contextandprob

lemstatement

Once wehavesharedtheresponsibilityofservicecategoriesinthenetwork

energyconsumption,thischapteraimsatcomputingtheirenergyefficiency.

AccordingtoETSI[31],theenergyefficiencyofaradioaccessnetworkisthe

ratioofitstrafficvolumetoitsenergyconsumption.

Extendingthisdefinition,weintroduceanew metricforcomput

ingtheen-ergyefficiencyofservicecategoriesdeliveredbyaradioaccessnetwork

,ex-pressedinbits/imputedJoule. This metricshouldbevalidforallservicesto

bedefinedsuchasvoice,data,videostreaming,onlinegaming,etc,andforall

possiblearchitectures:classicalreferencearchitecture,centralizedradioaccess,

virtualizedradioarchitecture,etc.

Wedefinetheenergyefficiencyofaservicecategorytobetheratioofits

trafficvolumetoitsenergyconsumption.

Weconsiderfirstanetworkequipment. Theenergyefficiencyofaservice

categorycanbeexpressedastheratioo

fitstrafficthroughputtoitspowercon-sumptionconsideringthe meantrafficthroughputand

meanpowerconsump-tion. Wespecificallyconsider5servicecategories:Streaming, Web,Download,

otherdataservicesandVoice. Weconsidertwocases

:thecasewhenthenet-workequipmenthasnosleep modefeatureandthecase whenitisputinto

sleep modeduringidleperiods,thatis,periodsoftimetheequipmenthasno

packets.Intheformer,weuseourShapley-based modelintroducedpreviously

toassignashareofthefixedpowerconsumptiontoeachservicecategoryand

thenderivetheenergyefficiency. Inthelatter,thepowerconsumedbythe

equipmentirrespectiveoftrafficistheaverageofthefixedpowerconsumed

whenitisactiveandthepowerconsumedwhenitisinsleep mode. Wegive

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

“[m]ore so than any other American author of the twentieth century, Pynchon documents in fiction the tectonic movements of American history, to the extent that

The channel assignment and topology control procedure consists of two mod- ules: the end-to-end throughput estimation and the channel and link selection module.. Support for

3 depicts the cumulative distribution for the relative error committed by our solution (σ Dec ), as well as by the trivial solution (σ T rivial ) and by the Conditional method (σ

triggered by September 2001 (one hesitates to imagine the state of the American body politic after a major terrorist attack every year for nearly a decade) contains

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

(75) Le juge doit toutefois prioritaire- ment faire appel aux règles relatives à l’allègement du degré de preuve lorsque la preuve du fait à prouver ne peut être

The highlight of this study is the early incidence of MetS and its components over time after initiation of antidepressant medication, in patients without MetS