• Aucun résultat trouvé

Wavelet modulation: An alternative modulation with low energy consumption

N/A
N/A
Protected

Academic year: 2021

Partager "Wavelet modulation: An alternative modulation with low energy consumption"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-01445465

https://hal.archives-ouvertes.fr/hal-01445465

Submitted on 30 Jan 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Wavelet modulation: An alternative modulation with

low energy consumption

Marwa Chafii, Jacques Palicot, Rémi Gribonval

To cite this version:

Marwa Chafii, Jacques Palicot, Rémi Gribonval. Wavelet modulation: An alternative modulation

with low energy consumption. Comptes Rendus Physique, Centre Mersenne, 2017, 18 (2), pp.156-167.

�10.1016/j.crhy.2016.11.010�. �hal-01445465�

(2)

Contents lists available atScienceDirect

Comptes

Rendus

Physique

www.sciencedirect.com

Energy and radiosciences / Énergie et radiosciences

Wavelet

modulation:

An

alternative

modulation

with

low

energy

consumption

La

modulation

en

ondelettes :

une

modulation

alternative

à

faible

consommation

d’énergie

Marwa Chafii

a

,

,

Jacques Palicot

a

,

Rémi Gribonval

b aCentraleSupélec,IETR,CampusdeRennes,35576Cesson-Sévignécedex,France bIRISA,InriaBretagneAtlantique,35042Rennescedex,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Keywords: Waveletmodulation Wavelettransform OFDM Peak-to-Average-PowerRatio Meyerwavelet Haarwavelet Mots-clés : Modulationenondelettes Transforméeenondelettes OFDM Facteurdecrête OndelettesdeMeyer OndelettedeHaar

Thispaper presentswavelet modulation,basedonthediscrete wavelettransform,as an alternative modulation with low energy consumption. The transmitted signal has low envelope variations, whichinduces a good efficiency for the power amplifier. Wavelet modulation is analyzed and compared for different wavelet families with orthogonal frequencydivisionmultiplexing(OFDM)intermsofpeak-to-averagepower ratio(PAPR), power spectral density (PSD) properties, and the impact of the power amplifier on the spectral regrowth. The performance in terms of bit error rate and complexity of implementationarealsoevaluated,andseveraltrade-offsarecharacterized.

©2016Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

r

é

s

u

m

é

Danscet article,nousprésentonslamodulationenondelettes, baséesurlatransformée discrèteenondelettes,commeunemodulationàfaibleconsommationd’énergie.Lesignal généréparcettemodulationa,eneffet,defaiblesvariationsdepuissanceparconstruction. Nousanalysonslamodulationenondelettespourplusieurs famillesd’ondelettesetnous comparonssesperformancesaveccellesdel’OFDM,entermesdefacteurdecrête(PAPR), depropriétésdeladensitéspectraledepuissanceainsiquedel’impactdel’amplificateur depuissancesurlaremontéedeslobessecondaires.Lesperformancesentermesdetaux d’erreurbinaireetdecomplexitéd’implémentationsont égalementévaluées,etplusieurs compromissontcaractérisés.

©2016Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

*

Correspondingauthor.

E-mailaddresses:marwa.chafii@supelec.fr(M. Chafii),jacques.palicot@centralesupelec.fr(J. Palicot),remi.gribonval@inria.fr(R. Gribonval).

http://dx.doi.org/10.1016/j.crhy.2016.11.010

1631-0705/©2016Académiedessciences.PublishedbyElsevierMassonSAS.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

Thiswork is anextended version ofour studyonthe Meyerwaveletmodulation, published inthe conferencepapers

[1,2].Comparedto[1,2],wepresenthereamorecompletestudycoveringother waveletfamiliesandanalyzingthepower amplifiereffectonthespectralregrowth.

1. Introduction

Incommunications, an importanteffectof thelarge amplitude variations of thetransmitted multicarrier signal isthe weakpowerefficiencyofthepoweramplifier.Thiscausesintensiveenergyconsumptionandgrowingneedforcooling.Our objectiveistoproposeanalternativetotheclassicalmulticarriermodulationsinordertoreduceenergyconsumption.

Orthogonalfrequency division multiplexing(OFDM)is amodulation schemeadoptedby various wirelineandwireless communicationstandards asa modulationtechnique for datatransmission. However, theOFDM signal suffersfromhigh powerfluctuations.Thevariationsofitsenvelopegeneratenon-lineardistortionswhenweintroducetheOFDMsignalinto apoweramplifier (PA).InordertoavoidthecompressionrangeofthePAandamplifythesignalinthe lineardomain of thePA characteristic,an inputback-off (IBO) isperformedattheinput ofthe PA.However, whentheinput back-off gets larger,powerefficiencygetspoorer,whichinduceshighenergyconsumption.

PAenergyconsumptionmayrepresentmorethan60% oftheenergyconsumptionoftheLTEmacrobase-station trans-mitter[3].Reducingtheenvelopevariations, andthen improvingtheamplifier’sefficiency,contributestoreducing energy consumption atthe levelof mobile equipments (batteriesthat last longer), andatthe level ofthe basestations (energy savings andreducedelectricitybillfortelecom operators).Therefore,thiscouldhelp thereduction ofCO2 emissionsand preventenvironmentalpollution.

Thepeak-to-averagepower(PAPR)isarandomvariablethathasbeenintroducedtomeasurethepowervariationsofthe OFDMsignal.MuchresearchhasbeenconductedinordertoreducethePAPRandanalyzeitsprobabilitydistribution.Inour previouswork [4],wehavestudiedthecomplementarycumulativedistributionfunction(CCDF)ofthePAPR,andwehave shownthatitdependsonthewaveformusedinthemodulation.ThePAPRreductionproblemcanthereforebeformulated asanoptimizationproblem.In[5],wehaveshownthathavingatemporalsupportstrictly lessthan asymbolperiodisa necessaryconditiononthewaveformsforabetterPAPRthanOFDM.Sincethewaveletbasissatisfiesthiscondition,weare interestedinexploringwaveletmodulationandenergyconsumptionthroughtheevaluationofitsPAPR.

Inthispaper,waveletmodulationisproposed asan alternativemodulationwithlow energyconsumption. Power con-sumptionisevaluated through thestudyofPAPR performance,andcompared withthat ofOFDM.The simulationresults showthattheproposedschemeforwaveletmodulationachievessignificantgainsintermsofPAPRcomparedwithOFDM, atthecostofaffordableincreasedcomplexity.Acomparisonintermsofbiterrorrateandpowerspectraldensitybetween theOFDMsystemandthewaveletmodulationsystemisalsoinvestigatedinthiswork.

2. Waveletmodulation

Waveletshavebeenappliedinseveralwirelesscommunicationapplicationssuchasdatacompression,sourceand chan-nel coding, signal denoising and channel modeling. Moreover, wavelets have been proposed as a modulation basis for multicarrier modulation systems. The resulting systembased on wavelet modulationis often named in theliterature as Wavelet-OFDM[6]oralsoknownasorthogonalwaveletdivisionmultiplexing(OWDM)[7].

Themostcommonschemeintheliteratureiswaveletpacketmodulation(WPM),whichisageneralizedformofwavelet modulation.WPMhasbeenintroducedintheliteraturebyLindsey[8],whostudiedtheapplicationofthewaveletpacket basis inorthogonalmultiplexingofdata.Inthispaper,we havechosento focusonwaveletmodulationforits significant PAPRperformancegains,aswillbestudiedinSection3.

2.1. Waveletbasis

Let

ψ

and

φ

betwofunctions

L2

(

R)

,1ofafinitesupport2

[

0

,

T

0

]

,suchthat:

ψ

2

= φ

2

=

1 (1) and +∞



−∞

ψ (

t

)

=

0 (2)

The norm

.

ofa function g

L2

(

R)

isdefined as:



g



2

=



+∞

−∞

|

g

(

t

)

|

2dt.

ψ

and

φ

can be named themother wavelet functionandthemotherscalingfunctionrespectively.

LetL betheeffectivenumberofscalesselected;wedefinecontractedversions

ψ

jand

φ

jofthefunctions

ψ

and

φ

,for

j

J

L,

1 Thespaceofsquareintegrablefunctions.

(4)

ψ

j

(

t

)

=

2

j

/2

ψ (

2jt

)

(3)

φ

j(t

)

=

2j/2

φ (

2jt

)

(4)

Thecontractedfunctions

ψ

j and

φ

j haveasupportof

[

0

,

T20j

]

.

Foreveryscale j,wedefinetranslatedversions

ψ

j,kand

φ

j,kofthefunctions

ψ

jand

φ

jasfollows:

ψ

j,k(t

)

= ψ

j(t

2−jkT0

)

=

2 j /2

ψ (

2jt

kT0

)

(5)

φ

j,k

(

t

)

= φ

j(t

2−jkT0

)

=

2 j/2

φ (

2jt

kT0

)

(6)

Thecontractedtranslatedfunctions

ψ

j,kand

φ

j,khaveasupportof

[

kT2j0

,

(k+1)T0

2j

]

.For j

∈ [

[

J

L

,

J

1

]

]

andk

∈ [

[

0

,

2j

1

]

]

,

wedefinethewaveletbasisas:



φ

JL,k



k=2JL−1 k=0 J−1



j=JL



ψ

j,k



k=2j−1 k=0 (7)

where J isthenumberofscalesconsidered.

2.2. Expressionofthetransmittedsignal

Wavelet modulationis a multicarrier modulationsystembased on thewavelet basis insteadof theFourierbasis. The modulationsystem

{

gm

}

m∈[[0,M−1]]isrepresentedbythewaveletfunctions

j,k

}

j∈[[JL,J−1]],k∈[[0,2j1]] andthescaling

func-tions

JL,k

}

k∈[[0,2J−L1]] ofthefirstscale.Thewaveforms

{

gm

}

m∈[[0,M−1]]canbeexpressedas:

{

gm

}

m∈[[0,2J0+11]]

:= {ψ

J0,k

}

k∈[[0,2J01]]

∪ {φ

J0,k

}

k∈[[0,2J01]]

{

gm

}

m∈[[2J0+1,2J1]]

:= {ψ

j,k

}

j∈[[J0,J−1]],k∈[[0,2j−1]]

Thetransmittedsignalbasedonwaveletmodulationisthendefinedasfollows:

x

(

t

)

=



n J−1



j=JL 2j1



k=0 wj,k

ψ

j,k

(

t

nT0

)

+



n 2J−L



−1 q=0 aJL,qφJL,q(t

nT0

)

(8)

J

1:lastscaleconsidered,withM

=

2J,

L:effectivenumberofscalesconsidered( J

L

j

J

1),

wj,k:waveletcoefficientslocatedatk-thpositionfromthescale j,

aJL,k:approximationcoefficientslocatedatthek-thpositionfromthefirstscale J

L,

• ψ

j,k

=

2

j/2

ψ(

2jt

kT0):thewaveletorthogonalfunctions,

• φ

JL,k

=

2

J−L

2

φ (

2JLt

kT0):thescalingorthogonalfunctionsatthescale J

L.

The motherwaveletfunctionandthemotherscaling functioncorrespond to j

=

0,k

=

0.Toeachscale j corresponds 2j

translatedwaveletfunctions.Fromonescaletothenext,thenumberofwaveletfunctionsisthenmultipliedbytwo.

2.3. Variants

Several variants of wavelet modulation can be considered, depending on the number of scales L selected. Since the scalingfunctionsareconsideredonlyforthefirstscale, J

L thendefinesthenumberofthescalingfunctions

φ

j,k inthe

modulationsystem.Fig. 1depictsthewaveletmodulationsystemfordifferentvaluesofL,forM

=

8 carriers.Byconvention, when L

=

0,thereare 2J scaling functions

φ

j,k andnowaveletfunction

ψ

j,kconsidered inthewaveletbasis(thecaseof

singlecarriermodulation).

Note that theposition ofthefunctionsin Fig. 1is not acoincidence, butithas an importance,since itgives an idea aboutthetime-frequencylocalizationofthewaveforms

(

t

,



f

)

.

2.4. Somewavelets

In thissection,we outlinesome importantwaveletfamilies:Meyerwavelets,whichallowcompact frequencysupport, andDaubechieswavelets,whicharecharacterizedbyacompacttemporalsupport.

(5)

Fig. 1. Some variants of wavelet modulation for M=8.

Fig. 2. Haar mother wavelet and scaling function.

Fig. 3. Daubechies-3 mother wavelet and scaling function.

Haarwavelet TheHaarwaveletistheoldestandsimplestwavelet, andhasaclosedformexpressioninthetime and fre-quencydomains.ThemotherHaarwaveletandthemotherHaarscalingfunctionarepresentedinFig. 2,andareexpressed asfollows:

ψ (

t

)

=

1 √ T0 if 0

t

T0 2

1 T0 if T0 2

t

T0 0 else (9)

φ (

t

)

=

1T0 if 0

t

T0 0 else (10)

Daubechieswavelets The Daubechies-p wavelets are characterized by a number p of zero moments.They havecompact supportandthereforearecalculatedfromconjugatemirrorfilters fl offiniteimpulseresponse[9].Inparticular,when p is

(6)

Fig. 4. Dmey mother wavelet and scaling function.

Fig. 5. Daubechies-20 mother wavelet and scaling function.

equal to1,weget theHaarwavelet. Fig. 3andFig. 5 displaythefunctions

φ

and

ψ

for p

=

3 and p

=

20: Daubechies-3 (db3)andDaubechies-20(db20).

Meyerwavelet TheMeyerwaveletisafrequency-band-limitedorthogonalwavelet,whichhasbeenproposedbyYvesMeyer in 1985[10,11]. Meyerwavelets are indefinitely differentiableorthonormal wavelets,which are well localized anddecay fromtheircentralpeakfasterthananyinversepolynomial.DmeyisadiscreteformatapproximationoftheMeyerwavelet, anditcanapproximatetheMeyerwaveletbasedonafiniteimpulseresponse(FIR)filter,asdepictedinFig. 4.3Asaresult, thefastwavelettransformcanapproximatetheMeyerwavelettransform,andthediscretewavelettransform(DWT)canbe applied.

3. PAPRperformance

AcomparisonintermsofPAPRperformanceispresentedinFig. 6andFig. 7forthewaveletmodulationvariantsL

=

1 and L

=

7 respectively.Toevaluate thePAPR performance,the complementarycumulative distributionfunction (CCDF)of thePAPRissimulated,whichistheprobabilitythatthePAPRexceedsadefinedvalue

γ

.Thesimulationsettingsconsidera numberofcarriersM

=

128 ( J

=

7)andthe16-QAM(quadratureamplitudemodulation)constellation.

Differentwaveletsareselected:theHaarwavelet,theDaubechieswavelets3 and20,andtheDmeywavelet.TheCCDFfor differentwaveletsareshiftedtotheleft comparedwiththatofOFDM.Therefore,waveletmodulationachievesbetterPAPR performancethanOFDMassummarizedinTable 1.Inparticular,theHaarwaveletreachesthebestperformance.Intuitively, thePAPRperformancegaincanbeexplainedbythefactthatinwaveletmodulation,onlyL carriersareoverlappinginthe sameinstant,whichdoesnotpromotetheadditionofthelargepeakpower.

Followingthesamereason,the L

=

1 variantachievesbetterPAPRperformancethanthe L

=

7 variant.Whenthe num-ber of overlapping carriers L gets smaller, the PAPR performance gets then better. This can also be interpreted by the considerationthatineverydecompositionlevel,themulticarriersystemcanbeseenasasinglecarriersystem,becausethe

(7)

Fig. 6. PAPR performance comparison for L=1 and J=7 (M=128).

Fig. 7. PAPR performance comparison for L=7 and J=7 (M=128).

Table 1

PAPRperformanceofwaveletmodulationcomparedwithOFDMforthe16-QAMconstellation.

Wavelet name Haar Daubechies-3 Dmey Daubechies-20

PAPR Gain compared with OFDM at CCDF=10−3for L=1 and J=7 (M=128) 4.7 dB 3.3 dB 2.8 dB 1.8 dB PAPR Gain compared with OFDM at CCDF=10−3for L=7 and J=7 (M=128) 2.4 dB 1.9 dB 1.6 dB 1.1 dB

waveformsofthesamescale j havethesamebandwidthandareonlyshiftedintime.Asthesinglecarriersystemdoesnot sufferfromincreasedPAPR,thesmallerL gets,thelesstheeffectofthePAPRisobserved.

Thus, we canconclude thatthe PAPR performance ofwaveletmodulation dependsonthe variantconsidered andthe wavelet familyselected. Moreover, all the waveletmodulation schemes achieve better PAPR performance than OFDM. In otherwords,itcanbestatedthatwaveletmodulationconsumeslessenergythantheFourierfunctionsusedintheOFDM system.

4. PSDperformance

PSDis arelevant criterion inthe evaluationofthe spectral efficiencyofa modulation scheme.It highlightsthe main properties ofthe used bandwidth andthe side lobe effects that characterize bandwidth efficiencyand adjacent channel interference. Inthis section, we compare the PSDperformance ofdifferent waveletmodulation with theOFDM scheme, beforeandafterthepoweramplifier.

4.1. PSDperformancecomparison

PSDsfordifferentwaveletsaredisplayed inFigs. 8,9,10,and11asfunctionsofanormalizedfrequency,andcompared withOFDM.PSDissimulatedusingMatlab,andestimatedviatheperiodogrammethodwitharectangularwindow.Before applying wavelet modulation based on the inverse discrete wavelettransform (IDWT), zero padding by a factor of 4 is performedontheinputsignalinthefrequencydomain.Thenumberofcarriersconsidered inthesimulationsisM

=

128 ( J

=

7)andthevariantusedisL

=

1.

(8)

Fig. 8. PSD of Haar wavelet modulation.

Fig. 9. PSD of Daubechies-3 wavelet modulation.

Fig. 10. PSD of Dmey wavelet modulation.

Fig. 11. PSD of Daubechies-20 wavelet modulation.

The most striking observation is the properties of PSD Haar wavelet. The width of the main lobe of its PSD is the double of that ofOFDM. Moreover, it suffers from very large side lobes. Manyapplications can not tolerate these poor spectrumcharacteristics.ItistruethatHaarcanbefilteredtoreducethesidelobeseffect,butthiswillchangethesystem’s performance. Similarly, the Daubechies-3 waveletshows significantly degraded PSDperformance. In contrast, Dmey and Daubechies-20waveletsachievealmostcomparableperformancetothatofOFDM.

HaarandDaubechies-3reachthebestPAPRperformanceasdiscussedinSection3,andyet,presentthepoorestspectrum characteristics.Thechoiceofasuitablewaveletislimitedbythetrade-offbetweenPAPRperformanceandPSDproperties.

(9)

Fig. 12. PSD Comparison between Dmey wavelet modulation and OFDM at the output of the power amplifier of the Saleh model.

Fig. 13. PSD Comparison between Dmey wavelet modulation and OFDM at the output of the power amplifier of the Rapp model.

4.2. Poweramplifiereffect

Inthispart,weevaluatetheeffectofapoweramplifieronthePSDproperties.WeintroducetheOFDMsignal,theDmey waveletmodulationsignal,andtheDaubechies-20waveletmodulationsignal intomemorylesspoweramplifiers basedon Saleh’smodel [12] andRapp’smodel[13].The samesimulation parameters ofSection 4.1are considered inthissection. Theinputback-offconsideredinSaleh’smodelis5 dB,whileitisfixedat0dBforRapp’smodel.Therelationshipbetween the inputandoutput voltages isusually expressedby the AM/AMfunction. The AM/PMfunction characterizes thephase shiftbetweentheinputandoutputvoltagesasafunctionoftheinputvoltage.TheAM/AMandAM/PMfunctionsofSaleh’s amplifiermodelaredefinedasfollows:

FAM/AM

=

α

a

|

x

(

t

)

|

1

+ β

a

|

x

(

t

)

|

2

,

FAM/PM

(

|

x

(

t

)

|) =

α

p

|

x

(

t

)

|

2 1

+ β

p

|

x

(

t

)

|

2 (11)

where

α

a

=

2

.

1587 and

β

a

=

1

.

1517 (

αp

=

4

.

0033 and

β

p

=

9

.

1040,respectively)areusedtocomputetheamplitude gain

(thephasechangerespectively)foraninputsignalx

(

t

)

.

TheAM/AMfunctionfortheRapp’samplifiermodelisgivenby:

FAM/AM

=

|

x

(

t

)

|

1

+ (

|x(Ot)|

)

2S



1/2S

(12)

where

|

x

(

t

)

|

isthemagnitudeoftheinputsignal,S

=

0

.

5 isthesmoothnessfactor,andO

=

1 istheoutputsaturationlevel. AsdepictedinFigs. 12–15,OFDMfacesaspectralregrowthcomparedwiththeotherwavelets,duetoitshighPAPR.The spectralregrowthiscausedbythenon-linearityoftheamplifier.Whenamodulatedsignalwithlargeenvelopefluctuations is introduced into the non-linear amplifier, its bandwidth is broadeneddue to the non-linearities that generate mixing products betweentheindividualfrequency componentsofthespectrum.The spectralregrowthleads to adjacentchannel interference.

5. BERperformance

The BER performance ofthewaveletmodulation andtheOFDM systems isevaluated usingthe parameters illustrated inTable 2.The achievedperformance forother valuesof L (L

∈ [

[

1

,

7

]

]

) issimilartothatofthestudiedcaseL

=

1,witha slightBERdegradationinafrequency-selectivechannel.

5.1. AWGNandflatfadingchannel

Inthispart,acomparisonbetweentheBER ofOFDM,theDmeywaveletandtheDaubechies-20waveletforAWGN and flatfading channels, ispresentedinFig. 16.Sincetheseareall orthonormalwaveformsets, itisonlyto beexpectedthat

(10)

Fig. 14. PSD Comparison between Daubechies-20 wavelet modulation and OFDM at the output of the power amplifier of the Saleh model.

Fig. 15. PSD Comparison between Daubechies-20 wavelet modulation and OFDM at the output of the power amplifier of the Rapp model.

Fig. 16. BER performance comparison for MMSE equalizer in AWGN and flat fading channels.

(11)

Table 2

Simulationparameters.

Parameters Definition Values

M Number of carriers 128

S Number of frames 100

SNR Signal to Noise Ratio in dB 0:5:30 and 0:5:35

nloop Number of iteration loops 100,000

F Intercarrier spacing 15 kHz

L Effective number of scales considered 1

CP Cyclic prefix 25%

Table 3

ChanneldelayandpowerprofileofETUchannelforLTEstandard.

Discrete delay [ns] 0 50 120 200 230 500 1600 2300 5000

Average path gains [dB] −1.0 −1.0 −1.0 0.0 0.0 0.0 −3.0 −5.0 −7.0

Fig. 18. Wavelet transmission chain in a frequency selective channel.

Fig. 19. IDWT(j)implementation.

theperformanceofallofthemwillbe thesame.ThesimulationsconfirmthatwaveletmodulationisasgoodasOFDMin termsofBERperformance.

5.2. Frequencyselectivechannel

Inafrequency-selectivefading channel,acyclicprefixisaddedinthetimedomainto thetransmittedsignalbasedon waveletmodulation,anda frequencydomain equalizationis performedatthereceiver sideusing eitherthe zeroforcing (ZF) equalizeror theminimum mean-square error (MMSE) equalizeraspresented in Fig. 18. ForOFDM, ZFequalizer or MMSEequalizerisusedaftertheFFTdemodulation.

Theextendedtypicalurban(ETU)modelforLTEmultipathchannelstandard[14],definedbythechanneldelayandthe power profilein Table 3,is used inthissection. As depictedinFig. 17,waveletmodulation basedon the Dmey wavelet andtheDaubechies-20waveletreachesa gainof6

.

5 dB intermsofSNRforaBER of10−3 andthe4-QAMconstellation, comparedwithOFDM.Forhigherconstellations(16-QAM)andforlowSNRvalues,theperformanceofOFDMiscomparable tothatofwaveletmodulation.StartingfromSNR

=

25 dB,waveletmodulationoutperformsOFDM.

Itisimportanttohighlightthatwhenusingchannelcodingtechniques,thegainintermsofSNRwillbelesssignificant andwilldependalsoontheefficiencyofthecodingtechniqueimplemented.Wehavechosennottousecodingtoevaluate onlytheeffectofthemodulationschemeontheBERperformance.

(12)

Table 4

Numberofnon-zerocoefficientsfordifferentwaveletfilters.

Wavelet name Haar Daubechies-3 Dmey Daubechies-20

Parameter K 2 6 47 30

6. Complexityofimplementation

6.1. Implementation

Inordertoimplementthewaveletmodulationsystemexpressedin(8),weapplytheMallatalgorithm[9].Forawavelet modulation signalbased onthewaveletsof L scales andthescalingfunctionsofthescale J

L, theIDWT

(

j

)

shouldbe performed L times. L can be also be interpreted asthe numberofdecomposition levels. LetCn be a vector of M input

complex symbols Cm,n.The 2JL first Cm,n symbols correspond to the 2JL scaling coefficients

(

aJL,q

)

q∈[[0,2J−L1]]. The

second 2JL complexsymbolscorrespondtothewaveletcoefficients

(

w

JL,k

)

k∈[[0,2J−L1]]ofthefirstscale J

L.First,one IDWT

(

j

)

is performed,which givesinitsoutput 2JL+1 scaling coefficients. Afterthat, thenext 2JL+1 coefficientsfrom

thevectorCnareextractedandconsideredaswaveletcoefficients,andthesecondIDWT

(

j

)

isperformed.Thenextsymbols

areprocessedinthesamewayuntilthelastscale j

=

J

1 isreached.Thevector Cncanbeexpressedthenas: Cn

= (

aJL,0

,

aJL,1

, . . . ,

aJL,2J−L−1

)

.

(

wJL,0

,

wJL,1

, . . . ,

wJL,2J−L−1

)

.

(

wJL+1,0

,

wJL+1,1

, . . . ,

wJL+1,2J−L+11

)

.

. . .

.

(

wj,0

,

wj,1

, . . . ,

wj,2j1

)

.

. . .

.

(

wJ−1,0

,

wJ−1,1

, . . . ,

wJ−1,2J−11

)

(13)

Thesymbol

.

in(13)standsfortheconcatenationoperator.Fig. 19definestheimplementationofonedecompositionlevel j. According totheMallatalgorithm,theIDWT

(

j

)

consistsinupsamplingby afactoroftwoandfilteringtheapproximation coefficients(scalingcoefficients)andthedetailcoefficients(waveletcoefficients),respectively,byalow-pass fl anda high-pass fhfilter,whoseresponsesarederivedfromthewaveletconsidered.

6.2. Complexity

Sincewaveletmodulationneedstwo moreblocks(IDWT,DWT)comparedwithOFDM,aspresentedinFig. 18,its com-plexityisthereforehigherthanthatofOFDM.Letuscomputethecomplexityofthewaveletmodulation(IDWT)andwavelet demodulation(DWT)blocks.AccordingtotheMallatAlgorithm[9],IDWT

(

j

)

consistsinupsamplingbyafactoroftwoand filtering theapproximationcoefficientsaj,k (scalingcoefficients) andthe detailcoefficients wj,k (wavelet coefficients),

re-spectively, by a low-pass filter fl anda high-pass filter fh. Let K be the length of the filters fl and fh (K non-zero coefficients).Waveletmodulationiscalculatedwith

J



j=JL+1 2jK

J



j=1 2jK

=

2M K (14)

The complexity order in terms of the number of additions and multiplications is therefore

O(

M K

)

. Knowing that the complexity order of the FFT or the IFFT is

O(

M log2

(

M

))

, the complexity increase order is about

O(

log2K(M)

)

, which is

affordablesinceK isbounded,andthenumberofcarriersM isusuallylarge.

Thenumbersofnon-zerocoefficients K foreachoneofthewaveletsstudiedinthisworkaredisplayedinTable 4.The Haar wavelethasthe smallestcomplexity,but,aswe haveseen inSection 3,ithas theworst PSD.The Dmey waveletis computationallymoredemandingthantheDaubechies-20wavelet, butitoutperformstheDaubechies-20waveletinterms of PAPR,while havingthesame BER performance. Thechoice betweentheDmey waveletand theDaubechies waveletis subjecttothePAPRperformancerequiredandthecomplexityofimplementationtolerated.

7. Conclusion

Waveletmodulationhasbeenproposedinthispaperasanalternativemodulationwithlowenergyconsumption.Based onsimulationresults,wehaveshownthatwaveletsachievebetterPAPRperformancethanOFDM.TheHaarwaveletreaches the best PAPR performance, butit suffers frompoor spectral characteristics. The Dmey andthe Daubechies-20 wavelets havebeenproposedaswaveletsthatprovidethebesttrade-off.Thepropertiesofwaveletmodulationhavebeencompared with those of uncodedOFDM. We haveshown that OFDM suffers froma spectral regrowth larger than that of wavelet modulation,whileintroducingthetransmittedsignalintoapoweramplifier.WhilemaintainingthesameBERperformance intheAWGNchannelandtheflatfadingchannel,thevariantL

=

1 ( J

=

7,M

=

128)ofthewaveletmodulationoutperforms uncodedOFDMinthefrequency-selectivechannelbyupto6

.

5 dB,atBERof10−3,fortheMMSEequalizerandthe4-QAM

(13)

dependsontheapplication,andissubjecttotrade-offPAPRandspectralefficiency(Haarvs.Dmey),andtotrade-offPAPR andcomplexityofimplementation(Dmeyvs.Daubechies-20).

Ourfutureworkwillbetostudyasuitablechannelcodingforwaveletstocompareitsperformancewiththatof Coded-OFDM under a frequency-selective channel. A less complex equalization as well aspilot insertion methods for wavelet modulationarealsoopensubjectstobeinvestigated.

Acknowledgements

This work has received financial support from the French Government granted to the CominLabs excellence labora-tory and managed by the French National Research Agency in the “Investissements d’Avenir” program under reference No. ANR-10-LABX-07-01.Theauthorswouldalsoliketothankthe‘RégionBretagne’,France,forsupportingthiswork.

References

[1]M.Chafii,J.Palicot,R.Gribonval,Lamodulationenondelettes:unemodulationalternativeàfaibleconsommationd’énergie,in:JournéesScientifiques 2016d’URSI-France,TélécomParis-Tech,Rennes,France,15–16March2016.

[2]M.Chafii,Y.J.Harbi,A.G.Burr,Wavelet-OFDMvs.OFDM:performancecomparison,in:23rdInternationalConferenceonTelecommunications,ICT2016, Thessaloniki,Greece,16–18May2016,pp. 1–5.

[3]H.Bogucka,A.Conti,Degreesoffreedomforenergysavingsinpracticaladaptivewirelesssystems,IEEECommun.Mag.49 (6)(2011)38–45.

[4]M.Chafii,J.Palicot,R.Gribonval,Closed-formapproximationsofthepeak-to-averagepowerratiodistributionformulti-carriermodulationandtheir applications,EURASIPJ.Adv.SignalProcess.2014 (1)(2014)1–13.

[5]M.Chafii,J.Palicot,R.Gribonval,F.Bader,AnecessaryconditionforwaveformswithbetterPAPRthanOFDM,IEEETrans.Commun.64 (8)(2016) 3395–3405.

[6]S.Galli,O.Logvinov,RecentdevelopmentsinthestandardizationofpowerlinecommunicationswithintheIEEE,IEEECommun.Mag.46 (7)(2008) 64–71.

[7]S.L.Linfoot,M.K.Ibrahim,M.M.Al-Akaidi,Orthogonalwaveletdivisionmultiplex:analternativetoOFDM,IEEETrans.Consum.Electron.53 (2)(2007) 278–284.

[8]A.Lindsey,Waveletpacketmodulationfororthogonallymultiplexedcommunication,IEEETrans.SignalProcess.45(1997)1336–1339.

[9]S.Mallat,AWaveletTourofSignalProcessing,AcademicPress,2008.

[10]Y.Meyer,Principed’incertitude,baseshilbertiennesetalgebresd’operateurs,in:SéminaireBourbaki,vol. 28,1985,pp. 209–223.

[11]H.Nikookar,WaveletRadio:AdaptiveandReconfigurableWirelessSystemsBasedonWavelets,CambridgeUniversityPress,Cambridge,UK,2013.

[12]A.A.Saleh,Frequency-independentandfrequency-dependentnonlinearmodelsofTWTamplifiers,IEEETrans.Commun.29 (11)(1981)1715–1720.

[13]C.Rapp,EffectsofHPA-nonlinearityona4-DPSK/OFDM-signalforadigitalsoundbroadcastingsignal,in:ESA,SecondEuropeanConferenceonSatellite Communications(ECSC-2),vol. 1,1991,pp. 179–184(SEEN92-1521006-32).

Figure

Fig. 1. Some variants of wavelet modulation for M = 8.
Fig. 4. Dmey mother wavelet and scaling function.
Fig. 6. PAPR performance comparison for L = 1 and J = 7 (M = 128).
Fig. 8. PSD of Haar wavelet modulation.
+4

Références

Documents relatifs

The finite velocity of solutions together with the CFL condition (2.2.1) tell us that we only have to treat the case of boundary cells, the other cells behaving like cells in the

21 European Parliament archives, PE2_AP_RP!ENVI.1984_A2-0132!880010EN, Report on the proposal from the Commission of the European Communities for a Council directive

This paper shows complex wavelet transform as a powerful tool which can effectively classify the disturbances like sag, swell, harmonic, sag harmonic, swell harmonic, transients and

Our study on the distribution of the signal after PAPR reduction is based on the three categories of methods: coding, probabilistic and adding signal.. Let’s first consider the case

In this paper, we generalize this analysis by considering the generalized waveforms for multi-carrier (GWMC) modulation system based on any family of modulation functions, and we

In this paper, we have analyzed the MIMO systems based on Alamouti diversity scheme and we have de- rived the PMEPR and PAPR of a single carrier signal at the different stages of

The second solution uses similar time sharing structure as solution one but replaces the VL-SNR modulation and coding with an overlay signal that is detected by aeronautical receiver

Abstract: In this paper, nine organic compounds based on the coumarin scaffold and different substituents were synthesized and used as high-performance photoinitiators for free