• Aucun résultat trouvé

Automated Mineral Mapping in Optical Ore Microscopy : accuracy and limitations

N/A
N/A
Protected

Academic year: 2021

Partager "Automated Mineral Mapping in Optical Ore Microscopy : accuracy and limitations"

Copied!
22
0
0

Texte intégral

(1)

Automated mineral mapping

in optical ore microscopy

Eric

PIRARD

Université de Liège GeMMe - Georesources & GeoImaging

Accuracy and limitations

EMC2012 Frankfurt

(2)

Automated Mineral Mapping

– Sampling

– Imaging

– Mineral Identification

EMC2012 Frankfurt

(3)

Automated Mineral Mapping

• Imaging

– Spatial Sampling

• A random point sampling gives an unbiased estimator

of the volume proportion of a phase (α) in a solid

1st Principle of Stereology

(Delesse,1848)

α

α

α

V

A

P

A

V

P

=

=

“Do more less well”

Systematic sampling on a “random” section

EMC2012 Frankfurt

(4)

Automated Mineral Mapping

• Sensing the mineral target

• Sensing principle

» Ex. X-ray fluorescence; light absorption; atomic force; …

• Signal processing and interpretation

» Database of spectra; Characteristic rays (Kα,…)

Goethite

EMC2012 Frankfurt

(5)

Automated Mineral Mapping

• Whiskbroom imaging mode

– Scanning beam

or moving sample

Result of EDX mapping© QEM SCAN

Ex. Scanning Electron Microscopy

EMC2012 Frankfurt

(6)

Automated Mineral Mapping

• Pushbroom imaging mode

– Scanning linear sensor

Diffuse reflectance imaging

Specular reflectance imaging

Industrial vision of « marble » tiles

EMC2012 Frankfurt

(7)

Automated Mineral Mapping

• Array imaging mode

– CCD/CMOS camera

Reflected Light Microscopy

Typical Quantum Efficiency for an Si-detector

EMC2012 Frankfurt

(8)

Photonic Ore Microscopy

– Photons

– Filters

– Reflectance database

EMC2012 Frankfurt

(9)

Photonic Ore Microscopy

• MultiSpectral Imaging

• Conventional Ore Microscope

» Objective transmittance >50% @ 1100nm

• Scientific grade CCD camera

» Spectral sensitivity 350nm-1000nm

• Filter wheel

» Interference filters @ 50 nm spacing

Typical Quantum Efficiency Curve for an Si-detector

360 nm 438 nm 489 nm 591 nm 692 nm 870 nm Multispectral Image EMC2012 Frankfurt

(10)

Photonic Ore Microscopy

• MultiSpectral Imaging

• Calibration

» Correction for uneven illumination » Measure of reflectance standard

• Correlation with Specular Reflectance Database

» Quantitative Data File - QDFIII (Criddle & Stanley, 1993) » Extension to 1000 nm (Brea et al., IMA, 2010)

BORNITE 0 10 20 30 40 50 60 400 500 600 700 800 900 1000 Wavelength (nm) R e fl e c ta n c e ( % ) BN tfpe9 001_1 BN tfpe9 001_2 BN tfpe9 001_3 BN tfpe9 001_4 BORNITE QDFIII PYRITE 2000 2500 3000 3500 4000 4500 5000 5500 6000 400 500 600 700 800 900 1000 Wavelength R e fl e c ta n c e ( % ) Pyrite R tfpe9 011 - Pyrite PYRITE 1500 2000 2500 3000 3500 4000 400 500 600 700 800 900 1000 tfpe9 001 - Chalcocite Chalcocite COM CHALCOCITECOVELITE 0 1000 2000 3000 4000 5000 6000 7000 400 500 600 700 800 900 1000 Wavelength (nm) R e fl e c ta n c e ( % x 1 0 0 ) COV Ro (116) COV Re (116) Covelite COVELITE CR 286 15,00 20,00 25,00 30,00 35,00 40,00 45,00 50,00 55,00 400 500 600 700 800 900 1000 Wavelength (nm) R e fl e c ta n c e ( % ) PO (CR286_012) PO (CR286_014) PO (CR286_020) CUB - (CR286_019) CUB - (CR286_019) CP (CR286_001) CP (CR286_007)

Enhanced Pyrrhotite-Cubanite discrimination

EMC2012 Frankfurt

(11)

Photonic Ore Microscopy

• MultiRadial Imaging

• Rotating incident polarizer

» “Information” about crystal anisotropy

{ }

θ

{ }

θ y x y x

min

P

P

Max

B

=

,

, Multiradial Image “Bireflectance” Image EMC2012 Frankfurt

(12)

Applications

– Epithermal Cu-Au

– Stratiform Cu

– Carbonate rocks

EMC2012 Frankfurt

(13)

Wavelength Selection

• Phalaborwa : Cu-Ni Sulphides

» @ 437nm; 489nm; 591nm; 692nm (10nm FWHM)

Criddle & Stanley QDFIII, 1993

Pentlandite Chalcopyrite Violarite Pyrrhotite Cubanite Chalcocite Covellite Bornite Magnetite Califice A., 2008 EMC2012 Frankfurt

(14)

Post Processing

• Chelopech : Epithermal Cu-Au Paragenesis

Pyrite

Resin

False Colour Image Maximum Likelihood Classification

After Conditional Geodesic Propagation

EMC2012 Frankfurt

(15)

Modal Analysis

• Kansanshi : Stratiform Cu

• Supergene (mixed) zone

» Secondary Cu sulphides, » Malachite,… EMC2012 Frankfurt Siebels K., 2012 Chalcopyrite (A) Chalcopyrite (B) Copper Cuprite Digenite Malachite Chalcocite Rutile Molybdenite Pyrite 489nm, 590nm, 690nm

(16)

Modal Analysis

• Kansanshi : Stratiform Cu

• Supergene (mixed) zone

» Secondary Cu sulphides, » Malachite,…

Curvas de Liberación Ccp RoCo

0 10 20 30 40 50 60 70 80 90 100 0 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-99 >99 % Liberación % C c p

Lib Vol Ccp MIXTAS Lib Sup Ccp MIXTAS Lib Vol Ccp TOTAL Lib Sup Ccp TOTAL

Cp1 Cp2 Cc Mal Py Cp 54,2% Ss-Cu 11,1% Ox-Cu 3,0% Hem 1,7% S-Fe 25,1% Gg 4.6% Other 0,3% EMC2012 Frankfurt Dufrasne Fl., 2010; Perez-Barnuevo L., 2011

(17)

Microstructure Analysis

• Carbonate Rock

EMC2012 Frankfurt Jaimes Contreras R., 2011 Multiradial Image Porosity

(18)

Microstructure Analysis

• Carbonate Rock

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 L o n g u e u r m ) P90 P50 P10

Percentiles of Intercept Length (Crystal Size Distribution)

EMC2012 Frankfurt

(19)

Accuracy & Limitations

– Visual check

– Chemistry, XRD

– Comparison with SEM

– Round Robin

EMC2012 Frankfurt

(20)

Accuracy & Limitations

• Validation

– Visual

» Point counting; Time Consuming; Subjective;…

– Chemistry

» Balance; Limited mineralogy; …

– XRD

» Major minerals;…

– Round Robin Test

» Interlaboratory test on « similar samples » » Detailed statistics of inter/intra variability » Initiative of IMA-CAM

EMC2012 Frankfurt

(21)

Accuracy & Limitations

• Comparison with Automated EM-based Mineralogy

– QEM-SCAN/MLA

• High resolution (PGE, Au)

• Non-stoechiometric minerals (Lcx)

• Trace / Precious elements partitioning

• Gangue mineralogy

• Process mineralogy oriented software

– Optics

• Cheap technology

• Fast imaging

• Large samples (

do more less well!

)

• Good discrimination in some critical ores

» Iron oxide; Ni-Cu sulfides; …

• Multiradial imaging

» Grain size analysis

» Crystal orientation (EBSD for the poorest)

EMC2012 Frankfurt

(22)

EMERALD Erasmus Mundus

• European Master Degree in Georesources Engineering

• Innovative education in « Geometallurgy »

» Mineral Resources Characterization – Processing – Modelling - Management

• Worldwide network of associated universities

» Moscow, Queensland, Capetown, Hacceteppe, Minas Gerais, UChile, Kazakhstan,…

Références

Documents relatifs

Coût de la perte de poids évaluée pour 10 kg de muscle Longissimus lumborum de dromadaire au cours du stockage à 5°C en fonction de l’âge à l’abattage..

Khatri I, Fukai H, Yamaguchi H, Sugiyama M, Nakada T: Effect of potassium fluoride post-deposition treatment on Cu(In,Ga)Se 2 thin films and solar cells fabricated onto.. sodalime

These results means that the a and P- phases of chalcopyrite are in magnetic states at room temperature while the y-phase and pyrite are in the paramagnetic state

We give an introduction to the transalgebraic theory of simply connected log-Riemann surfaces with a finite number of infinite ramification points (transalgebraic curves of genus

Mais ces stages sont aussi vus comme une occasion de prendre conscience des risques, de prévenir les accidents, de prendre conscience de ses limites voire d'un éventuel déclin dans

This could be linked to the absorber properties, since in pure CuInSe 2 the quasi Fermi level splitting of Cu-rich and Cu-poor samples was shown to be similar on absorber layers

The baseline process for production of Cu(In,Ga)Se 2 absorber layers with a very thin surface layer of Cu(In,Ga)(S,Se) 2 at Solar Frontier is depicted in Fig.. The absorber synthesis

Abstract: Le sujet de recherche ambitionne la réalisation de couches minces à base de matériaux à structure chalcopyrite en vue de développement de nouvelles applications dans