• Aucun résultat trouvé

Bio-Ökonomie: Chancen, Risiken und Blick auf das Gesamtsystem

N/A
N/A
Protected

Academic year: 2021

Partager "Bio-Ökonomie: Chancen, Risiken und Blick auf das Gesamtsystem"

Copied!
19
0
0

Texte intégral

(1)

1

Bio-Ökonomie:

Chancen, Risiken und

Blick auf das Gesamtsystem

Andreas Pfennig

Products, Environment, and Processes (PEPs) Department of Chemical Engineering

Université de Liège www.chemeng.uliege.be/pfennig andreas.pfennig@uliege.be presented at: ProcessNet-Jahrestagung 10.-13.09.2018, Aachen, Germany

CO

2

content of the atmosphere

1960 1980 2000 2020 2040 2060 330 380 430 480 530 580 source: http://www.esrl.noaa.gov/gmd/ccgg/trends/ +1.0°C C O2 i n p p m year +1.5°C +2.0°C +2.5°C

(2)

THE major driver

world population

7.600.000.000

food

2.8 kg/(cap d)

energy

21.000 kWh/(cap a)

materials

ca. 0.9 kg/(cap d)

fossil resources

5.6 kg/(cap d)

land area

agricultural: 7.000 m

2

/cap

3

petrochemicals ≈ 4% of fossil resources

crude oil

natural gas

coal

petro-chemicals

(3)

agenda

5

world population

 driving force

energy transition

 time scale

food vs. fuel & material

 limiting criteria

feedstock

 fuel & material  available options

 chances, challenges

world population scenarios

1960 1980 2000 2020 2040 2060 2080 2100 0 2 4 6 8 10 12 14 m y y e a r o f b ir th w o rl d p o p u la ti o n i n b ill io n year low variant medium variant high variant to d a y source: United Nations

World Population Prospect 2017 Revision

(4)

development of UN-WPP predicting for 2050

7 2000 2010 2020 2030 2040 2050 7 8 9 10 11 w o rld p o p u la tio n 2 0 5 0 in b ill io n year of publication high variant medium variant low va riant 11.03 billion in 2050

world population scenarios

1960 1980 2000 2020 2040 2060 2080 2100 0 2 4 6 8 10 12 14 m y y e a r o f b ir th w o rl d p o p u la ti o n i n b ill io n year low variant medium variant high variant to d a y 11.03 billion in 2050 source: United Nations

World Population Prospect 2017 Revision

(5)

conclusion

9

The UN high-population variant has to be considered

as realistic a scenario as the medium variant.

annual primary-energy consumption

0 1 2 3 4 5 6 7 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 150000 200000 250000 Germany U S A India p e r c a p it a e n e rg y c o n s u m p ti o n i n k W h /( c a p a )

world population in billion data basis: 2015

iea: Key World Energy Statistics 2017

global average

developed countries several European counries

China Belgium

(6)

1995 2000 2005 2010 2015 2020 0 10 20 30 40

total primary energy growth rate = annual increase

g ro w th r a te i n % ( 3 y e a r a v e ra g e s ) year solar + wind hydroenergy

annual global growth rates

11

future growth scenarios of wind & solar

1990 2000 2010 2020 2030 2040 2050 0.01 0.1 1 10 % annual increase: 30 25 20 s u b s ti tu ti o n r a te i n % year

high population variant

wind + solar

substitution rate = fraction of primary energy consumption

(7)

1990 2000 2010 2020 2030 2040 2050 0.01 0.1 1 10 g ro w th o r s u b s ti tu ti o n r a te i n % year

high population variant

wind + solar

max. substitution rate: 3.0%

2.0% growth rate: 30% 20%

defining three future scenarios

13

on global

average!

CO

2

according to three scenarios

1980 2000 2020 2040 2060 2080 0 10 20 30 40 50 60

high population variant

renewables scenarios: 20% - 2.0%, easiest 25% - 2.5%, medium 30% - 3.0%, challenging +1.93 °C +1.66 °C +1.51 °C C O2 p ro d u c ti o n i n G t/ a year hist oric al, n o su bstit utio n

(8)

conclusion

15

time-scale: turning point in 5 to 10 years

strong effect in 10 to 20 years

volatile prices of fossil feedstock foreseeable

By then, bio-economy should better be well on its way!

Reducing population growth simplifies transition.

world hunger

19900 2000 2010 2020 2030 200 400 600 800 1000 u n d e rn o u ri s h e d p e o p le i n m ill io n year historical data new goal UN Millenium

Development Goals UN Sustainable

(9)

assumptions for scenario analysis

continue trends

slow increase of per capita kcal-supply

increase agricultural productivity

intensify animal production

10% primary energy bio-based

17 2000 2020 2040 2060 2080 2100 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 biomaterials biofuels pasture plant-based food forests meadows and pasture la n d a re a m 2 /c a p year arable land feed remaining forest

(10)

2000 2020 2040 2060 2080 2100 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 biomaterials biofuels pasture plant-based food forests meadows and pasture la n d a re a m 2 /c a p year arable land feed remaining forest

land-area: challenging, medium pop. variant

19 2000 2020 2040 2060 2080 2100 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 biomaterials biofuels pasture plant-based food forests meadows and pasture la n d a re a m 2 /c a p year arable land feed

remaining for forest

(11)

21

workarounds?

1995 2000 2005 2010 2015 0% 20% 40% 60% 80% 100%

insect & herbicide resistant herbicide resistant fr a c ti o n c ro p a re a o f G M m a iz e i n U S A year insect resistant

(12)

19600 1970 1980 1990 2000 2010 2020 500 1000 1500 2000 2500 3000 3500 s p e c if ic p ro d u c ti v it y i n k c a l / (m 2 a ) year USA Germany start GM maize

productivity of land area GM vs. non-GM

23

conclusion

To feed the world, change in behavior essential:

 maximum 2 children per family

 exclusively plant-based food

Nevertheless: competiton for land area between

feedstock for biofuels and biomaterals

food production.

 land-area demand for feedstock

(13)

calculation of exergy

R U R U

)

(

1

)

(

)

(

iF

R

U

U

phys

T

T

i

T

T

i

i

i,

C

T

dT

V

P

P

T

T

C

T

dT

E

j

i

j

j

i

i

i

G

E

E

1

o

chem

,

,

o

chem

,

exergy of a material stream

chemical exergy of a material stream

physical exergy of a material stream

mix 1 phys , chem ,

E

E

E

E

N i i i i

+ exergy losses in processes and equipment

25

chemical exergy of various materials

0 10 20 30 40 50 60 80 100 120 140 PA 6.6 poly styr ene PE T PV C poly prop ylen e poly carb onat e H2O, CO2 methanol glucose amylose ethanol glycerol lactic acid CO poly lact ic a cid poly ethy lene ethene plant oil coal crude oil

methane, natural gas

  c h e m ic a l e x e rg y i n M J /k g hydrogen

fossil biomass intermediates products feedstock

fossil

(14)

chemical exergy of various materials

27 0 10 20 30 40 50 60 80 100 120 140 PA 6.6 poly styr ene PET PV C poly prop ylen e poly carb onat e H2O, CO2 methanol glucose amylose ethanol glycerol lactic acid CO poly lact ic a cid poly ethy lene ethene plant oil coal crude oil

methane, natural gas

  c h e m ic a l e x e rg y i n M J /k g hydrogen

fossil biomass intermediates products feedstock

fossil

after: Philipp Frenzel, Rafaela Hillerbrand, Andreas Pfennig: Increase in energy and land use by a bio-based chemical industry. Chemical Engineering Research and Design 92 (2014 ) 2006-2015

bio-based?

chemical exergy of various materials

0 10 20 30 40 50 60 80 100 120 140 PA 6.6 poly styr ene PET PVC poly prop ylen e poly carb onat e H2O, CO2 methanol glucose amylose ethanol glycerol lactic acid CO poly lact ic a cid poly ethy lene ethene plant oil coal crude oil

methane, natural gas

  c h e m ic a l e x e rg y i n M J /k g hydrogen

fossil biomass intermediates products feedstock glucose fermentation net reaction

fossil

bio-based?

(15)

elements in chemical industry by weight

29

PE

PLA

H

O fossil raw materials

bio-based feedstock conventional polymers bio-based polymers

lignin

starch, cellulosehemicellulose glucose oleic acid natural gas crude oil coal C PET PHB water CO2 +H2-H2O -CO2 -H2O

source: Philipp Frenzel, Rafaela Hillerbrand, Andreas Pfennig: Increase in energy and land use by a bio-based chemical industry. Chemical Engineering Research and Design 92 (2014 ) 2006-2015

0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50 60 80 100 120 glucose level plant-oil level H2 c h e m ic a l e x e rg y i n M J /k g

mass fraction oxygen

Echem=-55.35xO+46.20

crude-oil level

(16)

exergy demand for different routes

0 5 10 15 20 e x e rg y d e m a n d i n M J /( k g p ro d u c t) biobased feedstock footprint hydrogen electrolysis -C O2 + H2 -H2 O -C O2 -H2 O -C O2 + H2 -H2 O -C O 2 -H 2 O -C O2 + H2 -H2 O -C O2 -H2 O +O2 direct direct glucose  glucose glucose  fatty acid glucose  crude oil fatty acid  glucose fatty acid  fatty acid fatty acid  crude oil 31

source: Philipp Frenzel, Rafaela Hillerbrand, Andreas Pfennig: Increase in energy and land use by a bio-based chemical industry. Chemical Engineering Research and Design 92 (2014 ) 2006-2015

feasible reactions

0 10 20 30 40 50 60 80 100 120 140 H2O CO2 methanol glucose ethanol ethene   c h e m ic a l e x e rg y i n M J /k g hydrogen net reaction

(17)

options for

bio-based

chemicals

33

gen. feedstock products 1 sugar cane

sugar or ethanol + CO2

ethanol ethylene

1 sugar beet sugar or ethanol + CO2

ethanol 1 oil palm plant oil 1 + 3 corn + straw ethanol + CO2 ethanol ethylene 1 corn sugar or ethanol + CO2 ethanol ethylene 3 corn straw ethanol + CO2 ethanol ethylene 1 + 3 wheat + straw ethanol + CO2

3 mixed straw ethanol + CO2

ethanol 1 rape seed plant oil 2 miscanthus/reeds ethanol + CO2 ethanol ethylene 2 wood ethanol + CO2 ethanol ethylene 0 500 1000 1500 area in m2 /cap ranges:

maximum national and world average productivity color: ■technically realized ■partly pilot-plant ■lab-values or complex in radius 50km: 200 m2/cap >600 000 t/a 400 m2/cap >300 000 t/a 600 m2/cap >200 000 t/a

conclusion

• solely third generation bio-processes not feasible

• first and second generation compete for same land area as

food

• various options available as feedstock:

sugar cane, sugar beet, corn, palm oil, miscanthus/reeds

• preferably either sugar chemistry or utilization of CO

2

• cellulose utilization is add-on benefit, but large by-prodcuts

• strong interaction:

agriculture

 food  chemistry  energy

for updated values without crop

rotation, please see later

(18)

chances, challenges

biobased chemistry: various options

bio-economy

only bio-technology

bio-economy

automatically sustainability

technology

human behavior

economics, ecologics, ethics

big chance: real circular economy

all happens in ±30 years (or it is too late)

(19)

references

37

P. Frenzel, S. Fayyaz, R. Hillerbrand, A. Pfennig: Biomass as Feedstock in the Chemical Industry – An Examination from an Exergetic Point of View Chem. Eng. Technol. 36(2) (2013) 233-240 P. Frenzel, R. Hillerbrand, A. Pfennig:

Increase in energy and land use by a bio-based chemical industry Chem. Eng. Res. Design 92 (2014) 2006-2015

P. Frenzel, R. Hillerbrand, A. Pfennig:

Exergetical Evaluation of Biobased Synthesis Pathways Polymers 6 (2014) 327-345

P. Frenzel:

Bewertung von Syntheserouten auf Basis von Exergiebilanzen Ph.D. thesis, RWTH Aachen, 2014

https://publications.rwth-aachen.de/record/464668/files/464668.pdf

Bio-Ökonomie:

Chancen, Risiken und

Blick auf das Gesamtsystem

Andreas Pfennig

Products, Environment, and Processes (PEPs) Department of Chemical Engineering

Université de Liège

www.chemeng.uliege.be/pfennig andreas.pfennig@uliege.be

Références

Documents relatifs

journal officiel du Registr e de D ialyse Péritonéale de Langue Française RDPLF www .rdplf.or g Note importante : Les figures et gra- phiques présentés dans cet

Que la femme soit du type active-indépendante ou du type pas- sive-dépendante, elle doit, pour plaire au galant Giacouo, manifester deux traits de personnalité

5.3. Global performance analysis using the Parkour The second experiment we propose aims to more broadly benchmark ACL methods’ performance in the Parkour envi- ronment, which

- Revoir partiellement les bases de données : limiter les données les plus importantes : rajouter les données qui manquent (qualification de la parcelle, niveau

The naturalness of the synthesized utterances was evaluated using the three versions of the six utterances: the natural spoken utterance, the first synthesized version

Features are labeled as follows: A, in the eastern flank of the Guaduas Syncline, the absence, facies change, and wedging of the Cimarrona Formation evidence syntectonic

performing the effort, therefore the reduction of the resistance in the blood vessels due to the circularity of blood in them, and the increase of the pumped blood amount from

(ii) The accretion of mass measured at the virial radius in the ring-like region perpendicular to the direction of the halo’s spin is ∼15 per cent larger than the one expected in