• Aucun résultat trouvé

Electrophoretic impregnation of porous anodic aluminum oxide film by silica nanoparticles

N/A
N/A
Protected

Academic year: 2021

Partager "Electrophoretic impregnation of porous anodic aluminum oxide film by silica nanoparticles"

Copied!
9
0
0

Texte intégral

(1)

To link to this article : DOI:10.1016/j.colsurfa.2012.09.011

URL :

http://dx.doi.org/10.1016/j.colsurfa.2012.09.011

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 8726

To cite this version:

Fori, Benoit and Taberna, Pierre-Louis and Arurault, Laurent and Bonino,

Jean-Pierre and Gazeau, Céline and Bares, Jean-Pierre Electrophoretic impregnation of

porous anodic aluminum oxide film by silica nanoparticles. (2012) Colloids and

Surfaces A: Physicochemical and Engineering Aspects, vol. 415. pp. 187-194.

ISSN 0927-7757

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers

and makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes.diff.inp-toulouse.fr

!

(2)

Electrophoretic

impregnation

of

porous

anodic

aluminum

oxide

film

by

silica

nanoparticles

Benoit

Fori

a,b

,

Pierre-Louis

Taberna

a,∗

,

Laurent

Arurault

a

,

Jean-Pierre

Bonino

a

,

Céline

Gazeau

b

,

Pierre

Bares

b

aUniversitédeToulouse,CIRIMATUPS-CNRS,118routedeNarbonne,31062ToulouseCedex9,France bMecaprotecIndustries,34BoulevardJoffrery,31605MuretCedex,France

h

i

g

h

l

i

g

h

t

s

◮ Poresofananodicfilmwere com-pletely filled by electrophoretic impregnation.

◮ Electric field and dispersion con-ductivity control the impregnation depth.

◮ Progressivefillingfromthebottomof porestothetop.

g

r

a

p

h

i

c

a

l

a

b

s

t

r

a

c

t

Keywords: Electrophoreticdeposition Aluminum Anodicfilm Silicasuspension

a

b

s

t

r

a

c

t

Inthispaper,itisproposedtostudythedepositionofnanoparticlesbyelectrophoreticdeposition(EPD) insideaporousanodicaluminumoxidefilm.Despitethepresenceofahighlyresistivebarrierlayeratthe metal-anodicfilminterface,porousanodicfilmsonAA1050Aweresuccessfullyfilledby16-nm,surface modifiedsilicaparticles.Duringthisstudyitwasshownthatboththecolloidalsuspensionconductivity andtheappliedelectricfielddrivethepenetrationintotheporousfilm.FEG-SEMobservationsshowed thatlarge(130-nmdiameter),linearporesof10mminlengthcanbecompletelyfilledin1min.These resultsattestthatporousanodicfilmscanbeefficientlyfilledwithnanoparticlesbyEPDdespitethe presenceofthebarrierlayer.

1. Introduction

Nanomaterials in the form of nanoparticles, nanowires and nanotubesare themaincomponents intheburgeoningfield of nanotechnology. Duetotheirphysical andchemical properties, thesenanoelementshavethepotentialforuseinapplicationssuch asmemorydevices[1],chemicalsensors[2],medicalscience[3] andenergystorage[4].Onepromisingtechniquetoassemblethese

∗ Correspondingauthor.Tel.:+33561556106;fax:+33561556163. E-mailaddress:taberna@chimie.ups-tlse.fr(P.-L.Taberna).

nanoelementsovermacroscopiclengthscalesistheelectrophoretic deposition(EPD)[5].EPDisawell-established,versatile,low-cost methodtodepositceramicandmetalfilmsonaconducting sub-strate. This process deposits directly theend product avoiding chemicalreactionsatthesurfaceofthesubstrate.However,theuse ofEPDinwaterisveryrestrictedduetotheelectrolysisofwater whichoccursforlowvoltagesandcausestheevolutionofhydrogen andoxygengasesattheelectrodeswhichcouldaffectthequality ofthedepositsformed[6].

AnotheradvantageisthatEPDcanbeusedaswellonflatsurface asoncomplexsurface.Forexample,Bazinetal.depositedsilica nanoparticlesbyEPDonnanostructuredcopperelectrodestoform

(3)

sensors[7].Likewisenumerousresearchers[8–10]havestudiedthe synthesisandthepreparationofoxidenanorodsandnanotubesby EPDusingananodicaluminumoxidemembraneastemplateand fixedontoametalfoil.Thistechniqueconsiststofillporesofthe membranebyEPDandthentochemicallyremovethemembrane. Theresultingmaterialsofferasignificantlylargersurfaceareathan thatoffilmsorbulkmaterialandthusfinddiverseapplicationin nanotechnology(sensors,batteries,SOFC,etc.).

Incontrast,veryfewstudieshavebeendevotedtothe depo-sition ofnanoparticles intounmodified porousanodic filmsi.e. includingporousandcompactlayersstillsupportedonaluminum substrate.Seoetal.[11]reportedthatporescanbepartiallyfilled bynanoparticlesusingthedip-coatingprocess.Butonlyaslight amountofnanoparticlesweredepositedatthebottomofpores withthis method.Asaresultthequantityofnanoparticlesinto poresistoolowtofillthemcompletely.Becausethemigrationof chargedparticlestowardtheporebottomispromotedbyapplying anelectricfield,theEPDtechniqueshouldincreasethedensityof particlesincomparisonwiththedip-coatingprocess.

Todemonstratethefeasibilityofsuchprocess,silica nanopar-ticleswerechosenasmodelchargedparticles.EPDofsilicaisan easyprocessbecausesilicasuspensionsarecharacterizedby spher-icalparticlesandahighnegativezetapotential,providing good stabilityofthesuspensionandefficientmigration[7,12].Another advantageisthatsilicasurfacecanbefunctionalizedwithvarious organicmolecules,providingnewpropertiestoparticles[13].

To our knowledge, Kamada et al. [14] studied for the first time theinsertionof SiO2 nanoparticlesintoporesof anodized

aluminumbyelectrophoreticdeposition.However,theyusedan aqueoussilicasolutionandtheircharacterizations(e.g.EPMA pro-files)showedanuncompletedfillinginthepores.

Inthispaperweproposedtodeeplystudytheelectrophoretic deposition of silica nanoparticles into pores of an unmodified anodicfilmof10mmofthickness.Itisgenerallyassumedthatthe presenceof aconductingsurface increasestheefficiencyofthe EPD.Completelyfillingporousanodicfilmappearsthereforeasa challengebecauseoftheresistivebarrierlayerbelowthepores. Furthermoreone ofourwills in thisworkis theelucidation of themechanismofparticlemigrationanddepositionintothepores whichisveryfewdiscussedintotheliterature.Thusinafirststep, analuminumporousanodicfilmsuitabletotheelectrophoretic impregnationwillbeprepared.Inasecondsteptheinfluenceof theappliedvoltageandthesuspensionconductivityonthepores fillingbygraftedSiO2particlesusingEPDwillbestudied.

2. Materialandmethods 2.1. Preparationoftheanodicfilm

Tofacilitatetheinsertionofparticlesinsidepores,theporosity oftheanodicfilmshastoexhibitlowtortuosityandpore diam-eterlargerthanthesilicaparticleone(15nm).1050Aaluminum alloy(chemicalcompositioninweightpercent:99.5%Al,<0.40% Fe,<0.25%Si,<0.05%Cu)wasusedasasubstratetogetlinearpores perpendiculartotheinitialmetalsurface[15].Sincelargepores (averageporediameter>100nm)arerequired,aphosphoricacid basedelectrolytewaschosenasanodizingbath[16].

Firstthealloysheet(20mm×20mm×1mm)wasdegreased withethanol.SecondlythesamplewasetchedinNaOH(0.5gL−1)

aqueoussolutionat40◦Cfor5minandthenneutralizedinHNO 3

(25vol%)atroomtemperaturefor2min;waterusedtomakethese solutionsexhibitaresistivityof10cm−1.Thirdlythealuminum

sheetwasusedasanodeandaleadplate(3mm×40mm×40mm) ascounter-electrodeintheelectrochemicalcell.Theanodizingwas runinthegalvanostaticmode(TDK-LambdaGEN300-5)usinga

temperaturecontrolledphosphoricacidsolution(0.4molL−1).The

sampleswererinsedindeionizedwater(10kcm−1)immediately

attheendofeachstep.

2.2. Electrophoreticimpregnation

A commercial colloidal suspension of silica nanoparticles (15nm)inisopropylalcohol(ABCR,Germany)wasused.This sus-pensionwasdilutedwithisopropylalcohol(CarloErba,Italy)to obtaina concentrationof about15gL−1 and vigorouslystirred.

FunctionalizationofsilicawasachievedfollowingCousiniéetal. [17]. 3ml of aminopropyltrimethoxysilane (APTMS) was added dropwisein100mLof thedilutedsuspension.Themixturewas then vigorously stirred for three days and then diluted 100 timeswithisopropylalcoholleadingtoaconcentrationofabout 0.15gL−1.1–15mLofanI

2–acetonemixture(6gL−1)wasadded

totheas-preparedsuspension[18].Inordertocarryoutthe elec-trophoretic deposition the anodized aluminum was set as the cathode;theleadfoil,astheanode.Thesubstratewasdriedat ambienttemperatureafterexperiment.

2.3. Characterizations

Afieldemissiongunscanningelectronmicroscope(FEG-SEM, JEOLJSM6700F)wasusedtoobservethemicrostructureofthe coatings.Theaverageimpregnationdepthwasmeasuredonthe FEG-SEMviewsusingthefreesoftwareImageJ.

MALVERNNANOSIZERZS90wasusedforzetapotential mea-surements and Stokes particle diameter measurements using dynamiclightscattering(DLS).

3. Resultsanddiscussion 3.1. Tuningofthefilmporosity

Thediameterofthecommercialsilicananoparticlesusedfor EPDisannouncedtobeequalto15nm.Itseemsobviousthatthe porehastoexhibitalargerdiameterthanparticlestoallowtheir insertion.Thereforeananodicfilmwithporelargerthan100nm shouldbesuitablefortheelectrophoreticimpregnation.So oper-atingparameters(temperature,currentdensity,duration)ofthe anodizingarestudiedinordertoadequatelytunethe characteris-ticsoftheanodicfilmonthealuminiumsubstrate.

3.1.1. Influenceofthetemperature

Tostudytheinfluenceoftheelectrolytetemperature,the cur-rentdensitywasfixedat1.5Adm−2andtheanodizationtimeat

2400s.Thesampleswereanodizedat5◦C,15C,25Cand35C.

Fig.1ashowstheinfluenceoftheelectrolytetemperatureon theporediameterandtheporedensity.Between5◦Cand35C,the

porediameterandtheporedensityincreasewithelectrolyte tem-perature.At5◦Ctheporeshaveanaveragediameterof110±10nm

and the pore density is equal to (8.9±5.0)×1012poresm−2

whereastheporediameteris205±10nmandtheporedensity is(1.7±0.5)×1013poresm−2at35C.

Theincreaseoftheelectrolytetemperaturetypicallyincreases reactionkinetics.Theanodicfilmgrowthoccursthroughtwomain oppositeprocesses:analuminumelectro-oxidationaccordingto reaction(1);achemicaldissolution(reaction(2))oftheanodicfilm bytheacidicelectrolyte.

2Al+3H2O→ Al2O3·xH2O+6H++6e− (1)

Al2O3·xH2O+6H+→2Al3++(3+x)H2O (2)

So,theincreaseoftheelectrolytetemperatureincreasesthe dis-solutionrateandleadstotheformationofwiderpores[19].Also,

(4)

Fig.1.Porediameter(N),poredensity(),experimentalthickness()andtheoreticalthickness( )versusthetemperature(a,b)andthecurrentdensity(c,d)(duration: 2400s).

theporedensitiesofthis studyareclosetothevalues obtained undersimilaroperatingconditionsandpresentedinotherworks [20,21].

UsuallythefilmthicknessispredictedthroughEq.(3),basedon theFaraday’slaw:

h= Mjt

nF (3)

where h is theheight of the anodic film, M the molarweight of the anodic film (M=102gmol−1 for Al

2O3), j the current

density (j=1.5Adm−2 in ourconditions),t the anodizing

dura-tion (t=2400s in our conditions), n the number of electron exchanged during the reaction (n=6), F the Faraday constant (F=96485Cmol−1)andthespecificdensityof theanodicfilm

(=3.97gcm−3).Accordingtothisrelation,thepredictedthickness

shouldbeconstant(hereabout16mm)whatevertheelectrolyte temperature.However,Fig.1b revealsthatthethicknessofthe anodic film,measuredby SEM,increases from10.6±0.1mmto 14.9±0.1mmbetween5◦Cand25◦Candthendecreases.Similar behaviorwasobtainedbyGoueffonetal.[21]andShihandTzou [22].

Duringanodizingacompetitionbetweentheelectrochemical growth of the film (reaction (1)) and its chemical dissolution by theacidic electrolyteoccurs (reaction(2)).Thetemperature influencesachemicalreactionmorethananelectrochemicalone. Sothechangeofthethicknessversustheelectrolytetemperature ismainlyduetothedissolutionreaction,whichisnotconsidered in Faraday’s law. When the temperature is too high the pore diameterissolargethattheporewallsdisappearleadingtopore

interconnection,mechanicalfragilityandfinallytocollapseofthe filmthickness.

Inordertopreparea suitableanodicfilmforelectrophoretic impregnation,anelectrolytetemperatureof25◦Cwasused.This

temperaturegiveslargepores(about150nm)andsimultaneously avoidscollapseofthefilm.

3.1.2. Influenceofthecurrentdensity

This study was performed at 25◦C and an anodizing time

of2400s.Thesampleswereanodizedat1.0Adm−2,1.2Adm−2,

1.5Adm−2 and2.0Adm−2.Thevoltagemeasuredinsteady-state

conditions of the anodizationwas respectively of 121V, 127V, 132Vand141V.

Fig.1cshowstheevolutionoftheporediameterandthepore densityinthe1.0–2.0Adm−2range.Theporediameterincreases

withthecurrentdensity,whereastheporedensityremains con-stant.SimilarbehaviorswereobtainedbyO’SullivanandWood[23] andOnoandMasuko[16].Theincreaseoftheporediametercan beexplainedbyfield-assisteddissolutionoftheanodicfilm.Atthe baseofthepore,thedensityofthecurrentlinesincreasesleading toalocaltemperatureincreasewhichpromotesthedissolutionof theanodicfilmandthustheincreaseoftheporediameter[23].

Fig.1dhighlightsalinearcorrelationbetweenthethicknessand thecurrentdensity.Thestraightlinedoesnotpassbytheoriginin disagreementwithFaraday’slaw.Indeed atlowcurrentdensity (<0.3Adm−2)thedissolutionreactiondominateselectrochemical

filmgrowth.

Acurrentdensityof2.0Adm−2 gives largerporesattherisk

(5)

Fig.2. Thicknessoftheanodicfilmversusduration(T=25◦

C,j=1.5Adm−2).

tonon-homogenousporousoxidelayerincreases.Soinorderto achieveaporousanodicfilmsuitabletotheelectrophoretic impreg-nation,acurrentdensityof1.5Adm−2wasused.

3.1.3. Characteristicsofthestandardanodicfilm

Thethicknessoftheanodicfilmwasmeasuredversus anodiza-tion duration. It appears that it is proportional to duration as expectedwiththeFaraday’slaw.Inordertostudythemigration oftheparticlesintothepores,it hasbeendecidedtopreparea thickanodicfilmof10mm.AccordingtoFig.2,durationof29min isrequiredtoobtainthisthicknessandconsequentlytoformthe standardanodicfilm.Tosumup,anodizingisperformedonAA 1050inthefollowingoperationalconditions:galvanostaticmode (1.5Adm−2)in0.4molL−1phosphoricacidelectrolyteat25Cfor

29min.

Fig.4. FEG-SEMviewofthesilicananoparticles.

Thestandardfilmshavelargelinearporesmakingthem suit-ableforelectrophoreticimpregnation.FEG-SEMplanviewofthe as-preparedanodicfilmshowsthattheporosityiswellformed,the porediameterbeing130±10nm(Fig.3a).LeCozetal.prepared anodicfilmwithporediameterofthesameorderofmagnitude [24].Thecrosssectionalview(Fig.3b)confirmsthattheporesare orthogonaltotheAAsubstrateandthatthefilmhasathicknessof 10±1mm.Thebarrierlayerthicknessis130±5nm(Fig.3c)which isconsistentwithVrublevskyetal.[25].

3.2. Preparationofthesilicacolloidalsuspension

Electrophoresiscanbeperformedinaqueousororganicsolvent. Sincehigherelectricfieldsarereachableinorganicsolvents, iso-propylalcoholwaschosen.Silicasuspensionswereusedbecause theyhave highstabilityand canbefunctionalizedeasilydueto theirhighsurfacereactivity.IndeedSi–OHgroupsattheparticles

(6)

Fig.5. FEG-SEMcrosssectionalviewofthetop(a)andthebottom(b)oftheporousanodicfilmaftertheimmersionintothesuspension.

surfacecanformcovalentbondswithorganicmoleculeshaving alkoxysilaneorchlorosilanegroups.Theorganicmoleculeshave otherorganicfunctionswhosephysicalor/andchemicalproperties canbetransmittedtothesilica particle.Duringelectrophoresis, theanodizedaluminumwasthecathodefortworeasons.Firstly thealuminumfoilcanbeover-oxidizedifusedasananodethusit canmodifyitsmorphology[26].Secondly,byapplyingacathodic polarization,thebarrierlayeroftheanodicfilmactsasann-type semi-conductor, so current can pass through [27]. Electingthe cathodicmodefortheelectrophoreticdeposition,thesilica par-ticlesmusthavepositivesurfacechargeinordertomigratetoward thecathode.

A commercial colloidalsuspension of silica nanoparticles in isopropanol(SiO2-COM)wasused.Thenanoparticlesexhibitan

averagediameterof13nm(Fig.4).Theinitialzetapotentialwas measuredat−40±10mV.Togetapositive potentialweuseda two-step functionalization. Firstlyaminopropyltrimethoxysilane

(APTMS)wasgraftedontosilicasurface.Thisorganicspecieshas apositivelychargedaminegroup[13,17].SecondlyanI2–acetone

mixturewasaddedtothesuspension.Oneoftheadvantagesofthis methodistocreatesomepositiveschargesinorganicmedia with-outaddingwater[18].AcetonegeneratesH+ionsbyaketo-enol

reactioncatalyzedbytheoxidesurface(Eqs.(4)and(5)).

CH3COCH3↔ CH3C(OH)CH2 (4)

CH3C(OH)CH2+I2→CH3COCH2I+H++I− (5)

TheH+ soformedareadsorbedonthesilicaparticlesand/or

reacts with the amino group of the ligands; both of these phenomenamaketheparticlespositivelycharged.Thenthe func-tionalizedsilica suspension(SiO2-FUNC)shows azetapotential

of +30±10mV.The measuredaveragediameterwas16±1nm. Thisdiameterisclosetothediameterofthecommercial suspen-sionconfirmingthatnofurtheraggregationwasnoticed.Moreover

Fig.6.FEG-SEMcrosssectionalviewsoftheporousanodicfilmaftertheelectrophoresisprocessusing33Vcm−1(top(a)andbottom(c)ofthepores)and200Vcm−1(top

(7)

thediameteris wellbelow thealuminum oxidepore diameter (130±10nm).

3.3. Electrophoreticimpregnation 3.3.1. Impregnationwithoutpolarization

Forcomparisonanimpregnationwasrealizedbydip-coating,it istosaywithoutanyelectricfield.Thesubstratewassoakedintothe colloidalsuspensionfor5minandthenwithdrawnfromthesilica suspension.Fig.5showsFEG-SEMcrosssectionalviewofthetop andthebottomoftheanodicfilmafterthedipping.These micro-graphsshowthatjustafewparticlesarepresentonthetopofthe filmbutnoparticlesareinsidethepores.

Duringdrying,solventevaporationinducesaconvectivemotion of the particles toward the surface of the anodic film where adsorptionoccurs.Simultaneouslyanincreaseoftheparticle con-centration occursat thesolvent–filminterface. Above a critical concentration,aggregationoccursandtheparticlesdepositonto thefilmexplainingthepresenceofparticlesatthetopofthepores. Thisexperimentrevealsthatsimpleimmersiondoesnotpermit fillingthepores.

3.3.2. Influenceoftheelectricfield

Several electric fields (33Vcm−1, 66Vcm−1, 133Vcm−1,

200Vcm−1)wereappliedfor5mininordertostudyitsinfluence

on the electrophoretic impregnation (suspension conductivity: 74mScm−1).FEG-SEMcrosssectionalviewsrevealsthatelectric fieldimprovesinsertionofparticlesinsidepores(Fig.6).Whenan electricfieldof33Vcm−1isapplied,particlesdepositonlyatthe

topofthepores,whereasparticlesarepresentinsideporeswithan electricfieldof200Vcm−1.Thechangesoftheaverage

impregna-tiondepthversustheappliedvoltagearesummarizedinFig.7.No particlesaredepositedatthebottomofporeshowever.

Fig.7. Impregnationdepthversustheappliedvoltage(suspensionconductivity: 75mScm−1,duration:5min).

3.3.3. Influenceofthesuspensionconductivity

Theinfluenceofthesuspensionconductivitywasalsostudied usinganelectricfieldof200Vcm−1for5min.Tochangethe

con-ductivitydifferentvolumesofanI2–acetonemixture(6gL−1)were

addedtothesuspension.FEG-SEMcrosssectionalviewsshowthat lowsuspensionconductivity(40mScm−1)leadstotheformation ofadepositatthesurfaceofthepores(Fig.8aandc)whereasan increaseofthesuspensionconductivityallowscompletefillingof thepores(Fig.11bandd).Thechangesofthepenetrationdepth versusthesuspensionconductivityaresummarizedinFig.9.The saturationoftheimpregnationdepthforconductivitieshigherthan 120mScm−1correspondstothecompletefillingoftheanodicfilm.

Fig.8.FEG-SEMcrosssectionalviewsoftheporousanodicfilmaftertheelectrophoresisprocessusing200Vcm−1during5minwithtwodifferentsuspensionconductivity:

(8)

Fig.9.Impregnationdepthversusthesuspensionconductivity(200Vcm−1,

dura-tion:5min).

3.3.4. Studyoftheelectrophoreticporefilling

Tofill entirelythepores,anelectric fieldof 200Vcm−1 was

appliedfor5minwithasuspensionconductivityof120mScm−1. Theconductivitywasmeasuredbeforeandafterelectrophoresis. Initiallyitwasequalto120mScm−1anddecreasesto95mScm−1 after theimpregnation. The current was also measuredduring electrophoresis(Fig.10).Atthebeginningoftheexperimentthe currentdensitydecreasesthenincreasesalittlebit(orstabilizes) beforeendingupdecreasingagain.Sincetheconductivityofthe suspensiondoesnotchangemorethan20%,thefirstdecreaseof the current (between 0sand 50s) probably corresponds toan increase ofthe resistivityofthefilm due totheaggregationof

Fig.10.Currentdensityversusdepositiontimefordepositionofsilicaparticlesat 200Vcm−1during5min(suspensionconductivity:120mScm−1).

particlesatthesurfaceandinsidethepores.Itisreportedinthe literaturethatthisresistancedepositiscausedbytheformation ofaniondepletionlayerinthedeposit[28]andmasstransport limitations through the growing deposit layer [29]. The small increase(orstabilization)between50sand100scanbeduetothe dielectricbreakdownoftheinitialinsulatinganodicfilm.

Inordertoknowthechronologyofthedeposit,FEG-SEM micro-graphies were made at different electrophoresis times. Fig. 11 revealsthatparticlesarepresentonlyatthebottomofthepores after15swhereas poresarecompletelyfilled byparticlesafter 1min.Atthebeginningoftheelectrophoresis,particlesgotothe bottomoftheporesandthenprogressivelyfilltheporesentirely.

Fig.11.FEG-SEMcrosssectionalviewsoftheporousanodicfilmaftertheelectrophoresisprocessusing200Vcm−1during15s(top(a)andbottom(c)ofthepores)and60s

(9)

Duringelectrophoresisthecurrentlinespassthroughthe bar-rierlayerandnotthroughthetooresistiveporewalls.Thereforethe particlesgotothebottomoftheporesandfilltheporesasthe elec-trophoresisprocesscontinues.Oncetheporesarefilled,particles depositonthesurface.

As shown in Figs. 6 and 7 an increase of the electric field improvestheimpregnationdepthofparticles.Theseobservations revealthatahighelectricfieldislikelyneededduring electrophore-sistoavoidaggregationofparticlesatthetopofpores.Animportant electricfieldisrequiredherebecauseofthepresenceoftheresistive barrierlayeratthemetal-porousanodicfilminterface.The migra-tionspeedoftheparticlesisdescribedbythefollowingequation:

v

=E (6)

with

v

thespeed oftheparticles (ms−1), the electrophoretic mobility of the particles (m2s−1V−1) and E the electric field

(Vm−1). According to Eq. (6) an increase of the electric field

enhancesthedrivingforcesofparticlesandsofacilitatestheir inser-tioninsidepores.

Anincrease oftheconductivityimprovestheelectrophoretic impregnationtoo(Figs.8and9).Theseresultscanbeexplainedby theestablishmentofahigherpotentialgradientthroughtheanodic film[30].Theprincipaldriving forceofparticles forEPD isthe appliedelectricfield.Sohighpotentialgradientacrosstheanodic filmisrequiredtoallowtheinsertionofparticlesinsidepores.If thesuspensionhasalow conductivity,thepotentialgradientis mainlylocatedintotheresistivesuspensionandparticlescannot enterinsideporesduetotheweakpotentialgradientintheanodic filmregion.Soanincreaseofthesuspensionconductivitytransfers thepotentialgradientfromthebulksuspensiontothebarrierlayer regionbyreducingthepotentialdropinthesuspension.Therefore anincreaseoftheconductivityconcentratestheelectricfield in theanodicfilmmakinginsertionoftheparticleinsidepores eas-ier.Moreoveranincreaseofthesuspensionconductivitypromotes thethinningoftheelectricaldoublelayeratporewallsenhancing masstransportthroughthepore[31].Thereforeitappearsthrough theseresultsthattheconductivityislikelytobeoneofthemost importantparametertofillporousanodicfilmbyEPD.

4. Conclusion

Electrophoreticimpregnationofporousanodicfilmformedin phosphoricacidbasedelectrolytewasperformedinanorganicSiO2

colloidalsuspension.Indeedalmostallporeshavebeencompletely filledbygraftedAPTMS-SiO2.Theelectricfieldandthesuspension

conductivityaretwokeyfactorsthatcontroltheimpregnation.At thebeginningofEPD,particlesgotothebottomofporeswhich continuetofillprogressively.TheseresultsattestthatEPDcanbe usedtofillsuccessfullyporousanodicfilmdespitethepresenceof theresistivebarrierlayeratthemetal–oxideinterface.

Acknowledgements

ThisworkwasfinanciallysupportedbyMECAPROTEC Indus-tries. We thank B. Daffos and P. Lenormand for the FEG-SEM pictures.

References

[1]T.Rueckes,K.Kim,E.Joselevich,G.Y.Tseng,C.L.Cheung,C.M.Liebe,Carbon nanotube-basednonvolatilerandomaccessmemoryformolecularcomputing, Science289(2000)94–97.

[2]C.Li,D.Zhang,X.Liu,S.Han,T.Tang,J.Han,C.Zhoub,In2O3nanowiresas

chemicalsensors,Appl.Phys.Lett.82(2003)1613–1615.

[3]L.R.Hirsch,R.J.Stafford,J.A.Bankson,S.R.Sershen,B.Rivera,R.E.Price,J.D. Hazle,N.J.Halas,J.L.West,Nanoshell-mediatednear-infraredthermaltherapy oftumorsundermagneticresonanceguidance,Proc.Natl.Acad.Sci.U.S.A.100 (2003)13549–13554.

[4]P.L.Taberna,S.Mitra,P.Poizot,P.Simon,J.M.Tarascon,Highratecapabilities Fe3O4-basedCunano-architecturedelectrodesforlithium-ionbattery

applica-tions,Nat.Mater.5(2006)567–573.

[5] L.Besra,M.Liu,Areviewonfundamentalsandapplicationsofelectrophoretic deposition(EPD),Prog.Mater.Sci.52(2006)1–61.

[6] L.Besra,T.Uchikoshi,T.S.Suzuki,Y.Sakka,Applicationofconstantcurrent pulsetosuppressbubbleincorporationandcontroldepositmorphology dur-ingaqueouselectrophoreticdeposition(EPD),J.Eur.Ceram.Soc.29(2009) 1837–1845.

[7] L.Bazin,M.Gressier,P.L.Taberna,M.J.Menu,P.Simon,Electrophoretic silica-coatingprocessonanano-structuredcopperelectrode,Chem.Commun.(2008) 5004–5006.

[8]G.Cao,D.Liu,Template-basedsynthesisofnanorod,nanowire,andnanotube arrays,Adv.ColloidInterfaceSci.136(2008)45–64.

[9]A. Nourmohammadi, M. Bahrevar, M. Hietschold, Template-based elec-trophoreticdeposition ofperovskite PZTnanotubes,J. AlloysCompd.473 (2009)467–472.

[10] E.Gultepe,D.Nagesha,L.Menon,High-throughputassemblyofnanoelements innanoporousaluminatemplates,Appl.Phys.Lett.90(2007)163119. [11] I.Seo,C.W.Kwon,H.H.Lee,Y.S.Kim,K.B.Kim,T.S.Yoon,Completely

fill-ing anodicaluminumoxidewithmaghemitenanoparticlesbydip-coating and their magnetic properties, Electrochem. Solid-State Lett. 12 (2009) K59–K62.

[12] K. Grandfield, I. Zhitomirsky, Electrophoretic deposition of composite hydroxyapatite–silica–chitosancoatings,Mater.Charact.59(2008)61–67. [13]Z.Csogör,M.Nacken,M.Sameti,C.M.Lehr,H.Schmidt,Modifiedsilicaparticles

forgenedelivery,Mater.Sci.Eng.C23(2003)93–97.

[14] K.Kamada,H.Fukuda,K.Maehara,Y.Yoshida,M.Nakai,S.Hasuo,Y. Mat-sumoto,InsertionsofSiO2nanoparticlesintoporesofanodizedaluminumby

electrophoreticdepositioninaqueoussystem,Electrochem.Solid-StateLett.7 (2004)B25–B28.

[15] S.Garcia-Vergara,K.ElKhazmi,P.Skeldon,G.E.Thompson,Influenceofcopper onthemorphologyofporousanodicalumina,Corros.Sci.48(2006)2937–2946. [16]S.Ono,N.Masuko,Evaluationofporediameterofanodicporousfilmsformed

onaluminum,Surf.Coat.Technol.169–170(2003)139–142.

[17] S.Cousinié,M.Gressier,P.Alphonse,M.J.Menu,Silica-basednanohybrids containingdipyridine,urethanorureaderivatives,Chem.Mater.19(2007) 6492–6503.

[18]I. Zhitomirsky, Cathodic electrophoreticdeposition of diamondparticles, Mater.Lett.37(1998)72–78.

[19] T.Aerts,T.Dimogerontakis,I.DeGraeve,J.Fransaer,H.Terryn,Influenceofthe anodizingtemperatureontheporosityandthemechanicalpropertiesofthe porousanodicoxidefilm,Surf.Coat.Technol.201(2007)7310–7317. [20] A. Tamburrano,B.De Vivo,M.Höijer,L. Arurault,V.Tucci,S.Fontorbes,

P. Lamberti, V. Vilar, B. Daffos, M.S. Sarto,Effect of electricfield polar-ization andtemperatureontheeffectivepermittivityandconductivityof porousanodicaluminiumoxidemembranes,Microelectron.Eng.88(2011) 3338–3346.

[21] Y.Goueffon,L.Arurault,S.Fontorbes,C.Mabru,C.Tonon,P.Guigue,Chemical characteristics,mechanicalandthermo-opticalpropertiesofblackanodicfilms preparedon7175aluminiumalloyforspaceapplications,Mater.Chem.Phys. 120(2010)636–642.

[22]H.Shih,S.Tzou,Studyofanodicoxidationofaluminuminmixedacidusinga pulsedcurrent,Surf.Coat.Technol.124(2000)278–285.

[23]J.O’Sullivan,G.Wood,Themorphologyandmechanismofformationofporous anodicfilmsonaluminium,Proc.Roy.Soc.Lond.A317(1970)511–543. [24]F.LeCoz,L.Arurault,L.Datas,Chemicalanalysisofasinglebasiccellofporous

anodicaluminiumoxidetemplate,Mater.Charact.61(2010)283–288. [25]I. Vrublevsky,V.Parkoun,J.Schreckenbach,Analysisofporousoxidefilm

growthonaluminuminphosphoricacidusingre-anodizingtechnique,Appl. Surf.Sci.242(2005)333–338.

[26]K.Kamada,M.Mukai,Y.Matsumoto,Electrophoreticdepositionassistedby solubleanode,Mater.Lett.57(2003)2348–2351.

[27]L.Arurault,G.Zamora,V.Vilar,P.Winterton,R.Bes,Electricalbehaviour, char-acteristicsandpropertiesofanodicaluminiumoxidefilmscolouredbynickel electrodeposition,J.Mater.Sci45(2010)2611–2618.

[28]J.J.Tassel,C.A.Randall,Roleofiondepletionintheelecrophoreticdeposition ofaluminapowderfromethanolwithincreasingquantitiesofHCl,J.Mater.Sci 41(2006)8031–8046.

[29]N.Koura,T.Tsukamoto,S.Hiromasa,T.Hotta,Preparationofvariousoxide filmsbyanelectrophoreticdepositionmethod:astudyofthemechanism,Jpn. J.Appl.Phys.34(1995)1643–1647.

[30] L.Stappers,L.Zhang,O.VanderBiest,J.Fransaer,Theeffectofelectrolyte conductivityonelectrophoreticdeposition,J.ColloidInterfaceSci.328(2008) 436–446.

[31]G.Anné,B.Neirinck,K.Vanmeensel,O.VanderBiest,J.Vleugels,Originofthe potentialdropoverthedepositduringelectrophoreticdeposition,J.Am.Ceram. Soc.89(2006)823–828.

Figure

Fig. 1. Pore diameter (N), pore density (), experimental thickness () and theoretical thickness ( ) versus the temperature (a, b) and the current density (c, d) (duration:
Fig. 4. FEG-SEM view of the silica nanoparticles.
Fig. 5. FEG-SEM cross sectional view of the top (a) and the bottom (b) of the porous anodic film after the immersion into the suspension.
Fig. 8. FEG-SEM cross sectional views of the porous anodic film after the electrophoresis process using 200 V cm −1 during 5 min with two different suspension conductivity:
+2

Références

Documents relatifs

36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics,

In this work, we have developed a quadrotor helicopter that is capable of fully autonomous exploration in unstruc- tured and unknown indoor environments without a prior map,

L’algèbre de Temperley-Lieb diluée joue un rôle similaire pour des modèles statistiques dilués, par exemple un modèle sur réseau où certains sites peuvent être vides ;

4, we present the positions of the geomagnetic pole (as determined only from the n = 1 dipole field coefficients) and the magnetic dip pole (where inclination I is vertical,

Similarly for vertical devices the contact mode and the relation between the metal work functions have been preserved; however the linear behavior has been obtained, in principle

For the damped wave equation on a compact manifold with continuous damp- ings, the geometric control condition is necessary and sufficient for uniform stabilisation.. We also propose

Base on these four basic principles, the assessment of natural resources limitations on food production can be formulated into an optimization model, with the

shares common regulation and environmental requirements, and which occupies a similar niche. Do the metabolic capabilities associated to the trait lead to