The Science, development, and commercialization of postharvest biocontrol products

Download (0)

Full text

(1)

The

science,

development,

and

commercialization

of

postharvest

biocontrol

products

Samir

Droby

a,

*

,

Michael

Wisniewski

b

,

Neus

Teixidó

c

,

Davide

Spadaro

d

,

M.

Haissam

Jijakli

e

aDept.PostharvestScience,InstituteofPostharvestandFoodSciences,ARO,TheVolcaniCenter,P.O.Box6,BetDagan50250,Israel b

USDA-ARS,AppalachianFruitResearchStation,Kearneysville,WV25430,USA c

IRTA,XaRTA-Postharvest,EdificiFRUITCENTRE,ParcCientíficiTecnològicAgroalimentarideLleida,25003Lleida,Catalonia,Spain d

Dept.Agricultural,ForestryandFoodSciences(DISAFA)andAGROINNOVACentreofCompetencefortheInnovationintheAgroenvironmentalSector, UniversityofTorino,LargoBraccini2,10095Grugliasco(TO),Italy

e

IntegratedandUrbanPlantPathologyLaboratory,GemblouxAgro-BioTech,ULg,PassagedesDéportés,2,5030Gembloux,Belgium

ARTICLE INFO Articlehistory:

Received10December2015

Receivedinrevisedform23March2016 Accepted12April2016

Availableonline18April2016 Keywords: Antagonists Biologicalcontrol Biopesticide Microbiome Postharvest ABSTRACT

Postharvestbiologicalcontrolagentsasaviablealternativetotheuseofsyntheticchemicalshavebeen thefocusofconsiderableresearchforthelast30 yearsbymanyscientistsandseveralcommercial companiesworldwide.Severalantagonistsofpostharvestpathogenshavebeenidentifiedandtestedin laboratory,semi-commercial,andcommercialsettingsandweredevelopedintocommercialproducts. Thediscoveryanddevelopmentoftheseantagonistsintoaproductfollowedaparadigminwhichasingle antagonistisolatedfromonecommoditywasalsoexpectedtobeeffectiveonothercommoditiesthat varyintheirgeneticbackground,physiology,postharvesthandling,andsusceptibilitytopathogens.In mostcases,productdevelopmentwassuccessfullyachievedbuttheirfullcommercialpotentialwasnot realized.Thelowsuccessrateofpostharvestbiocontrolproductshasbeenattributedtoseveralproblems, includingdifficultiesinmassproductionandformulationoftheantagonist,thephysiologicalstatusof theharvestedcommodityanditssusceptibilitytospecificpathogens.Allthesefactorsplayedamajorrole inthereducedandinconsistentperformanceofthebiocontrolproductwhenusedundercommercial conditions.Althoughmanystudieshavebeenconductedonthemodeofactionofpostharvestmicrobial antagonists,ourunderstandingisstillveryincomplete.Inthisregard,asystemsapproach,thattakesinto accountallthecomponentsofthebiocontrolsystem,mayrepresentthebestapproachtoinvestigating thenetworkofinteractionsthatexist.Verylittleisknownabouttheoveralldiversityandcompositionof microbialcommunitiesonharvestedproduceandhowthesecommunitiesvaryacrossproducetypes, theirfunction,thefactorsthatinfluencethecompositionofthemicrobiotaafterharvestandduring storage, and the distribution of individual taxa.In light of the progressmade in recent years in metagenomictechnologies,thistechnologyshouldbeusedtocharacterizethecompositionofmicrobial communitiesonfruitandvegetables.Informationonthedynamicsanddiversityofmicrobiotamaybe usefultodevelopinganewparadigminpostharvestbiocontrolthatisbasedonconstructingsynthetic microbialcommunitiesthatprovidesuperiorcontrolofpathogens.

ã2016ElsevierB.V.Allrightsreserved.

1.Introduction

Biological control agents, as an alternative to the use of syntheticchemicals,havebeenthefocusofconsiderableresearch overthelast30yearsbymanyscientistsandseveralcommercial

companiesworldwide.Thisefforthasbeenbasedontheneedto reduce the use of synthetic fungicides to control postharvest pathogensonharvestedagriculturalcommodities.Thewithdrawal ofkeyfungicides,developmentofresistancebiotypes,alongwith environmental and health considerationshavebeenamong the driversfordevelopingalternativediseasemanagement technolo-giesthataresafeandeffective.

Thepotentialuseofepiphyticmicrobialantagoniststocontrol postharvestpathogenswasfirstreportedbackinthemid-1980s (Wilsonand Pusey,1985) and was later highlighted in several *Correspondingauthor.

E-mailaddresses:samird@volcani.agri.gov.il,samirdroby@hotmail.com

(S.Droby).

http://dx.doi.org/10.1016/j.postharvbio.2016.04.006

0925-5214/ã2016ElsevierB.V.Allrightsreserved.

ContentslistsavailableatScienceDirect

Postharvest

Biology

and

Technology

(2)

reviews that offered guidelines for isolating and selecting postharvest biocontrol agents (Wilson and Wisniewski, 1989, 1994).Akeyrationaleusedtosupportthisapproachwasthat,in contrast to field- and soil-based biocontrol, the postharvest environment and the disease etiology was more conducive to targeting theapplication of anantagonist to a commodityand maintaining its population due to controlled environmental conditions.Thepurposeofthecurrentreviewistoevaluatethe paradigms that have developed in the field of postharvest biocontroloverthepast30yearsandassesstheirvalidity.More specifically,thisreviewisaimedatreviewingtheprogressthathas beenmade,examiningthereasonswhydevelopedproductshave had such limited commercial success, and reflect on future prospects and trends. The current state of the science of postharvest biological control is discussed, challenges and obstaclesareidentified,andtherelevanceofrecentadvancesin omics,andtheirpotentialapplicationtopostharvestbiocontrol researchispresented.

Numerous microbial antagonists (yeasts and bacteria) of postharvestpathogenshavebeenidentifiedinlaboratory, semi-commercial,andcommercialstudies(Drobyetal.,2009).Severalof theseantagonists reachedadvanced levelsof developmentand commercialization. Among the first generation of biocontrol products registered and made commercially available were Candidaoleophila(Aspire,Ecogen,Langhorne,PA,US)(Blachinsky etal.,2007),Cryptococcusalbidus(YieldPlus,Lallemand,Montreal, Canada), Candida sake (Candifruit, IRTA, Lleida, Spain) (Teixidó etal.,2011),PseudomonassyringaeVanHall(BioSave,JETHarvest, Longwood,FL,US)(JanisiewiczandJeffers,1997;Janisiewiczand Korsten,2002).Aspire,YieldplusandCandifruitwere commercial-ized for some years but discontinued due to business and marketing-related shortcomings. Biosave, however, still has limited use in the US market for application on fruit crops (Janisiewicz and Peterson, 2004). Bacillus subtilis (Avogreen, UniversityofPretoria, Pretoria,South Africa)was introducedin South Africa for the control of Cercospora spot, a postharvest diseaseofavocado,butdidnotachievecommercialsuccessdueto inconsistentresults(DemozandKorsten,2006).MorerecentlyC. oleophila, (Nexy, Leasafre, Lille, France) has been developed in Belgium,andwassubmittedforregulatoryapprovalin2005for postharvestapplicationagainstwoundpathogensonpomefruits, citrus,andbanana(Lahlalietal.,2011).Nexyreceivedregistration approvalthroughout theEuropeanUnion in 2013(Massart and Jijakli, 2014). Aureobasidium pullulans (BoniProtect, Bio-Ferm, Tulln,Austria), hasa suggested useasa preharvest application tocontrol woundpathogensthat developonpomefruitduring storage (Lima et al., 2015). Another product based onPantoea agglomeransCPA-2, (Pantovital,Domca,Granda,Spain) effective againstthemajorpostharvestpathogensofpomeandcitrusfruits (Cañamásetal.,2008;Plazaetal.,2004;Teixidóetal.,2001)was formulated but never commercialized (Torres et al., 2014). Metschnikowia fructicola (Shemer, Bayer, Leverkusen, Germany) registeredinIsraelforbothpre-andpostharvestapplicationon various fruits and vegetables, including apricots, citrus fruit, grapes, peaches, peppers, strawberries, and sweet potatoes representsamoresuccessfulexampleofapostharvestbiocontrol product.ShemerwasacquiredbyBayerCropScience(Germany) and then sublicensed to Koppert (Netherlands) (Spadaro and Droby,2016).

Interestingly,themajorityofreportedpostharvestbiocontrol agents and products are yeasts. Yeasts, in general, have high tolerance to the stressful environmental conditions prevailing beforeandafterharvest(lowandhightemperatures,desiccation, widerangeofrelativehumidity,lowoxygenlevels,pHfluctuations, UVradiation)andareuniquelyadaptedtothemicro-environment (high sugar concentration,highosmotic pressure, and low pH)

presentinwoundedfruittissues.Additionally,manyyeastspecies cangrowrapidlyoninexpensivesubstratesinfermentersandare thereforeeasytoproduceinlargequantities(Spadaroetal.,2010a). Moreover,incontrasttofilamentousfungi,theydonotproduce allergenic spores or mycotoxins, and have simple nutritional requirementsthatenablethemtocolonizedrysurfacesforlong periodsoftime.

2.Thepostharvestbiocontrolparadigm lookingbacktomove forward

Research on biocontrol of postharvest diseases has mainly focused on isolating microorganisms that are antagonistic to wound pathogens that infecta commodityduring harvest and subsequent handling.Typically,pathogensporesgerminatevery rapidly(within24h)andcolonizewoundsthatarerichinsugars and othernutrients. Therefore,it is necessarytointerferewith sporegerminationand/orgerm-tubegrowthinarapidtimeframe inordertopreventorinhibitinfections.

Thediscoveryanddevelopmentofpostharvestbiocontrolhas beenmainlypursuedbyplantpathologists.Earlyinvestigationsto identifypotential biocontrolagents basicallyadoptedthe same strategyusedforfindingbiocontrolagentsagainstfoliarand soil-borne diseases where an isolation and screening programwas designedtoidentifysinglepotentantagonists.Severalfeaturesof anidealantagonistweredefinedbyWilsonandWisniewski(1989)

andhaveservedasthebasisformanyotherbiocontrolresearch programs,pastandpresent.Rapidgrowthandcolonizationoffresh wounds bythe biocontrol agentwas one of themain features indicated. Following this logic, Wilsonet al. (1993) designed a rapidmethodforscreeningandidentifyingsuccessfulantagonists. Antagoniststhatproducedsecondarymetabolitesinhibitorytothe targetedpathogensininvitroassayswereexcludedbasedonthe assumption that indications of antibiotic production would be problematicintheregistrationprocess.Anotheressentialfeature thatwasdefinedwasthatthelevelofsurvivalandrateofgrowthof thebiocontrolagentonintactandinjuredfruitsurfaceshadtobe sufficiently great enough toprevent pathogens from becoming established. Thispremise, however, neglected thefact that the introducedantagonistwas nottheonly“player”presentonthe harvestedcommodity.Additionally,verylittleattentionwasgiven to the impact of different postharvest treatments on the population of antagonistsand other resident microflora. Inter-actionsbetweentheresidentmicrofloraandtheantagonists,as theywereindividuallyimpactedbytheotherpostharvest treat-ments,wererarelystudiedandarethereforepoorlyunderstood.

Droby et al. (2009) raised several reservations about the relevanceoftheexistingparadigmforidentifyingantagoniststhat are expectedtoperformunder “realworld” situations wherea widerangeofwoundsthatserveasaninfectioncourt,exist.Inthe currentpostharvestbiocontrolparadigmitisexpectedthatasingle antagonistisolatedfromonecommoditywillbeeffectiveonother commoditiesthat vary intheir geneticbackground, physiology, postharvest handling, and pathogensusceptibility. Perhaps this expectationorparadigmisinappropriategivenourknowledgeof microbial ecologyand plantmicrobiota that hasbeenacquired throughmetagenomicapproaches.

3.Constraintsandshortcomingsofexistingbiocontrolsystems Severalregisteredpostharvestbiocontrolproductshavebeen developed jointly by researchers working with commercial companies.Althoughproductdevelopmentwassuccessful,their full commercial potential, as measured by their widespread acceptanceanduse, hasnotbeenrealized.Thelowsuccessrate ofpostharvestbiocontrolproductshasbeenattributedtoseverala

(3)

factoramongwhichisinconsistentperformanceunder commer-cialconditions.Efficacyoftheseproductsmustbesimilartothat achievedbychemicalfungicides,whichisintherangeof98–100% disease control. This level is seldom attained with biological controlproductswhentheyareusedasastand-alonetreatment. Therefore,itisimportanttodiscussthevariablesthatarecriticalto product development, performance, and viability. A schematic description of a generalized pipeline for the development of postharvestbiocontrolproductsispresentedinFig.1.

3.1.Massproductionandfermentation

Economicalproductionoflargequantitiesofamicroorganism inaformulationthatensuresreasonableshelflifeandmaintains efficacy duringlarge-scaletesting arefundamental stepsinthe processofdevelopinga commercialbiocontrolproduct. Produc-tionandformulationprocessesareoftenconducteddirectlyorin associationwithprivatecompaniesandalltherelatedresearchand development data is typically protected under confidentiality agreements leading to a lack of scientific references on these essentialsubjects.

Themassproductionprocessrequirestwoessentialsteps:(1) developing an economical culture medium that provides an adequatesupplyofnutrientsandenergyforcellularmetabolism, growth,andpopulationstability,and(2)optimizationofgrowth conditions (temperature, agitation, aeration, and pH). Current commercialproduction methods utilize either solid- or liquid-phasefermentation.Ingeneral,liquid-phaseculturesareusedfor bacteriaand yeasts and solid-phasecultures are usedfor most fungi.Optimizedmassproductionsystemshavebeendescribedfor somepostharvestbiocontrolagents,includingbacteriasuchasP. agglomerans CPA-2 (Costa et al., 2001), P. agglomerans PBC-1 (Mansoetal.,2010)andB.subtilisCPA-8(Yánez-Mendizábaletal., 2012b),yeastssuchasC.sakeCPA-1(Abadiasetal.,2003a,b), A. pullulans(Mouniretal.,2007),and Rhodotorulaminuta( Patiño-Veraetal.,2005),andfungisuchasPenicilliumfrequentans909(De Caletal.,2002),andEpicoccumnigrum(Larenaetal.,2004).

Downstreamprocessingofcultured microorganismsinvolves varioussteps,suchascellseparationfromthemedium,drying, addition of bulk materials (inert ingredients), adhesives,

emulsifiersandadjuvants.Alltheseactionsmayadverselyaffect the properties of the selected biocontrol agent directly or indirectly.Theneedofreasonableshelflifeandpreservingefficacy requiresthestabilizationofcellviability,whichcanbeachievedby theproductbeingmadeavailablein:(1) aliquidstaterequiring refrigeration;(2)afreeze-driedstatethatrequirestheuseof cryo-protectant substances during preparation, and (3) dehydrated formbydrying.Thelattertwotypesofformulationscanthenbe storedatambienttemperatures.

3.2.Formulation

Typically, a formulated product consists of an antagonistic microorganism (the active ingredient), an inert material that serves as a carrier, and adjuvants, such as nutrients and/or compounds,thatenhancethesurvivalof theantagonistcells or helpprotectthemfromenvironmentalstressessuchas desicca-tion, osmotic stress, UV radiation, and either low or high temperatures.Inpractice,verylittleliteraturehasbeenreported abouttheformulationofpostharvestbiocontrolagents,andoften upscaling, stabilization, and the entire formulation process in generalisviewedasanartratherthanascience.Thisisunfortunate sinceimprovementsintheformulationofbiocontrolproductsmay increase their performance under commercial conditions, and significantlyincreasetheshelflifeoftheproduct.

Differentdehydrationprocesseshavebeenusedforformulating biocontrolagents.Freeze-dryinghastheadvantageofmaintaining high cell viability but is much more costly than other drying processes. Freeze-drying has been used to prepare Biosave (P. syringae),P.agglomerans(Costaetal.,2000),C.sakeCPA-1(Abadias etal.,2001a,2001b),Cryptococcuslaurentii(LiandTian,2006),M. pulcherrima (Spadaro et al., 2010b), and Pichia anomala (Melin etal.,2011).

Spray-drying is another drying method that can beused to preservebiocontrolagentsinadrystateandhastheadvantageof beingabletodrylargequantitiesofculturesinashorttimeandat lowcost.Onlya smallnumberof microorganisms,however,are abletosurvivethehightemperaturesusedinthisdryingprocess. Only biocontrol agents that are able to produce heat-resistant endospores,suchasB.subtilisCPA-8,aresuitableforspraydrying

Define the host/s and pathogen/s Market idenficaon Define the problem

Concept design Discovery and selecon

Isolaon/fruit washings Bioassay, fruit protecon Cultures idenficaon Lab tesng on fruit Proof of concept Small scale tests Pilot tests

Technology development

Upscale producon, fermentaon

Stabilizaon, formulaon and product concept

Commercial scale tesng

Technology transfer

Commercial partner/Licensing Producon

partner Registraon

Commercial development

Product design

Product launching

Product sales, client adopon Mode of acon

elucidaon

Metagenomics, bioinformacs

Environmental risk assessment, toxicology

Monitoring tools

Patenng

(4)

(Yánez-Mendizábaletal.,2012a).Fluidizedbed-dryingisa cost-effectivemethodofdryingthatcanbeusedtodryheat-sensitive microorganismsbecausethe drying temperaturesare relatively low.FungisuchasE.nigrum(Larenaetal.,2003)andP.frequentans (Guijarroetal.,2006),theyeast-likefungus,A.pullulans(Mounir etal.,2007),andtheyeast,C.sakeCPA-2(Usalletal.,2009)haveall been successfully dried using fluidized bed-drying. In contrast, liquidformulationsarethesimplestwaytostabilizetheviabilityof microbialcells.Thisformulationmethodinvolvesstoringcellsina water- or oil-based solution with different protectants and additives,typicallyatlowtemperatures.Isotonic,liquid formula-tions of C. sake CPA-1 have been reported to be a suitable alternative tosolid formulations (Abadias et al., 2003b; Torres etal., 2003).Liquidformulationshavealso beentestedwithR. minuta(Patiño-Veraetal.,2005),C.laurentii(Liuetal.,2009),andP. anomala(Melinetal.,2011).

3.3.Rangeofactivity

Thenarrowrangeofactivity(hostsand pathogens)ofmany biocontrol agents is a serious limitation to their commercial success. In the case of postharvest biocontrol products, this problemisevenmorecriticalbecausethepostharvestmarketis verylimitedandtypicallyonlyoneapplicationoftheproductis used.Itwouldbebeneficialtobeabletobroadenthespectrum of action of these products, in terms of hosts andpathogens, and if possible extend their use to preharvest conditions. Differentapproaches couldbeused toextendthetarget range of a biocontrolproduct.For example, different preparationsof thesame biocontrolagent couldbe specifically formulatedfor eachsituation.The productsBoniProtect, Blossom Protect, and Botector utilize this approach as they represent different formulations of the same biocontrol agent, A. pullulans. These products are specifically formulated to control postharvest diseases on pome fruit, fire blight, and Botrytis cinerea on grapes,respectively.Enhancingthestresstoleranceofbiocontrol agents has also been reported to enhance the viability of biocontrol agents during the formulation process and broaden theirspectrumofaction(Teixidóetal.,2011;Suietal.,2015).In thecaseofC.sakeCPA-1,it wasoriginallydevelopedtocontrol postharvest diseases and later was physiologically improved to bemoretoleranttoosmoticstressconditions,which allowedit tobeappliedunderfield conditions and successfullycontrolB. cinereaongrapes(Cañamásetal.,2011).Geneticmanipulationof antagonistsisalsoapotentialapproachforimprovingbiocontrol agentsandbroadeningtheiruse,however,regulatoryconstraints and public concern about the use of genetically modified organisms (GMOs) represent a monumental hurdle to this approach.

3.4.Performanceandconsistency

Acceptable and consistent performance under commercial conditions is critical to the success of any biocontrol agent. Numerousreportshavebeenpublishedonvariousstrategiesand approachesthatcanbeusedtoenhancetheefficacyandreliability of postharvest biocontrol agents. These include combining biocontrol agents with use of salts and organic acids (Droby etal.,1997;Karabulutetal.,2001),glucoseanalogs(ElGhaouth etal.,2000),foodadditives(Drobyetal.,2003; Karabulutetal., 2003; Teixidó et al., 2001), and various physical treatments (Karabulutetal.,2002;Poratetal.,2002;Zhangetal.,2008).In most cases, enhanced efficacy was demonstrated using these approaches,however,eachcommodity–pathogensystemhasits own unique features and so specific protocols will need to commerciallyevaluated.

4.Anindustryperspective

Concernsaboutfoodsafety, includingchemical residuesand environmentalimpact,overthepasttwentyyearshaveresultedin substantial regulatory changes in the useof pesticides (http:// www2.epa.gov/pesticide-tolerances; http://www.ecpa.eu/page/ food-safety).Regulatoryrestrictionsareincreasingontheuseof a variety of chemical fungicides used to manage postharvest pathogens.Severalproductshavebeenlostfromthemarketdueto theunwillingnessofcompaniestomaintainregistration.Resistant biotypesofpathogenshavealsoevolved,decreasingtheefficacyof someoftheexistingchemicals.

Inrecentyears,theinterestofmultinationalchemical compa-nies and microbial industries (such as yeast producers) in biological control technologies, including postharvest uses, has grownsubstantially.Thisisreflectedinthenumberofacquisitions madebylarge,mainstreamcompaniesofsmallandmediumsizes companiesspecializinginthedevelopmentofgreentechnologies forcontrollingplantdiseases(CPM,2010).Inthecaseofmicrobial industriesassociatedwithproducingyeastsforbaking,brewing, and wine fermentation, interest in novel applications of their microorganismstoexpandedmarketsisalogicalextensionoftheir business.Therealquestioniswhyamultinationalcompanywould beinterestedinabiologicalcontrolproductthattargetsasmall niche market like postharvest biocontrol. The answeris rather complex and the underlying reasons for acquiring a particular biocontrolproductisdifficulttodetermine.Giventheir responsi-bility to stakeholders, multinational chemical companies are focusedontwoconcerns:pesticideresistanceandachievingzero residuesoncommodities.Furthermore,theywanttooffertotheir clients(distributorsandsubsequentlygrowers)afullportfolioof existingplantprotection tools,includingbothconventional and ‘green’products.

The most difficultstage in thedevelopment of a biocontrol product is its commercialization. Commercialization is the management processthat provides structurein developing and bringinganewproducttomarket.Effectiveimplementationofthis processisneededtocoordinatethegatheringofinformationand theestablishmentofaprojectplan.Theearlycommercialization phase is often long and fraught with a variety of difficulties, involving scientific,regulatory,businessmanagement, and mar-keting issues. Companies require ample information about a variety of aspects, suchas market demand, market size, profit margin, and time to market, toeffectively handle theseissues (Baileyetal.,2009).Areportpublishedbyaworkinggroupwithin theEUprojectENDURE(Nicotetal.,2012),thatwaschargedwith analyzing thefactorsassociatedwiththesuccessoffield-based biocontrol technologies against arthropod pests, diseases and weeds,statedthatprofitaftertaxes,provisionsandamortization was 18% of sales for a chemical pesticide and only 2% for a biocontrolproduct.Inthecaseofthepostharvestmarket,theprofit marginscanbeassumedtobeevenlower.InEurope,thesizeofthe microbial biocontrol product market was estimated to be 52 million Euro in 2012. Currently, the biopesticide market is valued at 1.5–2.5billion US dollars compared to60 billionUS dollarsforthetraditionalpesticidemarket( http://www.research-andmarkets.com/research/7bvbnf/global_pesticide).

Fifty-twoactivechemicalingredientswereregisteredintheEU between1996and2000,whereasonly10biocontrolagentswere approvedduring thesame spanof time. In thepastfive years, however,22biocontrolagentswereauthorizedintheEUandonly 20 synthetic chemical pesticides. In general, there has been a significantincreaseinthebiopesticidemarketworldwide,withthe highest increase in Europe, which is expected to pass North America asthe largestmarket for biocontrol productsby2018 (Anonymous, 2014). The annual worldwide annual increase in

(5)

market growth (2012–2020) is estimated to reach 12.3% for biopesticides versus 5% for chemical pesticides. Among the recently approved biocontrol products within the EU, three specifically target postharvest pathogens: M. fructicola strain 277 (Shemer), A.pullulans strains DSM 14940 and DSM 14941 (BoniProtect),and C. oleophila strain O (Nexy). This trend will furtherstimulatethedevelopmentandregistrationofbiocontrol products in Europe. Companies that have invested in these products will design marketing strategies that will increase marketsalesandmarketshareinordertoachieveagoodprofit margin. This may include adding both additional postharvest applicationsand/orpreharvestapplicationsregisteredusesforthe product.

Companiesmayalsoenlargetheapplicationoftheirregistered product by adapting their biopesticide to new methods of application. For example, Nexy was originally developed for postharvestdipping and drenchingapplication to fruit.In case of pomefruits, these application methods were popular when submittingtheregistrationdossierin2005.WhentheEUapproval was received in 2013, however, most growers had abandoned postharvest dipping and drenching treatments in favor of preharvesttreatments.Thus,nebulizationoftheproductinfruit storagechamberscouldbeanewpostharvestmethodoftreating pomefruits,whichmayrequireanadjustmentintheformulation oftheproductandfurthereducationofpackinghousesonhowto usethismethodofapplication.

5.Mechanismsofactioninvolvedinbiocontrolsystems Understanding themodeof action of postharvestbiocontrol agentsisaprerequisiteforproductdevelopmentandregistration. Ingeneral,researchonpostharvestyeastsand bacterial antago-nistsfollowedthetraditionalstudiesconductedonantagonistsof foliarandsoilbornepathogens.Thesestudiesascribedbiocontrol activity to four major modes of action: (1) competition for nutrientsandspace,(2)antibioticproduction,(3)inductionofhost resistance(Drobyetal.,2002),and(4)directparasitism(Bélanger etal.,2012;JanisiewiczandKorsten,2002).Thedifferentmodesof actionwererecentlyreviewedbyLiuetal.(2013)andbySpadaro and Droby(2016).Both reviewshighlight important additional features of successful antagonists, including biofilm formation, quorumsensing,productionofdiffusibleandvolatileantimicrobial compounds, competition for iron, the role of oxidative stress, alleviationofoxidativedamage,andtheproductionofROSbythe hostandtheantagonist.Untilrecently,thevastmajorityofstudies onthe mode of action of either yeast or bacterialantagonists followedan approach that examined each possible mechanism separately.Thisapproach,however,raisessomecriticalquestions: whatare theeffectsof antagonistsonwoundhealing andhost resistance?howimportantandwidespreadarethedirecteffectsof antagonistsonpathogens?howdoincidentalmicroorganismsor mixturesof antagonistsaffectpathogen/antagonist interactions, andhowdoesthenutrient/chemicalcompositionatthewoundsite affecttheantagonist,othermicroflora,theinfectionprocess,and thewoundresponse?AsinitiallydescribedbyDrobyetal.(2009)

and expanded on by Liu et al. (2013), the performance of a biocontrol agentcan beseen as the result of complex mutual interactions between all the biotic (organisms) and abiotic (environmental) components of the system. Although these interactions have been the subject of postharvest biocontrol researchfor30years,ourunderstandingisstillveryincomplete. Whenstudyingmechanismsofaction,asystemsapproachshould beemployedtoinvestigatethenetworkofinteractions.Suchan approach, that takes into account all the components of the system, may provide the greatest understanding of biocontrol systems.

Theavailabilityofmorecost-efficient,highthroughputDNA/ RNAandproteomictechnologies,alongwithbioinformatics,has providednewopportunitiesand toolstoobtaindeeperinsights into the mechanisms and interactions that have already been established(Anet al.,2014;Kwasiborskiet al.,2014). Develop-mentsindeep sequencing,transcriptomics, MS–MS proteomics, metagenomics, comparative and functional genomics can be utilized to determine changes in the physiological status of biocontrolagents, and theeffectof environmental stressonits intracellular machinery (Hershkovitz et al., 2011; Hershkovitz etal.,2013;Suietal.,2015).Changesinthelevelofexpressionof “biocontrol genes during mass production, formulation and storage,orinresponsetoexposureand contactwithhostplant tissue after application can now be more readily investigated.

MassartandJijakli(2007)reviewedthemoleculartechniquesused tounderstandthemechanismofactionofbiocontrolagentsand discussedthestrategiesusedtostudytherole ofvariousgenes believed to be involved in the mechanisms of action. They concludedthatthemajorityofstudiesaimedatelucidatingthe genetic basis and traits important for antagonistic action have focusedonTrichoderma spp.Genesrelated totheproductionof antibioticshavebeenmainlystudiedinbacteria,suchasB.subtilis and Pseudomonasspp. Veryfew genesinvolved in inductionof resistancemechanismsinhostplantsorcompetitionfornutrient andspacehavebeenidentifiedinbiocontrolagents.Morerecently, theimpactof omictechnologiesforunderstandingthevarious modesofactionofbiocontrolagentsagainstplantpathogenswas reviewedbyMassartetal.(2015a,b).Whatever omictechnique (genomic,transcriptomicorproteomic)havebeenutilized,studies of postharvest biocontrol agents have been sparse and it is expected that greater details about interactions in the entire biocontrolsystemwillbeforthcoming.

6.Theroleofthemicrobiomeinfruithealthanddisease a newperspective

Microbial communities resident on and in plants can have negative, neutral, or beneficial effects on plant health and development (Mendes et al., 2013; Philippot et al., 2013; Berg et al., 2015). These communities colonize all parts of a plant through its entire lifecycle and marked diversity exists in communities associated with different hosts. Research on this topicisslowingmovingfromjustdescribingthecompositionof these communities to elucidating the mechanisms involved in theirassemblyandfunction(Waldoretal.,2015).

Studies on plant microbiomes (phytobiomes) in both the phyllosphere and rhizosphere indicate that plants should be considered as “super organisms” where very diverse microbial communities provide specific functions and traits to plants (Vorholt, 2012; de Bruijn, 2013). These functions include five keyfeatures:(1)improving nutrientacquisitionandgrowth,(2) sustaining plant growth under biotic and/or abiotic stress, (3) inducingresistanceagainstpathogens,(4)interactingwithplantor humanpathogens,and (5)interacting withothertrophiclevels, such as insects. Soil type and plant genotype are the major parameters influencing the rhizosphere microbiome (Berg and Smalla,2009;deBruijn,2013)whereasplantspeciesandgenotype arethemajorfactorsinvolvedindefiningthecompositionofthe phyllosphere microbiome (Massart et al.,2015b).Whippset al. (2008) published a comprehensive review of phyllosphere microbiology with special reference to microbial diversity and plantgenotypes.Theauthorsstressedtheneedforstudiesonthe functional consequences of changes in microbial community structure and the mechanisms by which plants control the microbialpopulationsontheiraerialplantsurfaces.The composi-tion of microbial populations in the phyllosphere are also

(6)

influenced by environmental factors, such as, UV, humidity, temperature,geographicallocation(Rastogietal.,2012;Vorholt, 2012;Rastogietal.,2013),nitrogenfertilization(Ikedaetal.,2011), andpesticidetreatments(Zhangetal.,2009;Moulasetal.,2013). Previousstudies,usingplatingandlow-throughputmolecular techniques,reportedthattheintroductionofabiocontrolagentor a pathogen to the system had a marked impact on the plant microbiome (Teixidóet al.,1998; Zhang et al., 2008; Buddrus-Schiemannetal.,2010;Chowdhuryetal.,2013;Yinetal.,2013).

Erlacher et al. (2014) demonstrated shifts in the microbiota of lettuceasaresultofintroducinga pathogen(Rhizoctoniasolani) and/orabiocontrolagent.Theresultofthesestudiessuggestsa novelmodeofactionforbiocontrolagents,i.e.compensationfor the impact of a pathogen on plant-associated microbiota. The authorsspeculatedthatthiseffectcouldoriginatedirectlyfromthe impact of the biocontrol agent on the composition of the microbiotaor indirectlybytheimpactofbiocontrolagentona pathogen.Compared tothe application of a single species, co-inoculationwithtwodifferentspeciesofbiocontrolagentscaused amorepronouncedimpactonthemicrobialcommunitystructure ofthecucumberrhizosphere,resultinginincreasedevennessand betterbiocontrolofR.solani(Groschetal.,2012).

Harvested fresh fruits and vegetables can harbor large and diverse populations of microorganisms including bacteria, fila-mentousfungi,andyeasts,eitherasepiphytesorendophytes.Most oftheworkonmicroorganismsassociatedwithfreshharvested commodities,however,hasfocusedonarelativelysmallnumberof microbialspeciesthatcanbeeasilycultured.Asaresult,verylittle isknownabouttheoveralldiversityandcompositionofmicrobial communitiesonharvestedproduceandhowthesecommunities varyacrossproducetypes.Basedonrecentstudiesonthistopic (Rudietal.,2002;Ponceetal.,2008;Ottesenetal.,2009;Rastogi etal.,2012;LeffandFierer,2013;),afewkeypatternsareemerging: (1)differentproducetypesandcultivarscanharbordifferentlevels (abundances) of specific microbial groups (Critzer and Doyle, 2010), (2) farming and storage conditions can influence the compositionandabundancesofmicrobialcommunitiesfoundon produce,and(3)non-pathogenicmicrobescaninteractwithand inhibitmicrobialpathogensfoundonproducesurfaces(Shietal., 2009;CritzerandDoyle,2010;Teplitskietal.,2011).Despitethis recentbodyofwork,westillhavealimitedunderstandingofthe diversity of produce-associated microbial communities, their function, the factors that influence the composition of these communitiesafterharvestandduringstorage,andthedistribution of individual taxa (particularly those taxa that are difficult to culture)acrossdifferentcommodities.

Inlightoftheprogressmadeinrecentyearsinmetagenomic technologies,thistechnologyshouldbeusedtocharacterizethe composition of microbial communities onfruit and vegetables. Metagenomic analyses are based on the amplification and sequencing of the 18S rRNA and ITS, for eukaryotes, and 16S rRNA, for bacteria. This technology, however, can still be problematicduetoproblemsassociatedwithPCRamplification, such as sensitivity to inhibitory compounds, primer mismatch sensitivity,lackofquantitativeinformation,andtheamplification of interfering plant organelle derived RNA sequences (Berlec, 2012).

In recent years, the use of natural and synthetic microbial communities/consortiarepresentsanemergingfrontierinthefield ofbioprocessing(focusingonfuelproduction),synthesisof high-valuechemicals,bioremediation,andmedicineandbiotechnology (Haysetal.,2015).Microbialconsortiaaremixturesofinteracting microbial populations that can be found in many diverse environmentalniches,andcanbegroupedintotwotypes:natural orsynthetic.Theuseofaconsortiumhasseveraladvantagesovera single species, such as efficiency, robustness, resilience to

environmental stress,andmodularity. Microbialconsortiaoften havetheabilitytocompletetasksthatwouldbetoodifficultfor oneorganismtoaccomplish(PandhalandNoirel,2014).

Massartetal.(2015a)suggestedtheuseofmicrobiota-derived productsorthemicrobiotaitself,directlyorindirectly,todevelop noveltoolsfortheprotectionofplantsagainstpathogens.Aninitial approach couldbetheuseofa syntheticornaturalconsortium (Gopaletal.,2013)thatcouldbeappliedtoaharvestedcommodity toseeifitresultsinbetterdiseasecontrolduetotheexpressionofa varietyofmodesofactionagainstthepathogen.Maintainingthe rightbalanceanddiversityinsidetheconsortiumbeforeandafter its application, however, may prove to be difficult. Regulatory difficulties in registering a consortium, composed of multiple microorganisms,asabiocontrolproductmayalsobeaproblem. Thusasimplerapproachcouldbetoidentifya‘helper’microbial strainfromthemicrobiota(Massartetal.,2015a).A‘helper’strain may have no biocontrol capacity but rather enhance the antagonistic activity of an existing known biocontrol agent by supporting its establishment and survival on the targeted commodity. Finally, theuseof biochemical compounds derived fromtheculturingofaconsortiumthatlimitthedevelopmentof plant pathogens could also be considered another potential technologythatmaybeeasiertoregister,manufactureandapply. 7.Concludingremarks

After more than three decades of research, the field of postharvest biocontrol has reached a crossroads and previous approaches need to be seriously evaluated, and evolving new directions need to be considered for future research and development. A review of the existing information makes it obviousthatasignificantgapstillexistsbetweenbasicresearch involvingthediscoveryofabiocontrolagentanditsdevelopment andimplementationundercommercialconditions.Inrecentyears, aconsiderablevolumeofpublishedresearcharticlesfallunderthe categoryof“re-inventingthewheel”.Inordertomoveabiocontrol agent from the laboratory to the market place requires many differentdisciplinesandpeoplewithavarietyofexpertise.

Overall,commercialimplementationofpostharvestbiological controlproductshasbeenverylimitedandonlycomprisesavery smallshareofthepotentialmarket.Theneedforalternativesto chemical fungicides,however, is still valid and the outlook for microbialbiocontrolproductsisstillverypromising.Inorderfora biocontrol product to be viable, however, it must perform effectively and reliably, be widely accepted, have intellectual propertyprotection(patent),andbeprofitabletothecompanythat has invested the money in its development, registration, and marketing.

Significant progress has been made in understanding the variousaspectsofbiocontrolagentsthatallowthemtoinhibitor prevent pathogendevelopment.Collectively,theavailable infor-mationindicatessuggeststhelackofasingleuniversalmechanism ofactioncommontoallthereportedantagonists.Whiledissecting and characterizing the mechanisms of action involved in each biocontrolsystemiscriticalforthesuccessofdevelopingreliable products,thequestionishowcanthisknowledgebeutilizedto developmoreeffectiveproducts?

Biological interactions are dynamic, with dramatic changes occurringwhenthresholds insignalingorpopulationlevelsare reached.Thephysiologicalstatusofthehost/pathogen/biocontrol agent/other microbiota,environmental conditions, and posthar-vesthandlingallhavesignificantbutlargelyunknowneffectson fruit/vegetable interactions with microbial communities. The realizationthatthemicrobiotaisanintegralandactivecomponent ofharvestedfruitandvegetablesandisinfluencedbyvariousbiotic andabioticstressorsisveryimportantforunderstandingallthe

(7)

factorsinvolved in the assembly and composition of a specific microbiome.Themultitrophicinteractionsinvolvedinpostharvest biocontrolsystemsand thepotentialuseof syntheticmicrobial communities for biocontrol of postharvest diseases should be explored. In order to overcome the scientific and technical challengesassociatedwithdevelopingnovelbiocontrol technolo-giesbasedonaholisticapproach,thecollaborationbetweenawide varietyof scientific disciplines is needed. Finally, collaboration between scientific researchers and companies that develop productsis essential if these new technologies are to become commerciallyviableandrelevant.

References

Abadias,M.,Benabarre,A.,Teixidó,N.,Usall,J.,Viñas,I.,2001a.Effectoffreeze dryingandprotectantsonviabilityofthebiocontrolyeastCandidasake.Int.J. FoodMicrobiol.65,173–182.

Abadias,M.,Teixidó,N.,Usall,J.,Benabarre,A.,Viñas,I.,2001b.Viability,efficacy, andstoragestabilityoffreeze-driedbiocontrolagentCandidasakeusing differentprotectiveandrehydrationmedia.J.FoodProt.64,856–861.

Abadias,M.,Teixidó,N.,Usall,J.,Viñas,I.,2003a.Optimizationofgrowthconditions ofthepostharvestbiocontrolagentCandidasakeCPA-1inalab-scalefermenter. J.Appl.Microbiol.95,301–309.

Abadias,M.,Usall,J.,Teixidó,N.,Viñas,I.,2003b.Liquidformulationofthe postharvestbiocontrolagentCandidasakeCPA-1inisotonicsolutions. Phytopathology93,436–442.

An,B.,Chen,Y.,Li,B.,Qin,G.,Tian,S.,2014.Ca2+

-CaMregulatingviabilityofCandida guilliermondiiunderoxidativestressbyactingondetergentresistantmembrane proteins.J.Proteom.109,38–49.

Anonymous,2014.Biopesticides GlobalStrategicBusinessReport.GlobalIndustry Analyst,Inc.,pp.215.

Bélanger,R.R.,Labbé,C.,Lefebvre,F.,Teichmann,B.,2012.Modeofactionof biocontrolagents:allthatglittersisnotgold.Can.J.PlantPathol.34,469–478.

Bailey,K.L.,Boyetchko,S.M.,Längle,T.,2009.Socialandeconomicdriversshaping thefutureofbiologicalcontrol:aCanadianperspectiveonthefactorsaffecting thedevelopmentanduseofmicrobialbiopesticides.Biol.Control52,221–229.

Berg,G.,Smalla,K.,2009.Plantspeciesandsoiltypecooperativelyshapethe structureandfunctionofmicrobialcommunitiesintherhizosphere.FEMS Microbiol.Ecol.68,1–13.

Berg,G.,Rybakova,D.,Grube,M.,Köberl,M.,2015.Theplantmicrobiomeexplored: implicationsforexperimentalbotany.J.Exp.Bot.doi:http://dx.doi.org/10.1093/ jxb/erv466.

Berlec,A.,2012.Noveltechniquesandfindingsinthestudyofplantmicrobiota: searchforplantprobiotics.PlantSci.193–194,96–102.

Blachinsky,D.,Antonov,J.,Bercovitz,A.,Elad,B.,Feldman,K.,Husid,A.,Lazare,M., Marcov,N.,Shamai,I.,Keren-Zur,M.,Droby,S.,2007.Commercialapplicationsof Shemerforthecontrolofpre-andpostharvestdiseases.IOBCWPRSBull.30, 75–78.

Buddrus-Schiemann,K.,Schmid,M.,Schreiner,K.,Welzl,G.,Hartmann,A.,2010. RootcolonizationbyPseudomonassp:DSMZ13134andimpactonthe indigenousrhizospherebacterialcommunityofbarley.Microb.Ecol.60, 381–393.

CPM,2010.BayeracquiresbiofungicidefromAgrogreen.CPM14.

Cañamás,T.P.,Viñas,I.,Usall,J.,Torres,R.,Anguera,M.,Teixidó,N.,2008.Controlof postharvestoncitrusfruitbypreharvestapplicationofthebiocontrolagent PantoeaagglomeransCPA-2.PartII.Effectivenessofdifferentcellformulations. PostharvestBiol.Technol.49,96–106.

Cañamás,T.P.,Viñas,I.,Torres,R.,Usall,J.,Solsona,C.,Teixidó,N.,2011.Field applicationsofimprovedformulationsofCandidasakeCPA-1forcontrolof Botrytiscinereaingrapes.Biol.Control56,150–158.

Chowdhury,S.P.,Dietel,K.,Randler,M.,Schmid,M.,Junge,H.,Borriss,R.,Hartmann, A.,Grosch,R.,2013.EffectsofBacillusamyloliquefaciensFZB42onlettucegrowth andhealthunderpathogenpressureanditsimpactontherhizospherebacterial community.PLoSOne8(7),e68818.doi:http://dx.doi.org/10.1371/journal. pone.0068818.

Costa,E.,Usall,J.,Teixidó,N.,García,N.,Viñas,I.,2000.Effectofprotectiveagents, rehydrationmediaandinitialcellconcentrationonviabilityofPantoea agglomeransstrainCPA-2subjectedtofreeze-drying.J.Appl.Microbiol.89, 793–800.

Costa,E.,Teixidó,N.,Usall,J.,Atarés,E.,Viñas,I.,2001.Productionofthebiocontrol agentPantoeaagglomeransstrainCPA-2usingcommercialproductsand by-products.Appl.Microbiol.Biotechnol.56,367–371.

Critzer,F.J.,Doyle,M.P.,2010.Microbialecologyoffoodbornepathogensassociated withproduce.Curr.Opin.Biotechnol.21,125–130.

deBruijn,F.(Ed.),2013.MolecularMicrobialEcologyoftheRhizosphere. Wiley-Blackwell,Hoboken,NewJersey,USA.

DeCal,A.,Larena,I.,Guijarro,B.,Melgarejo,P.,2002.Massproductionofconidiaof Penicilliumfrequentans,abiocontrolagentagainstbrownrotofstonefruits. BiocontrolSci.Technol.12,715–725.

Demoz,B.T.,Korsten,L.,2006.Bacillussubtilisattachment,colonization,andsurvival onavocadoflowersanditsmodeofactiononstem-endrotpathogens.Biol. Control37,68–74.

Droby,S.,Wisniewski,M.E.,Cohen,L.,Weiss,B.,Touitou,D.,Eilam,Y.,Chalutz,E., 1997.InfluenceofCaCl2onPenicilliumdigitatum,grapefruittissueand biocontrolactivityofPichiaguilliermondii.Phytopathology87,310–315.

Droby,S.,Vinokur,V.,Weiss,B.,Cohen,L.,Daus,A.,Goldschmid,E.,Porat,R.,2002. InductionofresistancetoPenicilliumdigitatumingrapefruitbytheyeast biocontrolagentCandidaoleophila.Phytopathology92,393–399.

Droby,S.,Wisniewski,M.E.,El-Ghaouth,A.,Wilson,C.L.,2003.Influenceoffood additivesonthecontrolofpostharvestrotsofappleandpeachandefficacyofthe yeast-basedbiocontrolproductaspire.PostharvestBiol.Technol.27,127–135.

Droby,S.,Wisniewski,M.,Macarisin,D.,Wilson,C.,2009.Twentyyearsof postharvestbiocontrolresearch:isittimeforanewparadigm?PostharvestBiol. Technol.52,137–145.

ElGhaouth,A.,Smilanick,J.L.,Wisniewski,M.,Wilson,C.L.,2000.Improvedcontrol ofappleandcitrusfruitdecaywithacombinationofCandidasaitoanaand 2-deoxy-d-glucose.PlantDis.84,249–253.

Erlacher,A.,Cardinale,M.,Grosch,R.,Grube,M.,Berg,G.,2014.Theimpactofthe pathogenRhizoctoniasolanianditsbeneficialcounterpartBacillus

amyloliquefaciensontheindigenouslettucemicrobiome.Front.Microbiol.5, 1–5.

Gopal,M.,Gupta,A.,Thomas,G.V.,2013.Bespokemicrobiometherapytomanage plantdiseases.Front.Microbiol.4,1–5.

Grosch,R.,Dealtry,S.,Schreiter,S.,Berg,G.,Mendonca-Hagler,L.,Smalla,K.,2012. BiocontrolofRhizoctoniasolani:complexinteractionofbiocontrolstrains, pathogenandindigenousmicrobialcommunityintherhizosphereoflettuce shownbymolecularmethods.PlantSoil361,343–357.

Guijarro,B.,Larena,I.,Melgarejo,P.,DeCal,A.,2006.Effectofdryingonviabilityof Penicilliumfrequentans:abiologicalcontrolagentagainstbrownrotdisease causedbyMoniliniaspp.BiocontrolSci.Technol.16,257–269.

Hays,S.G.,Patrick,W.G.,Ziesack,M.,Oxman,N.,Silver,P.A.,2015.Bettertogether: engineeringandapplicationofmicrobialsymbioses.Cur.Opin.Biotechnol.36, 40–49.

Hershkovitz,V.,Ben-Dayan,C.,Raphael,G.,Pasmanik-Chor,M.,Liu,J.,Belausov,E., Aly,R.,Wisniewski,M.,Droby,S.,2011.Globalchangesingeneexpressionof grapefruitpeeltissueinresponsetotheyeastbiocontrolagentMetschnikowia fructicola.Mol.PlantPathol.13,338–349.

Hershkovitz,V.,Sela,N.,Taha-Salaime,L.,Liu,J.,Rafael,G.,Kessler,C.,Aly,A.,Levy, M.,Wisniewski,M.,Droby,S.,2013.De-novoassemblyandcharacterizationof thetranscriptomeofMetschnikowiafructicolarevealsdifferencesingene expressionfollowinginteractionwithPenicilliumdigitatumandgrapefruitpeel. BMCGenom.14,168–182.

Ikeda,S.,Anda,M.,Inaba,S.,Eda,S.,Sato,S.,Sasaki,K.,Tabata,S.,Mitsui,H.,Sato,T., Shinano,T.,Minamisawa,K.,2011.Autoregulationofnodulationinterfereswith impactsofnitrogenfertilizationlevelsontheleaf-associatedbacterial communityinsoybeans.Appl.Environ.Microbiol.77,1973–1980.

Janisiewicz,W.J.,Jeffers,S.N.,1997.Efficacyofcommercialformulationoftwo biofungicidesforcontrolofbluemoldandgraymoldofapplesincoldstorage. CropProt.16,629–633.

Janisiewicz,W.J.,Korsten,L.,2002.Biologicalcontrolofpostharvestdiseasesof fruits.Ann.Rev.Phytopathol.40,411–441.

Janisiewicz,W.J.,Peterson,D.L.,2004.Susceptibilityofthestempullareaof mechanicallyharvestedapplestobluemolddecayanditscontrolwitha biocontrolagent.PlantDis.88,662–664.

Karabulut,O.A.,Lurie,S.,Droby,S.,2001.Evaluationoftheuseofsodium bicarbonate,potassiumsorbateandyeastantagonistsfordecreasing postharvestdecayofsweetcherries.PostharvestBiol.Technol.23,233–236.

Karabulut,O.A.,Cohen,L.,Wiess,B.,Daus,A.,Lurie,S.,Droby,S.,2002.Controlof brownrotandbluemoldofpeachandnectarinebyshorthotwaterbrushing andyeastantagonists.PostharvestBiol.Technol.24,103–111.

Karabulut,O.A.,Smilanick,J.L.,Gabler,F.M.,Mansour,M.,Droby,S.,2003. Near-harvestapplicationsofMetschnikowiafructicolaethanol,andsodium bicarbonatetocontrolpostharvestdiseasesofgrapeincentralCalifornia.Plant Dis.87,1384–1389.

Kwasiborski,A.,Bajji,M.,Renaut,J.,Delaplace,P.,Jijakli,H.,2014.Identificationof metabolicpathwaysexpressedbyPichiaanomalaKh6inthepresenceofthe pathogenBotrytiscinereaonapple:newpossibletargetsforbiocontrol improvement.PLoSOne9,e91434.doi:http://dx.doi.org/10.1371/journal. pone.0091434.

Lahlali,R.,Raffaele,B.,Jijakli,M.H.,2011.UVprotectantsforCandidaoleophila(strain O),abiocontrolagentofpostharvestfruitdiseases.PlantPathol.60,288–295.

Larena,I.,DeCal,A.,Liñá,M.,Melgarejo,P.,2003.DryingofEpicoccumnigrum conidiaforobtainingashelf-stablebiologicalproductagainstbrownrotdisease. J.Appl.Microbiol.94,508–514.

Larena,I.,DeCal,A.,Melgarejo,P.,2004.SolidsubstrateproductionofEpicoccum nigrumconidiaforbiologicalcontrolofbrownrotonstonefruit.Int.Food Microbiol.94,161–167.

Leff,J.W.,Fierer,N.,2013.Bacterialcommunitiesassociatedwiththesurfacesof freshfruitsandvegetables.PLoSOne8,e59310.doi:http://dx.doi.org/10.1371/ journal.pone.0059310.

Li,B.,Tian,S.P.,2006.Effectsoftrehaloseonstresstoleranceandbiocontrolefficacy ofCryptococcuslaurentii.J.Appl.Microbiol.100,854–861.

Lima,G.,Sanzani,S.M.,DeCurtis,F.,Ippolito,A.,2015.Biologicalcontrolof postharvestdiseases.In:Wills,R.B.H.,Golding,J.(Eds.),AdvancesinPostharvest FruitandVegetableTechnology.CRCPress,pp.65–81.

Liu,J.,Tian,S.P.,Li,B.Q.,Qin,G.Z.,2009.Enhancingviabilityoftwobiocontrolyeasts inliquidformulationbyapplyingsugarprotectantcombinedwithantioxidant. Biol.Control54,817–824.

(8)

Liu,J.,Sui,Y.,Wisniewski,M.,Droby,S.,Liu,Y.,2013.Utilizationofantagonistic yeaststomanagepostharvestfungaldiseasesoffruit.Int.J.FoodMicrobiol.167, 153–160.

Manso,T.,Nunes,C.,Raposo,S.,Lima-Costa,M.E.,2010.Productionofthebiocontrol agentPantoeaagglomeransPBC-1inastirredtankreactorbybatchand fed-batchcultures.WorldJ.MicrobiolBiotechnol.26,725–735.

Massart,S.,Jijakli,H.M.,2007.Useofmoleculartechniquestoelucidatethe mechanismsofactionoffungalbiocontrolagents:areview.J.Microbiol.Meth. 69,229–241.

Massart,S.,Jijakli,M.H.,2014.PichiaanomalaandCandidaoleophilainbiocontrolof postharvestdiseasesoffruits:20yearsoffundamentalandpracticalresearch. In:Prusky,D.,Gullino,M.L.(Eds.),PlantPathologyinthe21stCentury,vol.7. Springer,TheNetherlands,pp.111–122.

Massart,S.,Martinez-Medina,M.,Jijakli,M.H.,2015a.Biologicalcontrolinthe microbiomeera:challengesandopportunities.Biol.Control89,98–108.

Massart,S.,Perazzolli,M.,Höfte,M.,Pertot,I.,Jijakli,M.H.,2015b.Impactoftheomic technologiesforunderstandingthemodesofactionofbiologicalcontrolagents againstplantpathogens.Biocontrol60,725–746.

Melin,P.,Schnürer,J.,Hakansson,S.,2011.Formulationandstabilisationofthe biocontrolyeastPichiaanomala.AntonieVanLeeuwenhoek99,107–112.

Mendes,R.,Garbeva,P.,Raaijmakers,J.M.,2013.Therhizospheremicrobiome: significanceofplantbeneficial,plantpathogenic,andhumanpathogenic microorganisms.FEMSMicrobiol.Rev.37,634–663.

Moulas,C.,Petsoulas,C.,Rousidou,K.,Perruchon,C.,Karas,P.,Karpouzas,D.G.,2013. Effectsofsystemicpesticidesimidaclopridandmetalaxylonthephyllosphere ofpepperplants.BioMed.Res.Int.2013,969750.doi:http://dx.doi.org/10.1155/ 2013/969750(epub2013Jun9).

Mounir,R.,Durieux,A.,Bodo,E.,Allard,C.,Simon,J.P.,Achbani,E.H.,ElJaafari,S., Douira,A.,Jijakli,M.H.,2007.Production,formulationandantagonisticactivity ofthebiocontrollike-yeastAureobasidiumpullulansagainstPenicillium expansum.Biotechnol.Lett.29,553–559.

Nicot,P.C.,Alabouvette,C.,Bardin,M.,Blum,B.,Köhl,J.,Ruocco,M.,2012.Reviewof factorsinfluencingthesuccessorfailureofbiocontrol:technical,industrialand socio-economicperspectives.Biol.ControlFungalBacterialPlantPathogens IOBC-WPRSBull.78,95–9598.

Ottesen,A.R.,White,J.R.,Skaltsas,D.N.,Newell,M.J.,Walsh,C.S.,2009.Impactof organicandconventionalmanagementonthephyllospheremicrobialecology ofanapplecrop.J.FoodProt.72,2321–2325.

Pandhal,J.,Noirel,J.,2014.Syntheticmicrobialecosystemsforbiotechnology. Biotechnol.Lett.36,1141–1151.

Patiño-Vera,M.,Jiménez,B.,Balderas,K.,Ortiz,M.,Allende,R.,Carrillo,A.,Galindo, E.,2005.Pilot-scaleproductionandliquidformulationofRhodotorulaminuta,a potentialbiocontrolagentofmangoanthracnose.J.Appl.Microbiol.99, 540–550.

Philippot,L.,Raaijmakers,J.M.,Lemanceau,P.,vanderPutten,W.H.,2013.Going backtotheroots:themicrobialecologyoftherhizosphere.Nat.Rev.Microbiol. 11,789–799.

Plaza,P.,Usall,J.,Smilanick,J.L.,Lamarca,N.,Viñas,I.,2004.CombiningPantoea agglomerans(CPA-2)andcuringtreatmentstocontrolestablishedinfectionsof Penicilliumdigitatumonlemons.J.FoodProt.67,781–786.

Ponce,A.G.,Agüero,M.V.,Roura,S.I.,delValle,C.E.,Moreira,M.R.,2008.Dynamicsof indigenousmicrobialpopulationsofbutterheadlettucegrowninmulchandon baresoil.J.FoodSci.73,M257–M263.

Porat,R.,Daus,A.,Weiss,B.,Cohen,L.,Droby,S.,2002.Effectsofcombininghot water,sodiumbicarbonateandbiocontrolonpostharvestdecayofcitrusfruit.J. Hortic.Sci.Biotechnol.77,441–445.

Rastogi,G.,Sbodio,A.,Tech,J.J.,Suslow,T.V.,Coaker,G.L.,Leveau,J.H.,2012. Leafmicrobiotainanagroecosystem:spatiotemporalvariationinbacterial communitycompositiononfield-grownlettuce.ISMEJ.6,1812–1822.

Rastogi,G.,Coaker,G.L.,Leveau,J.H.,2013.Newinsightsintothestructureand functionofphyllospheremicrobiotathroughhigh-throughputmolecular approaches.FEMSMicrobiol.Lett.348,1–10.

Rudi,K.,Flateland,S.L.,Hanssen,J.F.,Bengtsson,G.,Nissen,H.,2002.Development andevaluationofa16SribosomalDNAarray-basedapproachfor

describingcomplexmicrobialcommunitiesinready-to-eatvegetable saladspackedinamodifiedatmosphere.Appl.Environ.Microbiol.68, 1146–1156.

Shi,X.,Wu,Z.,Namvar,A.,Kostrzynska,M.,Dunfield,K.,Warrine,K.,2009.Microbial populationprofilesofthemicrofloraassociatedwithpre-andpostharvest tomatoescontaminatedwithSalmonellatyphimuriumorSalmonellamontevideo. J.Appl.Microbiol.107,329–338.

Spadaro,D.,Droby,S.,2016.Developmentofbiocontrolproductsforpostharvest diseasesoffruit:theimportanceofelucidatingthemechanismsofactionof yeastantagonists.TrendsFoodSci.Technol.47,39–49.

Spadaro,D.,Ciavorella,A.,Zhang,D.,Garibaldi,A.,Gullino,M.L.,2010a.Effectof culturemediaandpHonthebiomassproductionandbiocontrolefficacyofa Metschnikowiapulcherrimastraintobeusedasabiofungicideforpostharvest diseasecontrol.Can.J.Microbiol.56,128–137.

Spadaro,D.,Ciavorella,A.,Lopez,G.,Garibaldi,A.,Gullino,M.L.,2010b.Effectof cultureage,protectants,andinitialcellconcentrationonviabilityof freeze-driedcellsofMetschnikowiapulcherrima.Can.J.Microbiol.56,809–815.

Sui,Y.,Wisniewski,M.,Droby,S.,Liu,J.,2015.Responsesofyeastbiocontrolagentsto environmentalstress.Appl.Environ.Microbiol81,2968–2975.

Teixidó,N.,Usall,J.,Gutiérrez,O.,Viñas,I., 1998.EffectoftheantagonistCandidasake onapplesurfacemicrofloraduringcoldandambient(shelflife)storage.Eur.J. PlantPathol.104,387–398.

Teixidó,N.,Usall,J.,Palou,L.,Asensio,A.,Nunes,C.,Viñas,I.,2001.Improvingcontrol ofgreenandbluemoldsonorangesbycombiningPantoeaagglomerans(CPA-2) andsodiumbicarbonate.Eur.J.PlantPathol.107,685–694.

Teixidó,N.,Torres,R.,Viñas,I.,Abadias,M.,Usall,J.,2011.Biologicalcontrolof postharvestdiseasesinfruitandvegetables.In:Lacroix,C.(Ed.),Protective Cultures,AntimicrobialMetabolitesandBacteriophagesforFoodandBeverage Biopreservation.WoodheadPublishingSeriesinFoodScience,Technologyand NutritionNo.201,Cambridge,pp.364–402.

Teplitski,M.,Warriner,K.,Bartz,J.,Schneider,K.R.,2011.Untanglingmetabolicand communicationnetworks:interactionsofentericswithphytobacteriaandtheir implicationsinproducesafety.TrendsMicrobiol.19,121–127.

Torres,R.,Usall,J.,Teixidó,N.,Abadıas,M.,Viñas,I.,2003.Liquidformulationofthe biocontrolagentCandidasakebymodifyingwateractivityoradding protectants.J.Appl.Microbiol.94,330–339.

Torres,R.,Solsona,C.,Viñas,I.,Usall,J.,Plaza,P.,Teixidó,N.,2014.Optimizationof packagingandstorageconditionsofafreeze-driedPantoeaagglomerans formulationforcontrollingpostharvestdiseasesinfruit.J.Appl.Microbiol.117, 173–184.

Usall,J.,Teixidó,N.,Abadias,M.,Torres,R.,Cañamás,T.,Viñas,I.,2009.Improving formulationofbiocontrolagentsmanipulatingproductionprocess.In:Prusky, D.,Gullino,M.L.(Eds.),Post-HarvestPathology,vol.2.Springer,The Netherlands,pp.149–170.

Vorholt,J.A.,2012.Microbiallifeinthephyllosphere.Nat.Rev.Microbiol.10, 828–840.

Waldor,M.K.,Tyson,G.,Borenstein,E.,Ochman,H.,Moeller,A.,Finlay,B.B.,Kong,H. H.,Gordon,J.I.,Nelson,K.E.,Dabbagh,K.,Smith,H.,2015.Wherenextfor microbiomeresearch?PLoSBiol.13,e1002050.

Whipps,J.M.,Hand,P.,Pink,D.,Bending,G.D.,2008.Phyllospheremicrobiologywith specialreferencetodiversityandplantgenotype.J.Appl.Microbiol.105, 1744–1755.

Wilson,C.L.,Pusey,P.L.,1985.Potentialforbiologicalcontrolofpostharvestplant diseases.PlantDis.69,375–378.

Wilson,C.L.,Wisniewski,M.,1989.Biologicalcontrolofpostharvestdiseasesof fruitsandvegetables:anemergingtechnology.Annu.Rev.Phytopathol.27, 425–441.

Wilson,C.L.,Wisniewski,M.,1994.BiologicalControlofPostharvestDiseases: TheoryandPractice.CRCPress,BocaRaton,FL182pp.

Wilson,C.L.,Wisniewski,M.,Droby,S.,Chalutz,E.,1993.Aselectionstrategyfor microbialantagonisttocontrolpostharvestdiseasesoffruitsandvegetables. Sci.Hortic.53,183–189.

Yánez-Mendizábal,V.,Viñas,I.,Usall,J.,Torres,R.,Solsona,C.,Abadias,M.,Teixidó, N.,2012a.FormulationdevelopmentofthebiocontrolagentBacillussubtilis strainCPA-8byspray-drying.J.Appl.Microbiol.112,954–965.

Yánez-Mendizábal,V.,Viñas,I.,Usall,J.,Torres,R.,Solsona,C.,Teixidó,N.,2012b. ProductionofthepostharvestbiocontrolagentBacillussubtilisCPA-8usinglow costcommercialproductsandby-products.Biol.Control60,280–289.

Yin,D.,Wang,N.,Xia,F.,Li,Q.,Wang,W.,2013.Impactofbiocontrolagents Pseudomonasfluorescens2P24andCPF10onthebacterialcommunityinthe cucumberrhizosphere.Eur.J.SoilBiol.59,36–42.

Zhang,B.,Bai,Z.,Hoefel,D.,Tang,L.,Yang,Z.,Zhuang,G.,Yang,J.,Zhang,H.,2008. AssessingtheimpactofthebiologicalcontrolagentBacillusthuringiensisonthe indigenousmicrobialcommunitywithinthepepperplantphyllosphere.FEMS Microbiol.Lett.284,102–108.

Zhang,B.,Bai,Z.,Hoefel,D.,Tang,L.,Wang,X.,Li,B.,Li,Z.,Zhuang,G.,2009.The impactsofcypermethrinpesticideapplicationonthenon-targetmicrobial communityofthepepperplantphyllosphere.Sci.TotalEnviron.407, 1915–1922.

Figure

Fig. 1. Pipeline for development of postharvest biocontrol products.
Fig. 1. Pipeline for development of postharvest biocontrol products. p.3

References