• Aucun résultat trouvé

Will climate change affect insect pheromonal communication?

N/A
N/A
Protected

Academic year: 2021

Partager "Will climate change affect insect pheromonal communication?"

Copied!
5
0
0

Texte intégral

(1)

Will

climate

change

affect

insect

pheromonal

communication?

Antoine

Boullis

1

,

Claire

Detrain

2

,

Fre´de´ric

Francis

1

and

Franc¸ois

J

Verheggen

1

Understandinghowclimatechangewillaffectspecies

interactionsisachallengeforallbranchesofecology.Wehave

onlylimitedunderstandingofhowincreasingtemperatureand

atmosphericCO2andO3levelswillaffect

pheromone-mediatedcommunicationamonginsects.Basedonthe

existingliterature,wesuggestthattheentireprocessof

pheromonalcommunication,fromproductiontobehavioural

response,islikelytobeimpactedbyincreasesintemperature

andmodificationstoatmosphericCO2andO3levels.Weargue

thatinsectspeciesrelyingonlong-rangechemicalsignalswill

bemostimpacted,becausethesesignalswilllikelysufferfrom

longerexposuretooxidativegasesduringdispersal.We

providefuturedirectionsforresearchprogrammes

investigatingtheconsequencesofclimatechangeoninsect

pheromonalcommunication.

Addresses

1EntomologieFonctionnelleetEvolutive,GemblouxAgro-BioTech, Universite´ deLie`ge,2PassagedesDe´porte´s,5030Gembloux,Belgium 2

Serviced’EcologieSociale,Universite´ libredeBruxelles,Campusdela Plaine,BoulevardduTriomphe,1050Brussels,Belgium

Correspondingauthor:Verheggen,Franc¸oisJ.(fverheggen@ulg.ac.be)

CurrentOpinioninInsectScience2016,17:87–91

ThisreviewcomesfromathemedissueonGlobalchangebiology EditedbyVladimirKosˇta´landBrentJSinclair

http://dx.doi.org/10.1016/j.cois.2016.08.006 2214-5745/#2016ElsevierInc.Allrightsreserved.

Introduction

Sincethe19thcentury,theatmosphericconcentrationof greenhousegases,particularlycarbondioxide(CO2),have

drastically increased causing changes to environmental parameters at aglobal scale, including temperature [1]. Recentstudiesnowhighlighttheimpactofsuch modifica-tionsonthewholedynamicsoflife[2].Throughcascade effects,entireecosystemsarebeingdisturbed,impacting thepopulationdynamicsofinhabitingspeciesandaltering theways thatthey interactwithoneanother. This phe-nomenon has been well documented for insect–plant

interactions mediated by plant secondary metabolites [3,4].

Communication between insectsrelies mainly on semi-ochemicals,whichareorganicmoleculesinvolvedinthe chemical interactions between organisms [5]. They in-cludepheromones(intraspecificcommunication)and alle-lochemicals (interspecific communication). Pheromones have a variety of important roles, especially related to foraging, aggregation or sexualbehaviour[6].Using be-haviour-changing pheromones (named releaser phero-mones) iscentral tointegrated pest management(IPM) [7],so predictingthe impactof climate changeon IPM programmes depends on understanding the impact of changesinrelatedabioticparametersoninsect pheromon-alcommunication.However,fewstudieshavefocusedon how changes in climate will disturb each stage in the pheromonepathwayfromemitterstoreceivers(Figure1).

A

pheromone’s

long

journey

Biosynthesis

Most insect pheromones are synthesised de novo and secreted in specialised glandular tissues, regulated by variousenzymaticactivities[8,9].Othersaresequestered and/orderivedfromdietaryprecursorsanddependonthe nutritive qualityof thediet. Elevatedtemperatures will likelyhavepronouncedeffectsonpheromone biosynthe-sis. Because insectsare ectothermicand poikilothermic, changingtheirbodytemperaturewillinfluenceenzymatic activities [10], andimpactpheromonebiosynthesis both quantitatively and qualitatively. For example, tempera-ture modifies the ratio of compounds in the sex phero-mone of the potato tuber worm moth Phthorimaea operculella [11]. Moths (Lepidoptera:Heterocera) differ-entially use the same precursors to synthesise different pheromone components, thanks to a wide variety of enzymes (i.e. oxidase, desaturases, reductase), allowing specificrecognition[12].Althoughtheseinsectscan per-ceiveawiderangeofpheromonecomponents,the activa-tionofneuronsintheirmacroglomerularcomplexes,and the elicitationof relevantbehaviouralresponses,is com-binatorial:itwillhappenonlywhentherightcombination andratioofcomponentsisperceivedatthesametime[6].

Developmentaltemperaturehasastronginfluenceonadult lifehistory,morphology,andphysiology.Furthermore,in some species, pheromone production and availability is

(2)

dependentonlarval,pupation,and/oradultdevelopmental conditions[8,13,14],hencetheeffectofabioticparameters on all the insect life stages is important. In the male beewolf, Philanthus triangulum, an increase of 58C in thelarvalrearingtemperatureledadultmalestoproduce morepheromonalsecretions[13].Moreover,warmer rear-ingconditionsledtohigherrelativeamountsofcompounds withhighmolecularweight.Asaconsequence,ashiftin temperature could weaken intraspecific relationships of theseinsectspeciesbyreducingtheefficiency(i.e. speci-ficity,activity,timingofproduction,etc.)oftheirchemical communication.

IncreasingatmosphericCO2concentrations[1]couldalso

affectthebiosynthesisofinsectpheromones.Changesin CO2concentrationsaffectplant biochemistry,including

thesynthesisof secondarymetabolites [4].Sincesome phytophagous insect species produce their pheromone components based on precursors taken from their host plant,wehypothesisethatphytophagousinsectscouldbe among the most vulnerable to changes in atmospheric CO2concentrations, through cascade effects of CO2on

plantchemistry [15,16].InHolomelina spp.moths, leu-cineisthestartingmaterialforsexpheromoneproduction [17]. In bark beetles, while pheromones are produced primarilyde novo mainly through the mevalonate path-way,someaggregationpheromonecomponentsarisefrom thehydroxylationofhosttree-derivedsecondary metab-olites[18].

Emission

Fewstudieshavespecificallyinvestigatedhowchangesin temperature and atmospheric gas composition act on pheromone release. In themoth Striacosta ablicosta, in-creaseinaveragetemperaturedoesnotaffectthecalling behaviour of females, while an increasing variation be-tween photophase and scotophase temperatures alter significantlythisbehaviour,asalsoobservedin Phyllonor-ycterjunoniella [19]. Ladybirdlarvae deposit more long-chained hydrocarbons — used as oviposition deterring pheromone—whenexposedtorisingtemperature[20]. An increase in atmospheric CO2concentration reduces

theemissionrateof thealarmpheromoneinpea aphids (Acyrthosiphonpisum)(Boullisetal.,unpublished).

Signaldispersal

After pheromone release by the emitter, volatile pher-omonesmaybealteredbyoxidativegasessuchasozone ontheirwaytothereceiver.Mostpheromonesaresimple, lipophilicand of low molecular weight, which facilitate theirlong-distancedispersalintheair.Otherpheromones are heavier molecules, including semi-volatile phero-monesandcuticularhydrocarbons(CHC),whichareused inshort-rangeorcontactcommunication[6].Like phyto-genic volatile organic compounds (VOCs), insect pher-omones made of unsaturated terpenes may be decomposedbyozone[21–23].Similarterpenesare con-stitutive of sexual, aggregation or alarm pheromones in several insect taxa, such as ladybirds [24,25], aphids

Figure1 2 3 Emission Biosynthesis Dispersion 4 Perception 5 Behavioural response 1

Current Opinion in Insect Science

Intraspecificchemicalcommunicationininsectsmaybesubdividedintofivestepsthatareprobablyimpactedbymodificationstoatmospheric gascompositionandassociatedraiseinambienttemperature.GraphicartbyCarolinaLevicek.

(3)

[26,27],barkbeetles[28]andfruitflies[29].As highlight-ed for Drosophilamelanogaster,terpenes couldlose their biological activity after short-term ozone fumigation at environmentally-realistic concentrations (ranging from 40 to 120ppb) [30]. The lifespan of trail-pheromones andalarm-pheromones,whichactinashorttimewindow and small spatial scale [31,32], may thus be further reduced in an ozone-rich atmosphere. In addition to the effect of ozone on pheromones, temperature acts onthevolatilityof semiochemicals.Inthecaseof pher-omones dispersed over long distances such as sex or aggregationpheromones,temperaturechangesmay mod-ifytheshapeofscentplumesanddisturbtheefficiencyof insects toreachtheirtarget[33].

Increased temperature may also alter heavy molecules, suchascuticularpheromonesinvolvedincontact recog-nition. Because of their low volatility,temperature will likely more affect the chemical composition of phero-monal blends (ratios of components). Insects’ cuticular lipidsexistinasolidstateatambienttemperatures,but they can partially melt upon contact with the animal’s surface(withhigherthanambienttemperature),which,in turn, induces modifications in the ratios of cuticular composition [34].Asobservedin D.melanogaster,a48C increase of ambient temperature changes cuticular hy-drocarboncomposition,whichleadtosexualisolationand affectthestabilityofecologicalcommunities[35].

Perception

Pheromoneperceptionoccursthroughacomplexseriesof events, starting when pheromones enter the sensilla lymph and ending at brain processing [36–38]. Very few data are available on how environmental changes willimpactpheromoneperception,butonerecentstudy showedthatthesexpheromoneperceptionwasalteredin malemoth Caloptilia fraxinellaunderelevated tempera-ture[39].

Becauseinsectsarepoikilotherms,changesintheirbody temperaturemayaltertheaffinitybetweenapheromone and itsbindingprotein(PBP) thattransports this mole-cule through the sensillumlymph to olfactory receptor neurons.InApismelliferaandA.cerana,ASP1actsasPBP thathasagoodaffinitytothequeenmandibular phero-mone [40]. However, increasing temperature weakens the van derWaals and hydrogenbonds established be-tweenthequeenmandibularpheromoneandPBP,which impliesthatbindingaffinitybetweenthesemoleculescan belessened, inducingareduced efficiency ofthesignal transportation troughthehydrophiliclymph[41].

Behaviouralresponse

Althoughinsectresponsestopheromonesareinnate,they may be conditional and influenced by direct (age, sex, hormonalstatus,experience)andindirect(cascadeeffect) factors[6].Temperatureisamajorabioticfactortogether

withphotoperiodthatdeterminestheintensityand tim-ing of various insects’ activities [42,43]. Field studies relatedtoIPMapproachesonseverallepidopteranshave shownthatthedielperiodicityoftheirsexualattractionis modifiedbybothphotoperiodandambienttemperature

[44–46].Moreover, the seasonal rate of capture by trap

catching is generally related to theassociated tempera-ture, depending on specific seasonal degree-days that insectsaresubjectedto[47,48].Bythislogic,anincrease in global surface temperature may shift the seasonal periodicity of sex-relatedflights in insects,requiring an adaptation of monitoring and treatment periods against these pest insects. Another example is the impact of changingtemperaturesonantforagingactivity.Antsthat use chemical recruitment tend to forage at lower tem-peraturescomparedtothosethatdonot[49].Therefore, acceleratedpheromone decaycaused byincreased tem-peratures is expected to alter trail-following behaviour andtobemoredetrimentaltoforagingbymass-recruiting antspecies[50].

Inadditiontoageneralincreaseininsectmobility,some specific behavioural responses to pheromones can be altered by elevated temperature. For instance, male moths C. fraxinella reared under increased temperature during their reproductive diapause and subsequently exposedtofemalesexpheromonesinawindtunnelshow more pronounced sexualresponses [39].At higher tem-peratures,malemothsalsoshowalowerlevelof specific-ity towards their sex pheromones, due to shifts in behavioural thresholdsrelated toplumeorientationand to theelicitation ofupwindflight [51].

Withregardsto theimpactof atmosphericCO2

concen-tration, the escape behaviour of aphids reared under elevated CO2concentrations (i.e.2100predictedlevels)

is lower compared to those reared under ambient CO2

conditions[52,53,54].Theincrease in CO2

concentra-tion could affect the escape behaviour of aphids by reducing theenzymatic activityof acetylcholinesterase, which is involved in neuronal transmission related to alarmsignalperception[55].Thisalteredabilityofaphids to produceand/orrespondtothealarmpheromonemay altertheirdefensivebehavioursunderchangingclimatic scenarios.

Conclusions,

wider

context

and

future

directions

Based ontheexistingliterature,wesuggest that phero-monal communication in insects will be disturbed by increasesintemperatureandatmosphericgas concentra-tions. Insectsrelying onlong-range chemicalsignalling, involving complexblendsof molecules,arelikelyto be moreimpacted,duetothepossibleperturbationof enzy-matic properties (leading to modification in compound ratio) or signal degradation by oxidative gases during dispersal (disrupting pheromone plumes). Behavioural

(4)

aspects of chemical communication (emission of the signal and induced behaviours) could also be affected asaconsequenceofshiftsinoptimalconditionsaffecting phenologyand/orphysiology.However,becauseclimate change effects on pheromonal communication may be maskedbythedailyand seasonalrhythmsof behaviour andphysiology,ourknowledgeofthespecificeffects of climatechangeonpheromonesignallingissparse. Inthisreviewweonlyfocusedonintraspecific (pheromon-al)chemicalcommunication,although allelochemical-me-diatedcommunicationinthebroadersensewilllikelyalso be affected by climate change. Indeed, as already sug-gestedinplant–insectrelationships,thechangesofseveral abiotic parameters could affect interactions between organisms from different trophic levels, and thus affect thedynamicsofecologicalsystems.However,itisdifficult topredicthowclimatechangewillimpactchemical com-munication between insects for several reasons. Abiotic factors could affect the different stagesof insect phero-mone communication (Figure 1), and the response of insects to particular environmental conditions could be species-specific.Moreover, theinteractive effectsof ele-vatedatmosphericozoneandCO2concentrations,aswell

as temperature increase, on chemical-mediated interac-tions havereceived limitedattention, despitethatall of these factors are affecting ecosystems’ stability. A key solutionlies intheuse ofmesocosmsandotherfacilities where multiple components of climate change can be manipulatedinamultispeciescontext[56].Thisapproach couldbeusedtoassesshowallclimaticchangesassociated with a predicted scenario in the coming century might interacttoimpacttheproductionofplantsecondary me-tabolites,andtheassociatedcascadeeffectsonthe phero-moneproductioninphytophagousinsects.

In an IPM context, the efficiency of pheromone slow-releasedevicescouldbereducedfollowingclimatic mod-ifications, since their release kinetics are sensitive to variousclimatic parameters including temperature[57]. Moreover,becausethebehaviouralresponseofinsectsto pheromonesandallelochemicalscouldalso bemodified asaconsequenceof climatechange,we suggestthatall semiochemical-based IPM strategies will be impacted, includingmasstrapping,mating disruption, monitoring, push-pullstrategiesandother intercroppingsystems.

Acknowledgements

A.BoulliswasfinanciallysupportedbyaPhDgrantfromtheFondspourla Formationa` laRecherchedansl’Industrieetl’Agriculture(FRIA),Belgium.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest ofoutstandinginterest

1. IPCC: Summary for policymakers. In Climate Change 2013: The PhysicalScienceBasis.ContributionofWorkingGroupItotheFifth

AssessmentReportoftheIntergovernmentalPanelonClimate Change.EditedbyStockerTF,QinD,PlattnerG-K,TignorM,Allen SK,BoschungJ,NauelsA,XiaY,BexV,MidgleyPM.Cambridge, UnitedKingdom/NewYork,NY,USA:CambridgeUniversityPress; 2013.

2. Hughes L: Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 2000, 15:56-61. 3. DeLuciaEH,NabityPD,ZavalaJA,BerenbaumMR:Climate

change:resettingplant–insectinteractions.PlantPhysiol2012, 160:1677-1685.

4. 

Ode PJ, Johnson SN, Moore BD: Atmospheric change and induced plant secondary metabolites—are we reshaping the building blocks of multi-trophic interactions? Curr Opin Insect Sci 2014, 5:57-65.

Thisisarecentreviewhighlightingtheimpactofelevatedgreenhousegas concentrationsonplantdefencesagainstinsectherbivores.

5. LawJH,RegnierFE:Pheromones.AnnuRevBiochem1971, 40:533-548.

6. Wyatt TD: Pheromones and Animal Behavior. Cambridge University Press; 2014.

7. MillerJR,GutLJ:Matingdisruptionforthe21stcentury: matchingtechnologywithmechanism.EnvironEntomol2015, 44:427-453.

8. Blomquist GJ, Jurenka R, Schal C, Tittiger C: Pheromone production: biochemistry and molecular biology. In Insect Endocrinology. Edited by Gilbert LI. Oxford: Elsevier; 2012: 523-567.

9. TillmanJA,SeyboldSJ,JurenkaRA,BlomquistGJ:Insect pheromones—anoverviewofbiosynthesisandendocrine regulation.InsectBiochemMolBiol1999,29:481-514. 10. NevenLG:Physiologicalresponsesofinsectstoheat.

Postharvest Biol Technol 2000, 21:103-111.

11. Ono T: Effect of rearing temperature on pheromone componentratioinpotatotuberwormmoth,Phthorimaea operculella(Lepidoptera:Gelechiidae).JChemEcol1993, 19:71-81.

12. AndoT,YamakawaR:Analysesoflepidopteransex pheromonesbymassspectrometry.TrendAnalChem2011, 30:990-1002.

13. Roeser-Mueller K, Strohm E, Kaltenpoth M: Larval rearing temperature influences amount and composition of the marking pheromone of the male beewolf, Philanthus triangulum.JInsectSci2010,10:1-16.

14. OnoT:Effectoftemperatureonbiosynthesisofsex pheromonecomponentsinpotatotuberwormmoth, Phthorimaeaoperculella(Lepidoptera:Gelechiidae).JChem Ecol1994,20:2733-2741.

15. Bidart-Bouzat MG, Imeh-Nathaniel A: Global change effects on plant chemical defenses against insect herbivores. J Integr PlantBiol2008,50:1339-1354.

16. 

BoullisA,FrancisF,VerheggenFJ:Climatechangeand tritrophicinteractions:willmodificationstogreenhousegas emissionsincreasethevulnerabilityofherbivorousinsectsto naturalenemies? EnvironEntomol2015,44:277-286.

A comprehensive review of the effects of climate and atmospheric changesonchemicalcommunication-mediating interactions between phytophagousinsectpests,theirhostplants,andtheirnaturalenemies. 17. Charlton RE, Roelofs WL: Biosynthesis of a volatile,

methyl-branchedhydrocarbonsexpheromonefromleucinebyarctiid moths(Holomelinaspp.).ArchInsectBiochemPhysiol1991, 18:81-97.

18. BlomquistGJ,Figueroa-TeranR,AwM,SongM,GorzalskiA, AbbottNL,ChangE,TittigerC:Pheromoneproductioninbark beetles.InsectBiochemMolBiol2010,40:669-671.

19. Mozu¯raitisR, Bu¯daV: Pheromone release behaviour in females of Phyllonorycter junoniella (Z.) (Lepidoptera, Gracillariidae) under constant and cycling temperatures. J Insect Behav 2006, 19:129-142.

(5)

20. 

SentisA,Ramon-PortugalF,BrodeurJ,HemptinneJL:Thesmell ofchange:warmingaffectsspeciesinteractionsmediatedby chemicalinformation.GlobChangeBiol2015,21:3586-3594. Thisstudydemonstratestheeffectofelevatedtemperatureon infochem-ical-related behaviours in ladybeetles. Temperature changes induce modificationinterms ofemissionofmarkingpheromones aswell as shiftsinlayingbehaviourofreceivingfemales.

21. HolopainenJK,HimanenSJ,YuanJS,ChenF,StewartCN: Ecologicalfunctionsofterpenoidsandclimatechanges.In HandbookofNaturalProducts.EditedbyRamawatKG,Merillon JM.Springer;2013:2913-2940.

22. Pinto DM, Tiiva P, Miettinen P, Joutsensaari J, Kokkola H, Nerg A-M, Laaksonen A, Holopainen JK: The effects of increasing atmosphericozoneonbiogenicmonoterpeneprofilesand theformationofsecondaryaerosols.AtmosEnviron2007, 41:4877-4887.

23. Pinto DM, Blande JD, Nyka¨nen R, Dong W-X, Nerg A-M, Holopainen JK: Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J Chem Ecol 2007, 33:683-694. 24. FassotteB,FischerC,DurieuxD,LognayG,HaubrugeE,

FrancisF,VerheggenFJ:Firstevidenceofavolatilesex pheromone in lady beetles. PLOS ONE 2014, 9:e115011. 25. FassotteB,FrancisF,VerheggenFJ:Thescentoflove:how

importantaresemiochemicalsinthesexualbehavioroflady beetles? JPestSci2016,89:347-358.

26. Francis F, Vandermoten S, Verheggen F, Lognay G, Haubruge E: Is the (E)-b-farnesene only volatile terpenoid in aphids? J Appl Entomol 2005, 129:6-11.

27. Boullis A, Verheggen F: Chemical ecology of aphids. In Biology and Ecology of Aphids. Edited by Vilcinskas A. CRC Press; 2016: 171-198.

28. TaftS,NajarA,ErbilginN:Pheromoneproductionbyaninvasive barkbeetlevarieswithmonoterpenecompositionofitsnaı¨ve host.JChemEcol2015,41:540-549.

29. Sarles L, Verhaeghe A, Francis F, Verheggen F: Semiochemicals of Rhagoletis fruit flies: potential for integrated pest management.CropProt2015,78:114-118.

30. Arndt U: Air pollutants and pheromones—a problem? Chemosphere 1995, 30:1023-1031.

31. CzaczkesTJ,Gru¨terC,RatnieksFL:Trailpheromones:an integrativeviewoftheirroleinsocialinsectcolony organization.AnnuRevEntomol2015,60:581-599.

32. Joachim C, Vosteen I, Weisser WW: The aphid alarm pheromone (E)-b-farnesenedoesnotactasacueforpredatorssearching onaplant.Chemoecology2015,25:105-113.

33. McFrederick QS, Fuentes JD, Roulston TA, Kathilankal JC, Lerdau M: Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 2009, 160:411-420. 34. GibbsAG:Lipidmeltingandcuticularpermeability:new

insightsintoanoldproblem.JInsectPhysiol2002,48:391-400. 35. BontonouG,DenisB,Wicker-ThomasC:Interactionbetween

temperatureandmalepheromoneinsexualisolationin Drosophilamelanogaster.JEvolBiol2013,26:2008-2020. 36. Zhang J, Walker WB, Wang G: Pheromone reception in moths:

from molecules to behaviors. In Progress in Molecular Biology and Translational Science. Edited by Glatz RB. Academic Press; 2015:109-128.

37. ZhouJ-J:Odorant-bindingproteinsininsects.In Pheromones. EditedbyLitwackG. ElsevierAcademicPress;2010:241-272. 38. IshidaY,LealWS:ChiraldiscriminationoftheJapanesebeetle

sexpheromoneandabehavioralantagonistbya pheromone-degradatingenzyme.ProcNatlAcadSciUSA2008, 105:9076-9080.

39. Lemmen J, Evenden M: Environmental conditions terminate reproductive diapause and influence pheromone perception in the long-lived moth Caloptilia fraxinella. Physiol Entomol 2015, 40:30-42.

40. SlessorKN,WinstonML,LeConteY:Pheromone

communicationinthehoneybee(ApismelliferaL.).JChem Ecol2005,31:2731-2745.

41. WengC,FuY,JiangH,ZhuangS,LiH:Bindinginteraction betweenaqueenpheromonecomponentHOBand pheromone binding protein ASP1 of Apis cerana. Int J Biol Macromol 2015, 72:430-436.

42. Bonsignore CP, Bellamy C: Daily activity and flight behaviour of adults of Capnodis tenebrionis (Coleoptera: Buprestidae). Eur J Entomol 2007, 104:425-431.

43. Seybold SJ, King JA, Harris DR, Nelson LJ, Hamud SM, Chen Y: Diurnal flight response of the walnut twig beetle,

Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), to pheromone-baited traps in two northern California walnut habitats.Pan-PacEntomol2012,88:231-247.

44. ComeauA,Carde´ RT,RoelofsWL:Relationshipofambient temperaturestodielperiodicitiesofsexattractioninsix speciesofLepidoptera.CanEntomol1976,108:415-418. 45. LanceDR,OdellTM,MastroVC,SchwalbeCP:

Temperature-mediatedprogrammingofactivityrhythmsinmalegypsy moths(Lepidoptera:Lymantriidae):implicationsforthesterile maletechnique.EnvEntomol1988,17:649-653.

46. Carde´ RT,CharltonRE,WallnerWE,BaranchikovYN: Pheromone-mediateddielactivityrhythmsofmaleAsian gypsy moths (Lepidoptera: Lymantriidae) in relation to female eclosion and temperature. Ann Entomol Soc Am 1996, 89:745-753.

47. Del Tı´o R, Martinez JL, Ocete R, Ocete ME: Study of the relationship between sex pheromone trap catches of Lobesia botrana (Den. & Schiff.) (Lep., Tortricidae) and the

accumulation of degree-days in Sherry vineyards (SW of Spain). J Appl Entomol 2001, 125:9-14.

48. GallardoA,OceteR,Lo´pezMA,MaistrelloL,OrtegaF,SemedoA, SoriaFJ:ForecastingtheflightactivityofLobesiabotrana (Denis&Schiffermu¨ller)(Lepidoptera,Tortricidae)in southwesternSpain.JApplEntomol2009,133:626-632. 49. RuanoF,TinautA,SolerJJ:Highsurfacetemperaturesselect

forindividualforaginginants.BehavEcol2000,11:396-404. 50. vanOudenhoveL,BilloirE,BoulayR,BernsteinC,Cerda´ X:

Temperaturelimitstrailfollowingbehaviorthroughpheromone decayinants.Naturwissenschaften2011,98:1009-1017. 51. LinnCE,CampbellMG,RoelofsW:Temperaturemodulationof

behaviouralthresholdscontrollingmalemothsexpheromone response specificity. Physiol Entomol 1986, 13:59-67. 52. Awmack C, Woodcock C, Harrington R: Climate change may

increase vulnerability of aphids to natural enemies. Ecol Entomol 1997, 22:366-368.

53. Mondor EB, Tremblay MN, Awmack CS, Lindroth RL: Divergent pheromone-mediated insect behaviour under global atmospheric change. Glob Change Biol 2004, 10:1820-1824. 54.



HentleyWT,VanbergenAJ,HailsRS,JonesTH,JohnsonSN: ElevatedatmosphericCO2impairsaphidescaperesponsesto predatorsandconspecificalarmsignals.JChemEcol2014, 40:1110-1114.

RarearethestudiesthatassesstheimpactofelevatedCO2on pher-omonalsignallingininsects.Here,theauthorsshowedthatanincreasein CO2concentrationreducetheescapebehaviourinaphidswhenalarm pheromoneispresentedtothecolony.

55. SunY,SuJ,GeF:ElevatedCO2reducestheresponseof Sitobionavenae(Homoptera:Aphididae)toalarmpheromone. AgricEcosystEnviron2010,135:140-147.

56. Stewart RI, Dossena M, Bohan DA, Jeppesen E, Kordas RL, Ledger ME, Meerhoff M, Moss B, Mulder C, Shurin JB et al.: Mesocosm experiments as a tool for ecological climate-change research. Adv Ecol Res 2013, 48:71-181.

57. Heuskin S, Verheggen FJ, Haubruge E, Wathelet J-P, Lognay G: The use of semiochemical slow-release devices in integrated pest management strategies. Biotechnol Agron Soc 2011, 15:459-470.

Figure

Figure 1 2 3Emission Biosynthesis Dispersion 4 Perception 5 Behavioural response1

Références

Documents relatifs

More frequent and intense dry spells are a great concern for rainfed agriculture, as deficit of water at the sensitive stages of crop growth significantly reduces potential crop

The objectives and significance of this venture were (i) to review the opportunities for farmers to cope with agro-meteorological risks and uncertainties, (ii)

The general approach consists of; (i) Selecting an appropriate set of scenarios of alternative possible futures (e.g. lower or higher rates of emissions of

The changes in ecosystems, krill distribution and recruitment already observed imply that environmental change may quickly outrun the ability of current manage- ment procedures to

The spatial shift and temporal evolution of each climatic zone based on Köppen-Geiger climate classification are analyzed in historical and future period under different

three Working Group contributions to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), the most comprehensive assessment of climate

Local institutions play an important role in shaping the capacities of communities to respond to changes in natural and social systems driven by external factors, including changes

The villages selected for implementation of the SDC supported Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change (V&A) pilot programme in