• Aucun résultat trouvé

Radiation-Induced Defects in a Commercial Image Sensor for Space Applications

N/A
N/A
Protected

Academic year: 2021

Partager "Radiation-Induced Defects in a Commercial Image Sensor for Space Applications"

Copied!
60
0
0

Texte intégral

(1)

an author's https://oatao.univ-toulouse.fr/22966

Le Roch, Alexandre and Goiffon, Vincent and Durnez, Clémentine and Magnan, Pierre and Virmontois, Cédric and Pistre, L. and Belloir, Jean-Marc Radiation-Induced Defects in a Commercial Image Sensor for Space Applications. (2017) In: CNES Workshop: CMOS Image Sensors for High Performance Applications, 21 November 2017 - 22 November 2017 (Toulouse, France).

(2)

Radiation Induced Defects in Commercial

Image Sensor for Space Applications

A. Le Roch, V. Goiffon, C. Durnez, P. Magnan

Université de Toulouse, ISAE SUPAERO, 31055 Toulouse, France.

C. Virmontois, L. Pistre, J-M. Belloir

(3)

Context and Goal

o CMOS Image Sensor (CIS) are considered as the perennial path for

(4)

Context and Goal

o CMOS Image Sensor (CIS) are considered as the perennial path for

future space imaging and especially the PPD technology.

o Particles from space are likely to generate Displacement Damage Dose (DDD).

(5)

Context and Goal

o CMOS Image Sensor (CIS) are considered as the perennial path for

future space imaging and especially the PPD technology.

o Particles from space are likely to generate Displacement Damage Dose (DDD).

(6)

Context and Goal

o CMOS Image Sensor (CIS) are considered as the perennial path for

future space imaging and especially the PPD technology.

o Particles from space are likely to generate Displacement Damage Dose (DDD).

(7)

Context and Goal

(8)

Context and Goal

o Displaced Si atoms create stable defects. Such defects act as generation centers and lead to a dark current increase.

(9)

Context and Goal

o Displaced Si atoms create stable defects. Such defects act as generation centers and lead to a dark current increase.

o Defects creation mechanisms

and annealing behaviors are needed for a better understanding of radiation induced dark current increase.

(10)

Context and Goal

o Displaced Si atoms create stable defects. Such defects act as generation centers and lead to a dark current increase.

o Defects creation mechanisms

and annealing behaviors are needed for a better understanding of radiation induced dark current increase.

o The main goal is to find a mitigation technique.

(11)

Dark Current Spectroscopy (DCS)

o DCS is used to charaterize radiation induced defects throughout

(12)

Dark Current Spectroscopy (DCS)

o DCS is used to charaterize radiation induced defects throughout

the dark current distribution of all the pixels of the matrix.

o The per pixel dark current relies on silicon sampled by the PPD

(13)

Dark Current Spectroscopy (DCS)

o DCS is used to charaterize radiation induced defects throughout

the dark current distribution of all the pixels of the matrix.

o The per pixel dark current relies on silicon sampled by the PPD

(14)

Dark Current Spectroscopy (DCS)

o DCS is used to charaterize radiation induced defects throughout

the dark current distribution of all the pixels of the matrix.

o The per pixel dark current relies on silicon sampled by the PPD

(15)

Dark Current Spectroscopy (DCS)

o DCS is used to charaterize radiation induced defects throughout

the dark current distribution of all the pixels of the matrix.

o The per pixel dark current relies on silicon sampled by the PPD

depleted volume.

(16)

Dark Current Spectroscopy (DCS)

o DCS is used to charaterize radiation induced defects throughout

the dark current distribution of all the pixels of the matrix.

o The per pixel dark current relies on silicon sampled by the PPD

(17)

Dark Current Spectroscopy (DCS)

o DCS is used to charaterize radiation induced defects throughout

the dark current distribution of all the pixels of the matrix.

o The per pixel dark current relies on silicon sampled by the PPD

depleted volume. Ec Ev Ei Dark Current Pi xel Count Diffusion

(18)

Dark Current Spectroscopy (DCS)

o DCS is used to charaterize radiation induced defects throughout

the dark current distribution of all the pixels of the matrix.

o The per pixel dark current relies on silicon sampled by the PPD

depleted volume. Ec Ev Ei Dark Current Pi xel Count Diffusion ΔI Generation

(19)

Dark Current Spectroscopy (DCS)

o DCS is used to charaterize radiation induced defects throughout

the dark current distribution of all the pixels of the matrix.

o The per pixel dark current relies on silicon sampled by the PPD

depleted volume. Ec Ev Ei Dark Current Pi xel Count Diffusion 2×ΔI Generation

(20)

Dark Current Spectroscopy (DCS)

o DCS is used to charaterize radiation induced defects throughout

the dark current distribution of all the pixels of the matrix.

o The per pixel dark current relies on silicon sampled by the PPD

depleted volume. Ec Ev Ei Dark Current Pi xel Count Diffusion

(21)

Dark Current Spectroscopy (DCS)

o DCS is used to charaterize radiation induced defects throughout

the dark current distribution of all the pixels of the matrix.

o The per pixel dark current relies on silicon sampled by the PPD

depleted volume. Ec Ev Ei Dark Current Pi xel Count

(22)

Dark Current Spectroscopy (DCS)

o The generation dark current expression of a stable defect with

energy level 𝑬𝒕 is given by:

o The dark current temperature evolution leads to defect activation energy estimation labeled 𝑬𝒂 with the Arrhenius law.

𝐼

𝑑𝑐

≈ 𝐴 . exp (−

𝐸

𝑔

2 −

𝑬

𝒕

− 𝐸

𝑖

𝑘

𝐵

. 𝑇

)

𝑬

𝒂

𝐸

𝑔

2

𝑬

𝒕

− 𝐸

𝑖

𝐼

𝑑𝑐

≈ 𝐴 . 𝑒

𝑘−𝑬𝐵 .𝑇𝒂 𝐸𝑔 𝐸𝑡 𝐸𝑖 𝑘𝐵 𝑇

Silicon band GAP Defect energy level Silicon mid-GAP Boltzmann Constant Temperature

(23)

COTS Imager

o The CIS under test is a (Commercial

Off-The-Shelf) COTS imager • 2048×2048 pixels • 0.18µm technology • 8T-PPD • Global shutter • 5.5 µm pitch pixels • PPD depleted volume of 5µm³

o This CIS is integrated in a

microcamera for CNES space missions.

(24)

Dark Current distribution Before Irradiation

• Diffusion peak containing pixels

without defect in the microvolume.

Generation peak Diffusion peak

o Dark current and activation energy distribution plotted at 30°C

(25)

Dark Current distribution Before Irradiation

• Diffusion peak containing pixels

without defect in the microvolume.

• Generation peak due to CMOS foundry

process. Generation peak Diffusion peak

o Dark current and activation energy distribution plotted at 30°C

(26)

Irradiations Parameters (20°C)

o High energy proton (A-50MeV B-150 MeV)

• Nuclear chocs

• Cascade of defects

(27)

Irradiations Parameters (20°C)

o Carbon ion (D-10 MeV)

• Nuclear chocs and Coulombic interaction

• Cascade of defects

and Point defects

o High energy proton (A-50MeV B-150 MeV)

• Nuclear chocs

• Cascade of defects

(28)

Irradiations Parameters (20°C)

o Carbon ion (D-10 MeV)

• Nuclear chocs and Coulombic interaction

• Cascade of defects

and Point defects

o Low energy proton (C-1 MeV)

• Coulombic interaction

• Point defects

o High energy proton (A-50MeV B-150 MeV)

• Nuclear chocs

• Cascade of defects

(29)

High Energy Proton

o Dark current distribution evolution with annealings plotted at 20°C

3

1

2

High-energy proton Carbon ion Low energy proton

(30)

High Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton

o Dark current distribution evolution with annealings plotted at 20°C

(31)

High Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton

o Dark current distribution evolution with annealings plotted at 20°C

(32)

High Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton

o Dark current distribution evolution with annealings plotted at 20°C

(33)

High Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton

o Dark current distribution evolution with annealings plotted at 20°C

(34)

High Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton

o Dark current distribution evolution with annealings plotted at 20°C

(35)

High Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton

o Dark current distribution evolution with annealings plotted at 20°C

(36)

High Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton • TID annealing TID annealing

o Dark current distribution evolution with annealings plotted at 20°C

(37)

High Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton • TID annealing • Increase of the diffusion peak.

o Dark current distribution evolution with annealings plotted at 20°C

TID annealing

(38)

High Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton • TID annealing • Increase of the diffusion peak. • Decrease of the

dark current tail.

o Dark current distribution evolution with annealings plotted at 20°C

TID annealing

(39)

High Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton • TID annealing • Increase of the diffusion peak. • Decrease of the

dark current tail. • Multiple

generation peaks ΔI = 26 e-/s (20°C)

o Dark current distribution evolution with annealings plotted at 20°C

TID annealing

(40)

High Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton • TID annealing • Increase of the diffusion peak. • Decrease of the

dark current tail. • Multiple generation peaks ΔI = 26 e-/s (20°C) • Defect annealing between 240°C and 280°C.

o Dark current distribution evolution with annealings plotted at 20°C

TID annealing

(41)

High Energy Proton

o Activation energy evolution with annealings (240°C and 280°C)

• Dark current ΔI = 26 e-/s (20°C) • Activation energy Ea = 0,83eV

• Annealing temperature [240°C – 280°C]

3

1

2

High-energy proton Carbon ion Low energy proton 240°C annealing 280°C annealing

(42)

Carbon Ion

3

1

2

High-energy proton Carbon ion Low energy proton

o Activation energy evolution with annealings (240°C and 280°C)

• Dark current ΔI = 30 e-/s (20°C) • Activation energy Ea = 0,83eV

• Annealing temperature [240°C – 280°C]

240°C annealing 280°C annealing

(43)

Carbon Ion

3

1

2

High-energy proton Carbon ion Low energy proton

o Activation energy evolution with annealings (240°C and 280°C)

• Dark current ΔI = 30 e-/s (20°C) • Activation energy Ea = 0,83eV

• Annealing temperature [240°C – 280°C]

Same defects

identification after high energy proton

240°C annealing 280°C annealing

(44)

Low Energy Proton

3

1

2

High-energy proton Carbon ion Low energy proton • TID annealing • Increase of the diffusion peak. • Decrease of The

dark current tail. • Generation peaks ΔI = 500 e-/s (20°C) • No annealing between 240°C and 280°C. TID annealing

o Dark current distribution evolution with annealings plotted at 20°C

(45)

Irradiations Comparison

Last annealing at 300°C

3

1

2

High-energy proton Carbon ion Low energy proton 300°C annealing

(46)

Irradiations Comparison

Last annealing at 300°C

3

1

2

High-energy proton Carbon ion Low energy proton o Diffusion peak • Idc ~ 30e-/s (20°C) • Ea ~ 0,95eV 300°C annealing

(47)

Irradiations Comparison

Last annealing at 300°C

o Diffusion peak

• Idc ~ 30e-/s (20°C) • Ea ~ 0,95eV

o First generation peak (remaining) • ΔIdc ~ 30e-/s (20°C) • Ea ~ 0,83eV

3

1

2

High-energy proton Carbon ion Low energy proton 300°C annealing

(48)

Irradiations Comparison

Last annealing at 300°C

o Diffusion peak

• Idc ~ 30e-/s (20°C) • Ea ~ 0,95eV

o First generation peak (remaining) • ΔIdc ~ 30e-/s (20°C)

• Ea ~ 0,83eV

o Second generation peak • Δ Idc ~ 150e-/s (20°C) • Ea ~ 0,75eV

3

1

2

High-energy proton Carbon ion Low energy proton 300°C annealing

(49)

Irradiations Comparison

o Diffusion peak

• Idc ~ 30e-/s (20°C) • Ea ~ 0,95eV

o First generation peak (remaining) • ΔIdc ~ 30e-/s (20°C)

• Ea ~ 0,83eV

o Second generation peak • Δ Idc ~ 150e-/s (20°C) • Ea ~ 0,75eV

o Third generation peak • Δ Idc ~ 600e-/s (20°C) • Ea ~ 0,67eV Last annealing at 300°C

3

1

2

High-energy proton Carbon ion Low energy proton 300°C annealing

(50)

Defects Identification and Discussion

Defect 20°C Dark Current (e-/s) |Et-Ei| (eV) Annealing Temperature

Vacancy-Oxygen VO - ~0,39 > 300°C Divacancy V2 ~[26–30] ~30 ~0,18 ~0,17 [240°C–280°C] 260°C Divacancy-Dioxygen V2O2 150 - ~0,11 ~0,16 > 300°C > 300°C Vacancy-Phosphorus VP ~35 ~0,13 150°C Divacancy-Oxygen V2O ~[500–600] - ~0,01 ~0,06 > 300°C > 330°C Experimental Datas Ec Ev Ei VO V2 VP V2O2 V2O Diffusion Cluster

High energy proton example

(51)

Conclusion

o 4 COTS imagers have been irradiated with:

(52)

Conclusion

o 4 COTS imagers have been irradiated with:

• High energy proton / Carbon ion / Low energy proton

o The hypothetical existence of oxygen based defects such as V2O

and V2O2 have been pointed out.

• The role of oxygen impurities in the dark current rise after irradiation.

(53)

Conclusion

o 4 COTS imagers have been irradiated with:

• High energy proton / Carbon ion / Low energy proton

o The hypothetical existence of oxygen based defects such as V2O

and V2O2 have been pointed out.

• The role of oxygen impurities in the dark current rise after irradiation.

~5µm³ Oxygen

(54)

Conclusion

o 4 COTS imagers have been irradiated with:

• High energy proton / Carbon ion / Low energy proton

o The hypothetical existence of oxygen based defects such as V2O

and V2O2 have been pointed out.

• The role of oxygen impurities in the dark current rise after irradiation.

o The DCS measurements suggest that similar divancancy based

defects are involved in all the irradiations.

14

~5µm³ Oxygen

concentration

< <

concentration in pure Si Minimum impurity

Workshop CNES 2018, November 21, Toulouse, France Alexandre Le Roch

(55)

Thanks for your attention

A. Le Roch, V. Goiffon, C. Durnez, P. Magnan

Université de Toulouse, ISAE SUPAERO, 31055 Toulouse, France.

C. Virmontois, L. Pistre, J-M. Belloir

(56)

Irradiations Parameters

IRRADIATION PARAMETERS

Sensor Ref A B # (for UDF) C D

Particles Proton Proton Proton Proton Carbon

Energy (Mev) 50 150 50 1 10

Fluence (cm-2) 1,30 E+11 3,00 E+11 2,00 E+11 3.00 E+8 1.00 E+10

DDD (Tev.g-1) 504,4 645 776 + ++

TID (KradSi) 20,49 21,02 315,2 - -

Carbon ion

• Huge cross

section and mass • DDD Nuclear

chocs

• Cluster of defects

High energy proton

• Good NIEL estimation • DDD Nuclear chocs • Cluster of defects

Low energy proton

• Huge NIEL at End Of Range (EOR) • Huge DDD

• Coulombic interactions • Point defects

(57)

Universal Damage Factor (UDF)

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06

1E-03 1E-02 1E-01 1E+00

Dar k Cu rr ent Incre as e p er Un it Deplet ed V o lum e and Flu ence (e.s -1.cm -3.c m2)

DDD per Unit Fluence (MeV.cm²/g)

Srour model 50 Mev Proton 150 MeV Proton 1,00E-03 1,00E-02 1,00E-01 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04

1,00E-02 1,00E+00 1,00E+02 1,00E+04

Dar k Cu rr ent Incre as e p er Un it V o lum e (e/s .µm 3) DDD (TeV/g) Proton Irradiations Sensor Ref A B C

Particles Proton Proton Proton

Energy (Mev) 50 150 50

Fluence (cm-2) 1,30 E+11 3,00 E+11 2,00 E+11

DDD (Tev.g-1) 504,4 645 776

TID (KradSi) 20,49 21,02 315,2

ΔI (e-/s) 415 424 542

𝐾𝑑𝑎𝑟𝑘 = 1.9 × 105 (𝑒/cm³.s)/(MeV/g) 𝑉𝑑𝑒𝑝 = 5µ𝑚³

(58)

Dark Current Distribution

IRRADIATION PARAMETERS

Sensor Ref A B C D

Particles Proton Proton Proton Carbon

Energy (Mev) 50 150 1 10

Fluence (cm-2) 1,30 E+11 3,00 E+11 3.00 E+8 1.00 E+10

DDD (Tev.g-1) 504,4 645 + ++

TID (KradSi) 20,49 21,02 - -

× 104 𝑆𝑒𝑛𝑠𝑜𝑟 𝐵

(59)
(60)

Références

Documents relatifs

[1] Dang H.V., Initiation and propagation phases of re-bars corrosion in pre-cracked reinforced concrete exposed to carbonation or chloride environment, PhD thesis, INSA Toulouse,

ied the numerical analysis of the approximation with the Symmetric Interior Penalty Galerkin method of the neutron multigroup SP N equations.

Abstract—We have recently proposed a new optimiza- tion algorithm called SPARKLING (Spreading Projection Algorithm for Rapid K-space sampLING) to design efficient Compressive

(2) The proof that if a planning language L authorizes the existence of temporally cyclic plans, then it authorizes actions with an effect before the start of a condition is

430 (οὔκουν/οὐκοῦν) : « The punctuation and accentuation of our MSS are not to be trusted over-implicitly, and frequent changes should probably be made. Editors have

Après avoir défini le rôle de l'albumine au sein du plasma, une deuxième partie sera consacré à définir ce qu'est un métabolite réactif (MR) formé à partir d'un

Les nombreux défis vécus par CIMA + à l’international renseignent, encore une fois, sur l’importance du contexte sociopolitique lorsque les travailleurs sont en déplacement. Ceci

• A tour de rôle, après avoir bien écouté la note (ici un La3) produite par le diapason dont dispose le professeur, reproduire un La (peu importe l’octave) et s’enregistrer. -