• Aucun résultat trouvé

Labor Contracts With Two-Dimensional Adverse Selection

N/A
N/A
Protected

Academic year: 2021

Partager "Labor Contracts With Two-Dimensional Adverse Selection"

Copied!
20
0
0

Texte intégral

(1)

sele tion GuillaumeCarlier  DamienGaumont  May 25,2000 Abstra t 1

We study in entive- ompatible labor ontra ts in the ase where both

individualprodu tivityandsubje tivedis ountrateÆareunobservableby

the rm. We rst show that unidimensionalmanifolds of agents group on

the same ontra t. High , low Æ agents may hoose the same ontra t as

low,highÆ agents. Weshowexisten eand uniquenessofanoptimalwage

fun tion whi h is ontinuous and unbounded. This optimal wage fun tion

an bedeterminedbytheironing pro edure.

Keywords: AdverseSele tion,In entive-CompatibleContra ts,

Ironing Pro edure, Heterogeneous Time Preferen e.

J.E.L. Classi ation: C61, C62,D82, J31,

CEREMADE,CNRSUMR7534,UniversiteParisIXDauphine,Pla edeLattredeTassigny,

75016Paris,e-mail: arlier eremade.dauphine.fr

ERMES,CNRS,UPRES-A7017,UniversiteParisII(Pantheon-Assas),92rued'Assas,75270

ParisCedex06,e-mail:gaumontens.u-paris2.fr

1

We thank David Bell, Ivar Ekeland, Thierry Granger and Nizar Touzi for helpful

(2)

Inthe labormarket, adverse sele tion a ords therelationbetween

produ -tivity and wages, Yellen (1984). Adverse sele tion is indeed a reason for

rmsto set eÆ ien y wages. In thispart of the eÆ ien y wages literature,

workersonlydi erintheirindividualability,Aziariadis(1983), Mal omson

(1981),Stiglitz(1984),Weiss(1980). Inthatlineofresear h,labor ontra ts

allow rms to sele t most skilledagents by spe ifying wages that are non

de reasing with respe t to workers' produ tivity. Neverhtless, this theory

failstoexplaintwowell-knownempiri alobservations: xedwagesandwage

di erentials.

Fixed-wage theory points out that workers having the same wage do

not ne essarily have the same produ tivity, Aziariadis (1981), Grossman

(1981), Polemar hakis and Weiss (1978), Killingsworth (1988, p. 61-65)

and manyempiri alstudieshave testedthetheoryof xed-wage at the

mi- roe onomi level, Abowdand Ashenfelter (1981), Ham (1982). Moreover,

wage-di erentials literature emphasizes that wage di eren es still remain

partiallyunexplained. Empiri altestssolelybasedonworkers'produ tivity

fail to explain all the existing varian e of wages. Starting from the

semi-nalwork ofAbowdand Ashenfelter(1981), Krueggerand Summers(1988),

manyempiri alstudieshave shownthatheterogeneityofprodu tivityisfar

from apturing heterogeneityof wages amongagents.

In this paper, we try to explain why equally produ tive agents do not

ne essarily a ept identi al labor ontra ts. We argue here that a relevant

adverse sele tion parameter may be time preferen e. Indeed, sin e equally

produ tive individualdo not samely valuateleisure time, they do not

ne -essarilya ept thesame labor ontra t. Arguingthatheterogeneityoftime

preferen e aptures a trade-o between leisure and in ome, it may be a

reasonablewayto explainwage-di erentials.

We therefore onsidera model where bothprodu tivity and time

pref-eren e are unobservable to the prin ipal so that two-dimensional adverse

sele tion takes pla e. Our aim is to give a possible explanation for both

xed-wages and wage di erentials in a prin ipal agent setting. We

estab-lish that there may be perfe t substitutionbetween produ tivityand time

preferen e: in entive- ompatibility impliesthat very heterogeneous agents

re eive the same ontra t. More pre isely, very skilledbut little provident

workerson theonehandandless produ tive butvery providentworkers on

theotherhandmaya tuallygrouponthesame ontra t. Inotherwords,the

two parameters may ompensate ea h other. This substitution may

there-foreexplainbothwage di erentialsand xed-wages. Finally,thepossibility

ofbun hingo ersanotherpossibleexplanationfor xed-wages e e ts.

We rst show that the above mentioned substitution allows to redu e

(3)

spe i resultofourmodelisthatthereisno niteupperboundonoptimal

wages for agents whose both hara teristi s tend to the upper bounds on

produ tivity and subje tive dis ount rate. We believe that this somehow

surprisingresultisquite robustwhen theredu tion tri kwe useapplies.

Ourpaperisorganizedasfollows. Se tion2presentsthemodel. Se tion

3 hara terizesin entive- ompatiblelabor ontra tsinourtwo-dimensional

adversesele tionsetting. Se tion4solvestheemployer'sprogramand

har-a terizes the optimal labor ontra t. Finally, in Se tion 5, we dis uss our

resultsand some possibleextensions.

2 The model

We onsider a two-period model. In period 1, the rm produ es a single

good, denoted A. Produ tion plans are ompatible with the exogenous

demandforAand arephysi allypossible. The rmis ableto sellits entire

amount of output. Interest rate r lears the exogenous nan ial market.

Consumers work in period 1 and are retired in period 2. At ea h period

t, agents onsume a single good denoted C

i

;i = 1;2. We assume that

C

i

6=A;i=1;2and that pri esof A;C

1 ;C

2

areexogenous and equalto 1.

2.1 The agent

Ea h agent is denoted by his individual hara teristi s, i.e. a pair of

pa-rameters(;Æ) that he perfe tlyknows,where  representshis produ tivty

andÆ hissubje tivedis ountrate. Duringtheworkingperiod,a (;Æ)-type

agent produ es l units of observable output at the real wage w, onsumes

C

1

and saves w C

1

. During the retirement period, ea h agent onsumes

C

2

equalto thedis ountedreturnof his rst periodsaving.

A (;Æ)-type agent is hara terized bya separableintertemporal utility

fun tion: U 0 (C 1 ;C 2 ;Æ;t)=v(C 1 )+Æv(C 2 )+t (1)

wherev isa on ave in reasingfun tion, trepresentsleisuretimeinperiod

1. If T denotes the total amount of time available in period 1, agent's

produ tion depends on his produ tivity, so that we have: l() = (T t)

whi hyields: t=T l=thatwerepla ein(1)toobtain: ~ U(C 1 ;C 2 ;;Æ;l)= v(C 1 )+Æv(C 2

)+T l=. Multiplyingthepreviousexpressionbyweobtain

thenew representation ofpreferen es:

U(C 1 ;C 2 ;l;;Æ)=v(C 1 )+Æv(C 2 ) l (2)

The agent maximizes his intertemporal utility (2), taking as xed by the

(4)

The rmsetsalabor ontra tinordertohirea ontinuumofheterogeneous

agentswhose(;Æ)areunobservable. Intheremainderofthepaper,the rm

knows thedistributionoftypeswhi his hara terized byadensityfun tion

f(:;:)thatisassumedtobeof lassC 1

,andstri tlypositiveonthere tangle

:=  ;    Æ;Æ   (0;+1) 2 :

A labor ontra t is a dire t me hanism whi h both de nes the wage

fun tionw andtheindividualoutput fun tionl,withrespe ttotheagent's

type. Using Myerson's Revelation Prin iple we may fo us on

in entive- ompatible ontra ts.

Theproblemoftheprin ipal onsiststhenin ndingin entive- ompatible

ontra tsthat maximizeits pro t.

3 In entive- ompatible labor ontra ts

From nowonwe assumetheutilityfun tionto be exponential

v( )= e

(3)

sothattheAgent's programis:

(P ) V(;Æ;w;l) = 8 > > < > > : sup C 1 ;C 2 e C 1 Æe C 2 l s.t. 0C 1 w 0C 2 (1+r)(w C 1 )

Lemma 1 If the further assumptions are satis ed:

(H 1 ): Æ(1+r)<1, (H 2 ): v 0 2R satis es: 0> v0  +Æ> Æ(1+r),

then for all (;Æ)2, for all (w;l):

V(;Æ;w;l)v 0 )V(;Æ;w;l) = 2+r 1+r h [Æ(1+r)℄ 1 2+r e 1+r 2+r w i l (4)

Proof isgiven inAppendix1.

This resulthasthe followingimpli ations:

1. If Æ(1 +r) < 1 then all agents have a higher subje tive interest

rate than the nan ial market. Consequently, (H

1

) implies that all agents

onsumeinthe rstperiod.

2. (H

1

)and(H

2

)ensurethatallparti ipatingagentshaveahomogeneous

onsumptionbehavior. Thisex ludeszero-levelof onsumptionoverone of

thetwo periods. Fromourpointofview,ex ludingthoseextremebehaviors

(5)

onagentsthat do onsumeoverthetwo periods. A tuallytheothergroups

ofagents shouldbestudiedapart.

We intendtoshownowthatin entive ompatible ontra tsdependonly

on the redu ed s alar parameter = Æ 1

2+r

. This parameter is therefore

interpreted an exhaustive statisti whi h sums up all relevant information

fortheprin ipal. Su hanunidimensionalexhaustivestatisti aptures

sub-stitutionbetweenprodu tivityand dis ount rate.

Notethatunderassumptions(H

1

) and(H

2

)theindire tutilityfun tion

ofthe agents(iflarger thanthereservation levelv

0 ) isgiven by: V(;Æ;w;l) =W( ;w;l)= g(w) l (5) where =Æ 1 2+r and g(w)= ( 2+r 1+r )(1+r) 1 2+r exp( 1+r 2+r w): (6)

Letus now de nein entive- ompatibleand admissible ontra ts

De nition 1 1) A ontra t is a pair of fun tions (w;l):

:=[;℄[Æ;Æ℄!R 2

+

(;Æ)7!(w(;Æ);l(;Æ))

w is alled the wage partof the ontra t and l its produ tion or physi al

part.

2)A ontra t(w;l)isin entive- ompatibleifandonlyifforall(;Æ);( 0 ;Æ 0 )2 2 : V(;Æ;w(;Æ);l(;Æ))V(;Æ;w( 0 ;Æ 0 );l( 0 ;Æ 0 )): (7)

3)A ontra t (w;l)isadmissibleifandonlyifitisin entive- ompatible and

satis es the parti ipation onstraint:

V(;Æ;w(;Æ);l(;Æ))v

0

, for all (;Æ)2: (8)

Remark 1 Lemma 1 implies that if (w;l) is admissible,then

V(;Æ;w(;Æ);l(;Æ))=Æ 1

2+r

g(w(;Æ)) l(;Æ)

(6)

thatonlydependon . Letusde ne : [ ; ℄:=[:Æ 1 2+r ;:Æ 1 2+r ℄ (9)

and,forall 2[ ; ℄:

I :=f(;Æ)2:Æ 1 2+r = g (10)

thenadmissible ontra ts are hara terized by thefollowingresult:

Proposition 1 1)Let(w;l)besome ontra t andde netheasso iated

util-ity fun tion f W(;Æ):=Æ 1 2+r g(w(;Æ)) l(;Æ), for all (;Æ)2 (11)

then (w;l) is admissibleif and only if f W is a onvex fun tionof f W(;Æ)=W(Æ 1 2+r ) withW onvex (12)

andthe following onditions aresatis ed :

1. 8 2[ ; ℄;8(;Æ)2I ;g(w(;Æ))2W( ) 2. W( )v 0 :

2) Asa onsequen e, if(w;l) isan admissible ontra t then there exist two

non de reasing fun tions we and e

l from [ ; ℄ to R

+

su h that for almost

every (;Æ) 2: (w;l)(;Æ)=(w;e e l)(Æ 1 2+r ) (13) Proof:

1) Let(w;l) beadmissible,let be in( ; )and (;Æ) and( 0

;Æ 0

) bein I

in entive ompatibility onditionbetween(;Æ) and ( 0 ;Æ 0 ) yields: f W(;Æ)= f W( 0 ;Æ 0 ) f W istherefore onstant inI : f W(;Æ)=W(Æ 1 2+r ).

By in entive- ompatibility,wealso get:

W( )=sup

z2

g(w(z)) l(z)

W is then onvex sin e it is a supremum of aÆne fun tions. Writing

in entive- ompatibility using the de nition of W we get for all , 0 and z2I : W( 0 ) W( )( 0 )g(w(z))

(7)

onstraint of . Conversely assume thatthe ontra t (w;l) satis es 1. and

2. with W de ned aspreviously and onvex. By ondition1., we get that

(w;l) isin entive- ompatibleand also thatW isnon in reasingsin eg<0

sothat ondition2. ensuresthattheparti ipation onstraintis satis edfor

every type.

2) Let(w;l) be anadmissible ontra t and W bede nedasin1). Sin e W

is onvex, it isdi erentiablealmost everywhere:

W( )=fW 0 ( )g a.e. De nethen: B :=f(;Æ)2: W isnotdi erentiable at Æ 1 2+r g

one an easily he kthatB is Lebesguenegligible.

Letwe be su h thatg(w( ))e 2W( ) forevery and e

l by:

e

l( ):= g(w( ))e W( )

e

w is learly non de reasing (sin e g is in reasing and W is monotone)

and (13) issatis ed a.e. sin eB is negligible. It remainsto prove that e

l is

nonde reasing. Let and 0 bein[ ; ℄,sin eg(w( e 0 ))2W( 0 )wehave: e l( 0 ) e l( ) (g(w( e 0 )) g(w( ))):e

We an on ludethenthat e

l isnon de reasingsin ebothg and we are.

Remark 2 The ontra t(;Æ)7!(w;e e

l)(Æ 1

2+r

)isitselfadmissibleandyields

the same pro t to the prin ipal as (w;l). Thereis therefore no loss of

eÆ- ien yto fo us on ontra ts of .

4 Optimal labor ontra t and solution to the

prin- ipal's problem

4.1 The prin ipal's problem

UsingthepreviousSe tion, we areable to writetheprogram of the

prin i-pal in a fairly standard way. More pre isely we show that the initial

two-parameters-problem is equivalent to a unidimensional parameter adverse

(8)

(P p ) 8 > > < > > : sup (w;l)= Z [l(;Æ) w(;Æ)℄f(;Æ)ddÆ s.t.: (w;l) isan admissible ontra t

isequivalentto the following one:

( e P p ) 8 > > > > > > > < > > > > > > > : sup e (w)e := Z [g(w( ))( h( )e +H( )) w( )h( )℄d e s.t.: e

w isnon de reasing nonnegative (P1)

e l( )= g(w( ))e v 0 + Z g(w(s))dse 0 (P2)

wherehdenotesthedensityfun tionandH the umulativedistribution

fun -tion of (see Appendix2 for omputations andproperties of h and H.)

SeeproofinAppendix3.

Note thatthe expressionof e

(w)~ enables to point outthetwo opposite

e e tsof thewage onthepro t:

- a linearnegative e e t on ost: w( )h( )e

- a on ave positive e e t on indu ing higher types to produ e higher

quantitiesof output:

g(w( ))( h( )e +H( )):

4.2 Chara terization of the optimal wage fun tion and

iron-ing pro edure

Letus rst showan existen e and uniquenessresult.

Theorem 1 Theprin ipal'sprogram( e

P

p

)admitsauniquesolutiondenoted

w 

.

Proof:

Firstnotethat theset of we satisfying (P1)and (P2) isnonempty and that

thevalue of ( e P p ), sup ( e P p ) is nite. Letw n

be some maximizingsequen e

of( e P p ) i.e. w n

satis es(P1) and(P2) forall n2N and:

lim n!+1 e (w n )=sup ( e P p ) (14)

Firstnotethat forall 2( ; ), the sequen ew

n

( )is boundedfor

other-wise,sin ew n isnon de reasing, e (w n

(9)

n

Helly's sele tion Theorem (see for instan e Natanson) implies that, up to

asubsequen e,w

n

onverges pointwiseto some nonde reasingnonnegative

fun tionw 

. Obviously,w 

satis es(P2)byLebesgue'sDominated

Conver-gen eTheorem. Finally,Fatou'sLemma yields:

e (w  )limsup n e (w n )=sup ( e P p ) so that w  is a solution of ( e P p

). Finally uniqueness follows from stri t

onvexityproperties of( e

P

p ).

To derive rst order onditionsand hara terize more pre iselythe

op-timal wage fun tion, we rst need a Kuhn-Tu ker type result that enables

usto integrate onstraint(P2) withinthe riterion:

Lemma 2 If w  solves program ( e P p

) then there exists 0 su h that w 

isthe solution of:

( e P p; ) 8 < : sup e   (w)e := e (w)e + Z g(w( ))d e + g(w( ))e

s.t.: we is non de reasing nonnegative (P1)

 is a Kuhn-Tu ker multiplier asso iated with onstraint (P2) of program

( e

P

p ) .

Sin etheLemmafollowsfromstandardseparationarguments,theproof

isleft to thereader.

The following proposition summarizes rst order ne essary onditions

and thusenablesto hara terize the optimalwage fun tionw  : Proposition 3 1) w  is the solution of ( e P p

) if and only if it satis es the

following onditions: (i)  ( )0 (ii) ( ( ))dw  =0 (iii) ( g 0 (w  ( ))+( ))w  ( )=0

with being de ned as in the previous Lemma, dw 

denoting the variation

measure asso iated with the non de reasing fun tion w 

, and  being given

by: 8 2[ ; ℄:( ):= Z [g 0 (w  (s))(sh(s)+H(s)+) h(s)℄ds:

2)Moreover, onditions (i), (ii)and(iii) implythatw 

is ontinuouson

(10)

Letw

0

bethesolutionoftheproblemobtainedfrom( e

P

p;

)whenomitting

themonotoni ity onstraint; learlyw

0 an be omputed analyti ally: w 0 ( )= ( (g 0 ) 1 ( h( ) h( )+H( )+ ) if h( ) h( )+H( )+ (1+r) 1 2+r 0otherwise (15) Sin e g is on ave, w 0

is non de reasingon every sub-intervalon whi h

7! +

H( )+

h( )

is. The fa t that h is de reasing near and an easy

omputation showthen that w

0

is in reasing at the topof the distribution

(seeAppendix2.) Moreover, w

0

tendsto+1as tendsto sin eh( )=

0 + and (g 0 ) 1 (0 + )=+1.

Proposition 3 a tually enables to obtain w 

from w

0

via the so- alled

ironing pro edure (see Mussa and Rosen). There exist indeed 2 kinds of

sub-intervalsof types .

1) Those on whi h there is stri t dis rimination dw 

> 0, using the

ontinuity of the solution and ondition (ii), we obtain w  = w 0 on su h intervals. 2) Those on whi h dw  = 0 so that w 

is onstant. Su h intervals are

alledbun hes. Onabun h,alltheagentsareo eredthesame ontra tforit

wouldbetoo ostlytodis riminateamongthem. Conditions(i),(ii)andthe

ontinuityofw 

enableto hara terize theextremitiesofbun hes. Suppose

thatan intervalof types[

 ;  ℄isa bun h withw  (  )=w  (  )=w.

Ontheone hand, bya ontinuityargument,we get:

w  (  )=w  (  )=w 0 (  )=w 0 (  )=w:

Ontheother hand,we have (



)=( 

)=( ); and thelatteryields

Z   [g 0 (w)(sh(s)+H(s)+) h(s)℄ds=0:

Those onditionsingeneral enableto fully hara terizebun hes.

Finally, the next proposition states that there is stri t dis rimination

amongagentswith typeatthetopofthedistribution: nobun hingo urs

for highest types. This is a rather standard and intuitive result sin e one

may naturally expe t the prin ipal to extra t more rent from high type

agents.

Proposition 4 Thereexists

0 2( ; )su h that w  =w 0 on [ 0 ; ).

(11)

Let 1 2( ; )besu hthatw 0 isin reasingon[ 1 ; ). Firstitisimpossible to have w  < w 0

on some interval of the form [ ; ) with >

1 , for

otherwise w 

wouldbesuboptimalon [ ; ).

It isalso impossibleto have w  >w 0 on aninterval [ ; )with > 1 ,for

thatwouldimply,forall s :

g 0 (w  (s))(sh(s)+H(s)+) h(s)<0 and then: ( ) (s)<0

whi h implies, with (ii) that w 

is onstant over [ ; ) ontradi ting w  > w 0 . Sin ew 0 andw 

are ontinuousthereexiststhen

0 2[ 1 ; )su hthat w 0 ( 0 ) = w  ( 0

): It follows then from the optimality of w  that w  = w 0 on[ 0 ; )sin ew 0 isin reasing on[ 0 ; ).

Aswehave already remarked thatw

0

isunbounded we have:

Corollary 1 The optimalwage fun tionw 

is unbounded:

w 

( )!+1 as ! .

At rstsight,unboundednessoftheoptimalwagemaybethoughtasnon

intuitive. Thefa tthattheoptimalwagew 

isunbounded anbeinterpreted

as follows: ideal -type agents are improbable for two reasons sin e both

highprodu tivityandhighsubje tivedis ountratehavetobe ombinedfor

thesame individual,sothat h( )=0. Evenif the rm hasa prior density

f(;Æ)>0ontheideal agent,itperfe tlyknowsthatinthe nitepopulation

itaimstohire,thereisno(;Æ)agentbutatbest( "

 ;Æ " Æ )with"  and" Æ

positiveand unknown. The previouspropositiononlysays thatthe rm at

theoptimumisleadtoproposearbitrarilyhighwage- ontra tswhen("

 ;"

Æ )

be omesarbitrarilysmall. Indeed,when = onlythepositivee e tofan

in reaseoftheprodu tionsubsistssin eh( )=0. Itisthereforethedouble

s ar ity of the ideal -type that explains why it is optimalfor the rm to

set su h an unbounded wage fun tion. One an easily show that optimal

wagesremainboundedforinstan eifthe rmas ribesapositiveprobability

(Dira mass)to theideal (;Æ)-typeagent.

Fromanempiri alpointofview,thelowerboundonwageswhi hindu e

(high ,high Æ)-type individualsto a ept a labor ontra t spe ifyingvery

littleleisuretime,ifnotin nite, an bevery highinthelabormarket( hief

exe utive, traders,managers,footballplayers,topmodels...)

5 Dis ussion

Letusnowshowthatourbasi modelandourresultsmaybegivendi erent

(12)

sket h possibledevelopmentsof ouranalysis to othere onomi areas.

5.1 An alternative formulation

We aim to show that a very similar model may be interpreted in terms

of edu ation a quisition. Let us assume now that period 1 is devoted to

training whi h will be produ tive in period 2. In period 1, an individual

hooses how mu hto train,therestof thetimebeingdevotedtoleisure. In

period 2he hooses how mu hto work and onsumesthewholeofhis wage

in omew. In this asepreferen esare givenbythefollowingintertemporal

utilityfun tion: U 1 (C 2 ;Æ;t)=Æv(C 2 )+t (16)

where v is a on ave in reasing fun tion and t represents period 1 leisure

time. If T denotes the total amount of time available in period 1, agent's

produ tioninperiod2 depends onhis learningprodu tivityand training

time (T t), l() = (T t), whi h yields t=T l=. Repla ing the

previous in (16), using C

2

= w and multiplying by  we obtain the new

representationofpreferen es:

U(w;;Æ;l)=Æv(w) l:

Using this representation, it is easy to show that our redu tion tri k an

be used again, de ning = Æ as a new exhaustive statisti .

In entive- ompatible ontra ts are therefore -dependent. This means that

substi-tution of parameters still o urs in that training model: agents with low

produ tivitymaygetsame wagesasmore produ tive agentsifthey are

suf- iently provident to spend enough training time in period 1. It is worth

notingthat in this ase there is no needfor a CARA spe i ationof v for

substitutionto o ur. One an alsoshow, assumingforinstan ev 0,that

the prin ipal's program whi h determinesthe optimal wage fun tion, is of

theform: 8 > > > > > > > < > > > > > > > : sup e (w)e := Z [v(w( ))( h( )e +H( )) w( )h( )℄d e s.t.: e

wis non de reasingnonnegative (P1)

e l( )= g(w( ))e v 0 + Z g(w(s))dse 0 (P2) (17)

Itis learthenthatthemainresultsofSe tion4stillhold: existen e,

unique-ness, ontinuity, ironing type hara terization. Moreover, if v satis es the

Inada type ondition v 0

(+1) = 0 then the statement of Proposition 4

(13)

Finally that model may be interpreted as an alternative approa h to

sig-nallingmodelsa la Spen e (1974). The main di eren ebetween those two

approa hes isthat, in our model,the level of training does not reveal

pro-du tivitysin eit isalso explainedbyheterogeneity of timepreferen e.

5.2 Wider approa hes

The design of optimal ontra ts with two-dimensional adverse sele tion is

not a widely settled area. As suggested in se tion 5.1, the problem we

adressed on erningthedesignoflabor ontra tsmaybegivenanalternative

interpretationwithoutanyparti ularutilityspe i ation.

We believethatthetri kusedinthepaper anbeappliedinseveral

rel-evant e onomi areas. E onomi ally,this redu tionof a multi-dimensional

s reening probleminto a single dimensional one is possible if there is

sub-stitution betweenthe di erent parameters, we give an example wheresu h

asubstitution o ursin thelabormarket. This kindofte hniquewasused

by Lewis and Sappington (1988) in the framework of regulation of a

mo-nopolist. Our resultshoweveremphasize thefa t that when thisredu tion

tri k anbeused,one mayexpe tunboundedsolutionssothatProposition

4 is robust. Moreover, introdu ing heterogeneity of time preferen e as an

adverse sele tionvariable an leadto further on lusions inawider lassof

Prin ipal-Agentproblems.

One anthink rstofbanktheoryandinparti ularoflending ontra ts.

Two majorproblems of redit banksare defaultpayments and anti ipated

reimbursement. Traditional expli ative individual variables for both

prob-lemsgenerally fo usonriskontheonehandandin omeontheotherhand.

Wethinkthereispotentials opeforalternativevariablesthat apturemore

orlessprovidentbehaviors. Asimilarapproa h ouldalsobefruitfullyused

inLifeInsuran e ontra ting. Inthat ase, timepreferen e heterogeneityis

interpretedasindividualwillingnessto bequestto relatives.

Finallyourapproa hmayalsobe onsistentintheframeworkoftaxation

theory. Inthatframeworktaxesare olle tedto nan efutureexpenditures.

A benevolent planner should then set a tax s heme knowing that the

dis- ountedvalueof future publi realizationsdi er amongagents.

Appendix 1: Proof of Lemma1.

Program of(;Æ)-agentsis:

(P ) 8 < : V(;Æ;w;l)=sup 1 e 1 Æe (1+r)(w 1 ) l s.t. 0 1 w

(14)

e 1 = 1 2+r [(1+r)w ln(Æ(1+r))℄: Sin e(P

)is on ave its solution,denoted  1 isgiven by:  1 = 8 < : 0if e 1 0 e 1 if0 e 1 w wifw e 1

Firstnotethat (H

1

) straightforwardlyimpliesthat e

1 >0:

Nowlet usassume:

V(;Æ;w;l)v 0 (18) where v 0 satis es (H 2

). Suppose then that for a (;Æ) agent  1 = w then(18) yields: e w Æ lv 0 )w e 1 = 1 2+r [w ln(Æ(1+r))℄  1 2+r [w 0 ln(Æ(1+r))℄= 1 2+r ln Æ(1+r) ( v 0  +Æ) >0

the latter yields a ontradi tion with e

1

 w so that the desired result is

proved omputing: V(;Æ;w;l)= 2+r 1+r [(Æ(1+r)) 1 2+r exp 1+r 2+r w℄ l:

Appendix 2: Level sets and distribution of .

Figure 4 6 -  Æ Æ Figure 5 6 -  Æ Æ

(15)

Let 2 L 1

([ ; ℄;R ) and let us ompute E( ( )), by the hange of

variables: (;Æ) 7!(; )=(;Æ 1 2+r ), we get: E( ( ))= Z   Z Æ Æ (Æ 1 2+r )f(;Æ)dÆd = Z Z D ( )f(;(  ) 2+r )) (2+r) 1+r  2+r dd

whereD isde nedby:

D:=f(; )2R 2

: 2[ ; ℄ 2[( );( )℄g

(:) and(:) are given by:

( )= ( if  1 Æ 1 2+r otherwise ( )= (  if  2 Æ 1 2+r otherwise , 1 :=Æ 1 2+r , 2 :=Æ 1 2+r

UsingFubini'sformulayieldsthen:

E( ( ))= Z ( )[ Z ( ) ( ) f(;(  ) 2+r )) (2+r) 1+r  2+r d℄d :

Finallywe obtainh thedensityof :

h( )= Z ( ) ( ) f(;(  ) 2+r )) (2+r) 1+r  2+r d: (19)

Note then that h is ontinuous sin e f(:;:), (:) and (:) are and h( ) =

h( ) = 0 for ( ) =  and ( ) = : From (19) h is obviously positive

in [ ; ℄ sin e f > 0 and a straightforward omputation shows that h is

de reasingfor suÆ iently loseto .

Appendix 3: Proof of Proposition 2.

Proof:

First note that if (w;l) is a solution of (P

p

), and if W is de ned as in

Proposition1then itisne essary that:

W( )=v

0

(20)

for, otherwise ontra t (w;l+") would be admissible for small " > 0 and

in reasethe prin ipal'spro t. We may therefore with no loss of generality

add (20)asan additional onstraint in(P

p ).

Letthen (w;l) be admissibleand satisfy(20)and (w;e e

l) be asin

Propo-sition 1, 2). We already know that we and e

l are non de reasing. Re all

that:

W( )= g(w( ))e e

(16)

g(w( ))e =W ( ) a.e. (22)

togetherwith (20)weget:

e l( )= g(w( ))e v 0 + Z g(w(s))ds:e (23)

One an easily he kthat (w;l) is admissibleand satis es(20) if and only

if we is non negative non de reasing and e

l given by (23) is nonnegative,

sin e(21), (22),(23)and the onvexityofW implythat e

lisnonde reasing,

non negativity of e

l redu es to (P2). Finally (w;l) is admissible and

satis- es(20)ifandonlyifwesatis es(P1) and(P2)wherewe and e

l areobtained

from(w;l) by(21), (22) and(23). Now we have:

(w;l)= Z [l w℄f = Z [ e l w℄he (24)

Ontheother hand,using(23) and integrating byparts, we get:

Z e l( )h( )d = Z ( g(w( ))e v 0 )h( )d + Z [ Z g(w(s))ds℄h( )d e = Z g(w( ))h( )d e v 0 + Z g(w( ))H( )d :e (25)

From (24) and (25) we get (w;l) = e

(w)e v

0

so that Proposition 2 is

proved.

Appendix 4: Proof of Proposition 3.

We rst needthefollowingte hni alresult:

Lemma 3 De ne for all 2[ ; ℄:

( ):= Z [g 0 (w  (s))(sh(s)+H(s)+) h(s)℄ds

let ">0, the following properties hold:

1) both integrals R " w  d and R " ( ( ))dw  exist and: Z " w  d= Z " ( ( ))dw  +(( ") ( ))w  ( ")+( )w  ( ) = Z " [g 0 (w  (s))(sh(s)+H(s)+) h(s)℄w  (s)ds

whered denotesthe Stiljes measureasso iated withthe absolutely

on-tinuous fun tion and  is de ned as in Lemma 2.

2) lim "!0 + (( ") ( ))w  ( ")=0

(17)

1) w 

j[ ; "℄

isa boundedvariationfun tionand is absolutely ontinuous,

both integrals R " w  d and R " ( ( ))dw 

exist and the rst one

an be integrated by parts in Stieljes sense ( f. Natanson (1967)), whi h

yields: Z " w  d= Z " ( ( ))dw  +(( ") ( ))w  ( ")+( )w  ( )

We onlyhave to showthen:

Z " w  d= Z " [g 0 (w  (s))(sh(s)+H(s)+) h(s)℄w  (s)ds

Ontheotherhand,de ning,8n; 8k=0;:::;n 1,u n k := + k n ( " ) we have: j Z " w  d Z "  g 0 (w  (s))(sh(s)+H(s)+) h(s)  w  (s)dsj lim n!+1 j n 1 X k=0 Z u n k +1 u n k (w  (u n k+1 ) w  (s))  g 0 (w  (s))(sh(s)+H(s)+) h(s)  dsj C st lim n!+1 1 n (w  ( ") w  ( ))=0

thelastinequalityfollowsfromw 

beingnon-de reasingandg 0 beingbounded. Thus1) is established. 2) Sin ew  is nonde reasing: j(( ") ( ))w  ( ")j Z " j(g 0 (w  (s))j(sh(s)+H(s)+)+h(s)℄w  (s)ds

holdsand thelatter integral tends to 0 as"!0 byLebesgue's Dominated

Convergen e Theorem,sin e hw  2L 1 and w  g 0 (w  ) isbounded.

We are now readyto prove Proposition3.

Proof:

Let w be a non negative non de reasing fun tion s.t. there exist two

on-stants A  0 and B su h that: w  Aw 

+B (whi h implieshw 2 L 1

+ ).

Thenforall t2(0;1) thefollowingholds:

1 t [ e   (w  +t(w w  )) e   (w  )℄0: (26) First,wehave: lim t!0 + 1 t [g(w  ( )+t(w( ) w  ( ))) g(w  ( ))℄=g 0 (w  ( )(w( ) w  ( )): (27)

(18)

f t (s)= 1 t [g(w  (s)+t(w w  )(s)) g(w  (s))℄(sh(s)+H(s)+) we have: lim t!0 f t (s)=g 0 ((w  (s))(w w  )(s)(sh(s)+H(s)+) and jf t (s)j sup z2[w  (s);w  (s)+t(w w  )(s)℄ g 0 (z)j(w w  )(s)j(sh(s)+H(s)+) g 0 (A 1 w  (s)+B 1 )(A 2 w  (s)+B 2 ):(sh(s)+H(s)+) whereA 1 0,A 2 0,B 1 andB 2

are onstantsonlydependingonAandB.

Sin e w7!g 0 (A 1 w+B 1 )(A 2 w+B 2

) is bounded there isa onstant C su h

that: jf

t

(s)jC forall tand s. Thus, Lebesgue's DominatedConvergen e

Theoremyields: lim t!0 + f t (s)ds= Z [g 0 (w  )(sh(s)+H(s)+)℄(w w  )ds (28)

Then,passing tothe limitt!0 + in (26)yields: Z [g 0 (w  )(sh(s)+H(s)+) h(s)℄(w w  )ds + g 0 (w  ( ))(w( ) w  ( ))0 (29)

forallwnon negative, nonde reasingandsu hthatwAw 

+B forsome

onstantsA0andB. Let bein( ; ),takingw(s):=w 

(s)+1

s ,8s

in(29)exa tly yields: ( ) ( )0; 8 i.e (i).

Notethat( ( ))dw 

isanonnegativemeasure,absolutely ontinuous

withrespe tto thenonnegative measure dw  . Takingw=2w  andthen w= w  2 in(29)yields: Z [g 0 (w  )(sh(s)+H(s)+) h(s)℄w  ds+ g 0 (w  ( ))w  ( )=0: (30) Sin e( ( ))dw  is nonnegative,weget: lim "!0 + Z " ( ( ))dw  = Z ( ( ))dw  :

Onthe otherhand, we know fromthe previouslemma:

Z " [g 0 (w  (s))(sh(s)+H(s)+) h(s)℄w  (s)ds

(19)

= " ( ( ))dw  +(( ") ( ))w  ( ")+( )w  ( ): (31)

(30) and part2) of Lemma3 yieldthen, passing tothe limitin(31):

Z ( ( ))dw  =( g 0 (w  ( ))+( ))w  ( ): (32) Takingw=w  ( )in(29) yields: w  ( )( ) Z [g 0 (w  )(sh(s)+H(s)+) h(s)℄w  ds0: (33)

Passing to thelimitin(31) we get:

Z [g 0 (w  )(sh(s)+H(s)+) h(s)℄w  ds = Z ( ( ))dw  ( )w  ( ): (34)

(33)and (34) implythen:

Z ( ( ))dw  0 sothat( ( ))dw 

=0i.e. (ii). Finally(ii)and (32)imply(iii).

Conversely, (i), (ii), (iii)are also suÆ ient onditions for optimalityby

onvexityproperties of( e

P

p; ).

2) Letusestablishthe ontinuityofw 

: Supposethereexists in( ; )

su h that w  ( + ) > w 

( ), is an atom of the measure dw 

and then

ondition(ii)implies: ( )=( )=inf

[ ; ℄

 it iseasy to prove that  is

rightand left di erentiableat every point of ( ; )then:

 0 g ( )=g 0 (w  ( ))( h( )+H( )+) h( ) 0  0 d ( )=g 0 (w  ( + ))( h( )+H( )+) h( ) whi h implies w  ( + )  w  ( ) be ause g 0 is de reasing, ontradi ting w  ( + )>w 

( ). We an on ludethat w 

(20)

Abowd J.M., Ashenfelter O. (1981) Anti ipated Unemployment,

Tempo-rary Layo s and CompensatingWage Di erentials. Studies in Labor

Mar-kets p 141-170,Chi ago:Univesity ofChi ago Press.

Azariadis C. (1983) Employment with asymetri information. Quarterly

Journal of E onomi s,98:157-172

Eaton C. White W.D. (1983) The E onomy of High Wages: an Agen y

Problem. E onomi a,50:175-181

HamJ.C.(1982)EstimationofalaborSupplyModelwithCensoringDueto

UnemploymentandUnderemployment. ReviewofE onomi Studies

49:333-354

KillingsworthM. (1988) LaborSupply. Cambridge University Press,

Cam-bridgeSurveysof E onomi Literature,p61-65.

Krueger A., SummersL.H. (1988) EÆ ien y Wages and the Inter-Industry

Wage Stru ture.E onometri a,56 (2):259-293

La ont J.J., Tirole J. (1996) A Theory of In entives in Pro urement and

Regulation. MIT Press ,

Lewis T.R., Sappington E. (1988) Regulating a Monopolist with unknown

Demandand Costfun tions. TheRand Journal of E onomi s,19:438-457

Mal omsonJ.(1981)UnemploymentandEÆ ien yWagesHypothesis.

E o-nomi Journal,91:848-866

Mirrlees J. (1976) Optimal Tax Theory : a Synthesis. Journal of Publi

E onomi s,7:327-358

MussaM.,RosenS.(1978)MonopolyQualityProdu t. JournalofE onomi

Theory,18:301-317

Myerson R.B.(1979) In entive CompatibilityandtheBargaining Problem.

E onometri a, 47:61-74

Natanson I.P. (1967) Theory of Fun tions of a Real Variable., New York

Ma Graw-Hill

Polemar hakis H., Weiss A.(1978) Fixed-Wages, Layo s, Unemployment

Compensation andWelfare. Ameri an E onomi Review,68:909-917

Ro kafellar R.T.(1990) Convex Analysis. Prin eton UniversityPress

Spen e M. (1974) Market Signalling. Cambridge Massa hussets Harvard

UniversityPress

Stiglitz J. (1984) Pri es and Queues as S reening Devi es in Competitive

Markets. IMSSSTe hni al Report,N212 inJanet Yellen,Stanford

Univer-sity,

Weiss A. (1980) Job Queues and Layo s in Labor Market with Flexible

Wages. Journal of Politi al E onomy,88:526-538

YellenJ.(1984) EÆ ien yWage ModelsofUnemployment. Ameri an

Figure

Figure 4 6  - ÆÆ Figure 56 - ÆÆ

Références

Documents relatifs