• Aucun résultat trouvé

A new procedure based on column chromatography to purify bromelain by ion exchange plus gel filtration chromatographies.

N/A
N/A
Protected

Academic year: 2021

Partager "A new procedure based on column chromatography to purify bromelain by ion exchange plus gel filtration chromatographies."

Copied!
6
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Industrial

Crops

and

Products

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e / i n d c r o p

A

new

procedure

based

on

column

chromatography

to

purify

bromelain

by

ion

exchange

plus

gel

filtration

chromatographies

Helber

B.

Costa

a,b,∗

,

Patricia

M.B.

Fernandes

a

,

Wanderson

Romão

b,c

,

José

A.

Ventura

a,d,∗∗ aNúcleodeBiotecnologia,UniversidadeFederaldoEspíritoSanto,29040-090,Vitória,ES,Brazil

bLaboratóriodePetroleômicaeQuímicaForense,DepartamentodeQuímica,UniversidadeFederaldoEspíritoSanto(UFES),AvenidaFernandoFerrari,514,

Goiabeiras,Vitória,ES,CEP:29075-910,Brazil

cInstitutoFederaldeEducac¸ão,CiênciaeTecnologiadoEspíritoSanto,29040-780,VilaVelha,ES,Brazil dInstitutoCapixabadePesquisaAssistênciaTécnicaeExtensãoRural-Incaper,29052-010,Vitória,ES,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13February2014

Receivedinrevisedform17April2014 Accepted23April2014

Availableonline2June2014 Keywords: Bromelain Enzyme Purification Chromatography

a

b

s

t

r

a

c

t

Bioproductsseparationandpurificationprocessesareanimportantsegmentofthebiotechnicalindustry. Bromelainisanenzymewhichhasgreatcommercialvalueandisofwideinterestinthepharmaceutical, alimentary,andtextileindustries,amongothers.Thegoalofthisstudywastodevelopanewmethodfor bromelainpurificationfromthestemresiduesresultingfromagriculturalprocessingofthepineapple plant.Bromelainwaspurifiedusingtwoliquidchromatographysteps,ionexchangeplusgelfiltration chromatography.Useofthemethodologywhichwasdevelopedproducedanenzymewithamolecular weightof30kDa(confirmedbySDS-PAGE),highrecoveryofenzymaticactivity(89%),andwitha purifi-cationfactorof16.93,aresultsuperiortothemethodologiesdescribedintheliterature.HPLCshowed thepresenceoftwopeaksintheionexchangechromatogramandonlyoneproteininthegelfiltration chromatogram.Resultsindicatethat,dependingonthedestinationofthebromelain,theprocesscan bestoppedafterthefirstpurificationstep.TheMALDI-TOFMSprovidedthepeptidemassfingerprint ofbromelainandMALDI-MS/MSthefragmentationprofileandsequencingoftheionsofm/z951and 1584.Thus,theconnectivityandchemicalstructureofbromelainwasconfirmed.Moreover,besidesits superioritytoothermethodologies,itcanbeappliedtotakeadvantageoftheagriculturalandindustrial pineappleplantresidues.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Theisolationandpurificationofbioproductsarevery impor-tantprocessesinthebiotechnologyindustry,representing80–90% oftotalproductioncosts.Furthermore,thedevelopmentofsimple, viablemethodsforproteinpurificationhasbeenanessential pre-requisiteformanyadvancesinbiotechnology(Harikrishnaetal., 2002;Costaetal.,2009).

Liquid chromatography (LC) is a technique commonly used forproteinpurification.However,otheranalyticaltechniquesalso couldbeusedsuchasliquid–liquidextractionbyaqueous two-phasesystems(Babuetal.,2008),reversemicellarsystems(Hebbar

∗ Correspondingauthorat:NúcleodeBiotecnologia,UniversidadeFederaldo EspíritoSanto,29040-090,Vitória,ES,Brazil.Tel.:+552731490833.

∗∗ Correspondingauthorat:InstitutoCapixabadePesquisaAssistênciaTécnicae ExtensãoRural-Incaper,29052-010,Vitória,ES,Brazil.Tel.:+552736369817.

E-mailaddresses:farmhel@gmail.com(H.B.Costa),

ventura@incaper.es.gov.br(J.A.Ventura).

etal.,2011),andseparationbymembraneandprecipitation(Doko etal.,2005;Silvesteetal.,2012).Inliquidchromatography, pro-teinsinsolution(mobilephase)areisolatedandpurifiedthrough theirinteractionwithastationaryphase (Cao,2005).Generally, theproductsobtainedbyLCpurificationareveryexpensiveand havehighaddedvalueduetothecostsofthematerialsusedinthe productionprocess.Thedevelopmentoflow-costLCpurification methodshasbeenchallenging(Costaetal.,2009).

Proteolytic enzymes, or proteases, are a class of hydrolytic enzymescapableofcleavingthepeptidebondsofproteinchains and are essential in physiological processes. In addition, pro-teasesareamongthemostrelevantenzymesfromanindustrial standpointbecauseoftheirinvolvementinseveraltechnological applications(Bonetal.,2008).

Bromelainis a proteolyticenzymebelongingtothecysteine peptidasefamily.Thisenzymecanbefoundinthetissuesofplants oftheBromeliaceaefamily,and pineapple(Ananascomosusvar. comosus)is its main source(Rowan et al.,1990; Hebbar etal., 2008).Bromelainhasanumberofbiotechnologicalapplications, especiallyinthefood,cosmeticsandpharmaceuticalindustries,as

http://dx.doi.org/10.1016/j.indcrop.2014.04.042

(2)

wellasseveralclinicalapplications,suchasanantitumoragent, immuneresponsemodulatorandanenhancerofantibioticeffects andmucolyticandgastrointestinalaction(Maurer,2001;Balaetal., 2012).Furthermore,theenzymehasaneffectoncardiovascular andcirculatorydiseasesandmayhavepotentialusesinsurgical proceduresandwoundcare(Costaetal.,2009).

Theworldwideapplicationofbromelainincreasesthe impor-tanceofdeterminingaviableextractionandpurificationmethod forthisenzyme.Such amethodmayhelptominimizelossesin thepineappleagribusinessbecausetheagriculturalandindustrial wastesof pineapple(stems,leavesand crowns)arerich in this enzyme.Usually,this residue isnot usedand hasno appropri-atedestination(Bardiyaetal.,1996;Costaetal.,2009).Therefore, thepresent studypresentsa new,viable methodfor the purifi-cationof bromelainfrompineapplestems usingLCasits main technique.

2. Methods

2.1. Materials

2.1.1. Pineapplewastes

Pineapplewastesfromthecv.Vitóriawereobtainedfromthe IncaperSooretamaExperimentalFarm,atSooretama-ES,Brazil.

2.1.2. Chemicals

Allchemicalsproductsusedinthisstudywerepurchasedfrom Sigma,MerckorGE(USA).HPLCgrade chemicalproductswere purchasedfromTediaBrazil.

2.2. Crudeextract

A known quantity (450g) of waste (stem of pineapple cv. Vitória)wascrushedforfiveminutesalongwith600mLof extrac-torsolution(0.4MH2SO4/2mMNa2SO4pH4.5at4◦C).Theextract

wasthenfilteredandcentrifuged(Eppendorfcentrifuge5804R, Germany)at 14,750×g for 20min at4◦C, andthe supernatant (crudeenzymeextract)obtainedwasusedforthefollowing exper-iments.Thecrudeextractwasstoredfrozenat−20◦C.

2.3. Proteindetermination

The protein concentrations from enzymatic solutions were determinedaccordingtothemethoddescribedbyBradford(1976)

usingbovineserumalbuminasthestandard.

2.4. Bromelainactivity

Thebromelainactivitywasdeterminedaccordingtothecasein digestionunit(CDU)method,whichusescaseinasasubstrateinthe presenceofcysteineandEDTA(Murachi,1976withmodifications). Theassayswerebasedontheproteolytichydrolysisofthecasein substrate.

Theabsorbanceoftheclearfiltrate(solubilizedcasein)was mea-suredat280nmusingaspectrophotometer(ThermoSpectronic®

BIOMATE3,USA).Oneunitofbromelainactivitywasdefinedas 1␮goftyrosinereleasedin1minpermLofsamplewhencasein washydrolysedunderthestandardconditionsof37◦CandpH7.0 for10min.

Thesampleanalyseswereperformedagainsttheirrespective blanksolutions.Theproteinconcentrationreadingsweretakenin triplicate,andtheaveragevaluewasusedforthecalculationofthe

extractionefficiencies.Thespecificactivity,activityrecovery(%) andpurificationfoldwereestimatedbythefollowingequations:

Specificactivity=proteolyticproteincontentactivity(mg/mL)(U/mL) (1) Bromelainrecovery(%)= bromelainactivityafterpurification

bromelainactivityofthecrudeextract

×100 (2)

Purificationfold= specificactivityafterpurification

specificactivityofthecrudeextract (3)

2.5. Ionexchangechromatography

A 25mm ID glass column, 110mm long was packed with caboxymethy-celulloseandequilibratedwithfourcolumnvolumes of5×10−3Macetatebuffer.Then10mLofthecrudeextractwas submittedandremainedincontactwiththeresinforonehour. After,sample waseluted usinga1MacetatebufferpH4.5 ata flowrateof0.5mL/min.Thefractionswerethencollectedin4mL aliquots.Thepresenceofproteinwasmonitoredusingrecording spectrophotometerat280nm(Biomate®),usingacetatebufferpH

4.5asblank.Theproceduresfortheestimationofproteincontent andenzymeactivityaredescribedbelow.

Finally,thecolumnwasthenwashedwith2MNaClsolution untilnofurtherproteineluted.Allprocedurewasconductedina refrigeratedenvironmentat4◦C. Purifiedenzymewasstoredin frozenat−20◦C(Cabraletal.,2000;Hernándezetal.,2005with

modifications).

2.6. Gelfiltrationchromatography

Aliquotsfromionexchangechromatographywerecollectedand submittedtogelfiltrationchromatography.Aglasscolumnwitha 17.5mmIDand200mmlongwaspackedwithSephadexG-50®and

equilibratedwithoneandhalfcolumnvolumesofacetatebuffer. Thesamplewasappliedandleftincontactwiththeresinforone hour.Thesamplewasthenelutedwith1MacetatebufferpH4.5 atflowrateof0.7mL/min,and theeluentwascollectedas pre-viouslydescribed.Thecolumnwasthenwashedwith5×10−3M acetatebufferpH4.5solutionuntilnofurtherproteineluted.All procedurewasconductedin a refrigeratedenvironment at4◦C Purifiedenzymewasstoredinfrozenat−20◦C.(Cabraletal.,2000;

Hernándezetal.,2005withmodifications).

2.7. SDS-PAGE

SDS-PAGEwasperformedaccordingtothemethodofLaemmli (1970)using15%(w/v)polyacrylamidegels.Thestainingofthegels wasperformedusingCoomassieBrilliantBlueG-250. Chromatog-raphymeasurementsandSDS-PAGEwereperformedintriplicate.

2.8. HPLC

A20␮Laliquotofthesampleobtainedfromtheionexchange andgelfiltrationchromatographywassubjectedtoanalyticalhigh performanceliquidchromatography(HPLC)performedona Shi-madzuProminence(Kyoto,Japan)apparatuswithaUV/visLC-20A detector.ThefractionswereelutedwithaShimadzuShimPackCLC (M)C18(4.6mmID×250mmlong)columnusingalineargradient betweenTFA/H2O(1:1000,v/v)andTFA/acetonitrile(1:1000,v/v)

over80minataflowrateof0.5mL/min,andtheabsorbancewere readat280nm(Hernándezetal.,2005withmodifications).

(3)

2.9. Massspectrometry

The protein spot of interest was excised out of the gel (Shevchenko et al., 1996). The spot was washed three times with a washing solution (1:1, v/v 25mM ammonium carbonate–acetonitrile)at25◦Cfor2h.Thewashingsolutionwas thenremovedandthespotwasnowcoveredwithacetonitrilefor 20minat25◦C.Finally,theacetonitrilewasremovedandtheexcess evaporated,thusproviding,thedryingofthespot.Thedehydrated gelparticleswerethenrehydratedfor10minwith10␮Lofdigest buffer(25mMammoniumcarbonate)containing20ngoftrypsin (sequencinggrademodifiedporcintrypsin,Promega,Madison,WI, USA).After,20␮Lofdigestbufferwere added,and thesample wasincubatedfor20hat37◦C.Theresultingtrypticpeptideswere twiceextractedwith50␮Lof0.1%trifluoroaceticacid(TFA)in50% (v/v)acetonitrilewith20minsonication.Theproductsfromthe twoextractswerecombined,vacuum-driedandthendissolvedin 0.1%TFAin50%(v/v)acetonitrile.

The matrix (10mg/mL CHCA (␣-cyano-4-hydroxycinnamic acid)in0.1%TFAand50%,v/vacetonitrile)andthesample(1:1,v/v) werespottedandcocrystallisedonatargetplate.Matrix-assisted laserdesorptionionizationtime-of-flight/time-of-flightmass spec-trometry(MALDI-TOF/TOFMS,model 4700ExplorerProteomics Analyser,AppliedBiosystem®,USA)hasbeenappliedtoPeptide

MassFingerprint(PMF)andpeptidesequencing.ForMALDI-MS/MS measurements,N2wasusedascollisiongasinthecollisioncell at2.8×10−6Torr.Trypsinautolysispeptidesofmasses842.5and 2211.1andcalibrationmixtures1and2(SequazymePeptideMass Standardkit,PerSeptiveBiosystems®,FosterCity,CA,USA)were

used,respectively,asinternalandexternalstandardsinboththe MALDIMSandMALDIMS/MSprocedures.

For database searching, ppw files were submitted to the Mascot search engine using Daemon 2.1.0 (Matrix Science:

http://www.matrixscience.com)onaMascotserverversion2.2.1. Thedataweresearched againstthelatestversionof thepublic non-redundantproteindatabaseoftheNationalCenterfor Biotech-nologyInformation(NCBI),downloadedonAugust2008,witha massaccuracyof15ppmfortheparention(MS)and0.2Daforthe fragmentions(MALDIMS/MS).

Thesearchwasconstrainedtotrypticpeptideswithamaximum ofonemissedcleavage.Thecarbamidomethylationofcysteinewas consideredafixedmodification,whereastheoxidationof methio-nineresidueswasconsideredasavariablemodification.Aninitial listofproteinswasgenerated and formedthebasis for further analysis.A“positivelist”wasgeneratedbyconsideringonlythose proteinsthatcontainedatleastoneuniquepeptide(minimum10 aa)witha Mascotscoreabove67(p-value<0.05).HPLCandMS experimentswereperformedinduplicate(Rodriguesetal.,2011).

3. Resultsanddiscussion

Thecrudeextractwasobtainedwith1.77mg/mLoftotalprotein, 40.84UmL−1 ofproteolyticactivityand23.07Umg−1 ofspecific activity(Table1).Afterthepurificationsteps,thecrudeextractwas appliedtotheionexchangechromatography.

3.1. Ionexchangechromatography

Bromelain purification with carboxymethylcellulose (CMC) exhibitedapurificationfactorof 3.01,with93% recoveryofthe proteolyticactivity.No activitywasdetectedafter thewashing flow.Theionexchangechromatographyofbromelainresultedin aprominentpeakinthesixthfraction(Fig.1).Thespecific activi-tiesoftheappliedcrudeextractandthesixthelutedfractionwere 23.07and69.50U/mgprotein,respectively.

Fig. 1.Ionexchange chromatographicpurification profile for bromelainfrom pineapplestems.

Fig. 2.Gel filtration chromatographicpurification profile for bromelain from pineapplestemsafterionexchangechromatography.

Weobservedahigherbromelainactivitythanthosereported forexistingmethodologiesofionexchangechromatography.This activity is due to theuse of 1Macetate bufferpH 4.5 in this step.Costa(2010),compareddifferentbuffersforthemaintenance of bromelain, and noted that this buffer atpH 4.5 contributed tobromelainactivity.Moreover,previousworkshave indicated thatdifferencesintheionchromatographyresinareimportantto bromelainactivity(Devakateetal.,2009;Costa,2010).

3.2. Gelfiltrationchromatography

Thefractionsobtainedbyionexchangechromatographywere pooled(fractions3–22)andsubjectedtomolecularexclusion chro-matographyusingSephadexG-50resin,andatotalof51fractions were collected (Fig. 2). The specific activity of bromelain was 390.75U/mg, whereas that the proteolytic activity was 89% of recoverywithapurificationfactorof16.93.

ThecouplingofCMCresinwiththeSephadex®G-50resinisa

powerfulchromatographymethodtoobtainBromelaininitspure form.Suhet al.(1992) purified bromelainfrompineapplefruit andstemuntilhomogeneityusinggelfiltrationchromatography, obtainingayieldofonly23%ofactivity.

Hernández et al. (2005) reported a purification method for bromelainsimilartoourstudy.AuthorsconductedtheBromelain purificationhoweverusingoppositetreatment:theyperformedthe gelfiltrationfollowedbyionexchangechromatography.The gel-filtrationresinusedwasSephadex®G-100,yielding87.81%activity.

ThesecondpurificationstepwasusedtheCMC,whichtheyieldof bromelainactivitydecreasedto41.15%.

TheSephadex®G-50ischeaperthanSephadex®G-100

(reduc-tionof50%ofcost),becomingthepurificationprocessofbromelain economically viable. Additionally, the purificationmethodology developedpresentsahigheryieldofproteolyticactivity.

(4)

Table1

Yieldintotalprotein,proteolyticactivity,specificactivityandpurificationfactorforeachbromelainpurificationstep.

Steps Fractionvolume(mL) Totalprotein(mg/mL) Proteolyticactivity(U/mL) Specificactivity(U/mg) PFa

Crudeextract 8 1.77 40.84 23.07 1

CMC 50 0.20 13.90 69.50 3.01

Sephadex 5 0.093 36.34 390.75 16.93

aPF:purificationfactor.

Fig.2showsfractionswhichhaveproteolyticactivity(fraction 2–45).After51thfractionnonproteolyticactivitywasobserved correspondingtonon-targetsproteins.

3.3. SDS-PAGE

IntheSDS-PAGEanalysis,themolecularweightofbromelain wasestimatedas30kDa,andpredictedbyGautametal.(2010)

andotherpreviousstudies.Bromelainmaynotbecompletelypure whentheextractiselutedonlywithionexchange,assuggestedby thedoublegelbandinthe30kDaregion(Lane1–Fig.3).Theresult ofthegelfiltrationpurificationofbromelainwasconfirmedbythe SDS-PAGEresult,inwhichonlyonebandcanbeobservedinthe 30kDaregion(Lane2–Fig.3).

3.4. HPLC

Aliquotsfromthesamefractionsusedforthepreparation of theSDS-PAGEgelswerethenpreparedforHPLC.TheHPLC anal-ysiscorroboratedwiththeSDS-PAGEresults.Thereversedphase chromatographyconfirmedthepresenceoftwopeaksintheion exchangechromatogram(Fig.4a)andonlyoneprotein(Peak1) inthegelfiltrationchromatogram,whichwaselutedinthefirst 10min(Fig.4b).

Bromelainisaproteinwithpolarcharacteristics,asindicated bythepeakappearingduringthefirstfewminuteswhenwateris themainsolventinthenon-polarcolumn(C-18),causingittobe rapidlyeluted.Napperetal.(1994),inacomparisonofpineapple

Fig.3.SDS-PAGEanalysisofionexchange(Lane1)andgelfiltration(Lane2) chro-matography.(M–MolecularWeightMarker).

proteases,ascribedthepolarityofbromelainmainlytoitscontents oftheaminoacidslysineandarginine,whicharepresentinlarger amountsincomparisonwithotherproteases.

3.5. Massspectrometry

TheSDS-PAGEpreviouslyshown(Fig.3,lane2)wasexcisedand trypsinisedtoobtaina PMF.TheMALDI-TOF MSconfirmedthe purityofthebromelain(Fig.5a)fromidentificationof 10more abundantpeptides with m/z values of 951.44, 963.44,1000.49, 1016.48,1032.48,1068.52,1103.52,1526.70,1566.73and1584.75. Among signals identified, the ions of m/z 951 and 1584 were submittedtoMALDI-MS/MSexperimentsfordeterminationof frag-mentation profile and sequencing (Fig. 5b and c). The Mascot programhasbeenusedfortheMALDI-MS/MSdata,thus provid-ing,themostlikelysequenceforthepeptidesofm/z951(Probable sequence:WGEAGYIR) and 1584(Probable sequence: TNGVPN-SAYITGYAR).

TheNCBI(http://blast.ncbi.nlm.nih.gov)databaseanalysisofthe twopeptidesidentifiedaFBSBprecursor[Ananascomosus]withthe accesscodegi2463584,whichhasa95–100%identitywith brome-lain. Additionally, the SwissProt (http://blast.ncbi.nlm.nih.gov) database was also used, confirming again the purity of the

Fig.4.HPLCchromatogramsobtainedfromthefractionwiththehighest proteo-lyticactivityintheC18columnusingagradientof0–80%water–acetonitrileata flowof0.5mL/minfor80min(a)ionexchangechromatogramand(b)gelfiltration chromatogram.

(5)

Fig.5.(a)MALDI-TOFMSspectrumfrombromelainpurified,(b)MALDITOFMS/MSfrompeptidem/z951and(c)MALDITOFMS/MSfrompeptidem/z1584.

bromelainas anidentityof 95–100%between bromelainand a peptidewiththeaccesscodeBROM2ANACO.

TheMSDBdatabasewasalsousedtoanalyzethetwopeptides. Thepeptidewiththem/z951showedhighhomologywithananain, identifiedasanAN8precursor.

Rowan et al. (1990) described the presence of four main proteasesin pineapple (Ananascomosus):fruit bromelain,stem bromelain,ananainandcomosain.

Ananainshowsa77%aminoacidsequenceidentitywith brome-lain (Lee etal., 1997).Thispeptide (m/z951) is present at the

(6)

N-terminusregionofbromelain,whichisaportionidenticaltothat ofothercysteineproteases,asitcomprisesmainlytheregionof thecatalyticsite.Ifwealignonlyonefragmentofthetwoproteins (bromelainandananain–seebelow),thepeptidesdifferbyonly oneaminoacid:bromelainhasanalanine(A),whereastheananain hasaglycine(G).

Stembromelain WGEAGYIR

Ananain WGEGGYIR

Peptidem/z951 WGEAGYIR

Asproteasesofthesamefamily,theproteinswereexpected toshareseveralidenticalregionsintheirprimarysequences,and somepeptideswouldhaveahighidentitywithananainorother proteases.Themostlikelysequenceidentifiedforthepeptidemass ofm/z951isthebromelain.Moreover,Laroccaetal.(2010)also confirmedthechemicalidentityofpeptideofm/z951by MALDI-TOFMS.

3.6. Purificationprocess

Thebromelainpurificationmethodusing carboxymethylcellu-losewasabletopurifythecompoundapproximately3.01timesthe levelinthecrudeextract,andtheSephadex®columnpurifiedthe

compoundapproximately16.93times(Table1).

Theresultsindicatethat,dependingonthedestinationofthe bromelain,theprocesscanbestoppedafterthefirstpurification stepusingionexchangechromatography.Thismethodispossible becausetheCMCpurifiedthecompound3.01timesthelevelinthe crudeextract(Table1),withthisresultconfirmedbytheSDS-PAGE andHPLCresults.

Inmanycases,thecommercialuseofbromelaininthefood, cosmetics,andnutritional,medicinalandpharmacological supple-mentindustries (Ketnawa etal., 2012)does notrequirea high puritybromelainenzyme preparation.The processdescribed in thepresentstudyenablesproducerstochoosethedesiredlevel ofbromelainpurity,therebyfurtherreducingthecostsofthe pro-ductionprocess.

Proteolyticactivityisthemainparameterforqualitycontrol, andthebromelainpurified bytheprocessdemonstrated inthe presentstudyhadaproteolyticactivityyieldof89%,whichishigher thanthatobtainedfromcurrentpurificationprocesses.

Finally,itisestimatedthatfrom1kgofstempineapple,itis possibletoobtainapproximately267mgofpre-purifiedbromelain and124mgofpurifiedbromelain.

4. Conclusions

The bromelain purification method of the present study employs two LC steps: ion exchange chromatography (car-boxymethylcellulose),followedbygelfiltrationchromatography (Sephadex®G-50).Thepurifiedbromelainhasamolecularweight

ofapproximately30kDaandisof highpurity,andthe purifica-tionmethodyieldsahigherproteolyticactivityvalue(89%)ata lowercostthantheexistingmethodologies.Therefore,themethod demonstratedinthepresentstudycanbeusedtotransformthe agriculturalandindustrialwastesofpineapplecropintoaproduct withhighaddedvalueandsignificantbiotechnologicalinterest.

Acknowledgments

Theauthors thank Clair Barboza fromInstituto Capixaba de PesquisaAssistênciaTécnicaeExtensãoRural.Authorsthankstoo Dr.SilasRodriguesPessiniandInstitutodeBioquimicaMédicaof FederalUniversityofRiodeJaneiroandHemostaseandpoison labo-ratory(IBqM).ThisworkwassupportedbyFinanciadoradeEstudos eProjetos(FINEP),ConselhoNacionaldeDesenvolvimento Cien-tíficoeTecnológico(CNPq),Coordenac¸ãodeAperfeic¸oamentode

PessoaldeNívelSuperior(CAPES), Banco doNordestedo Brasil (BNB) and Fundacão de Amparo á Pesquisa do Espírito Santo (FAPES).

References

Bala,M.,Ismail,N.A.,Mel,M.,Jamed,M.S.,Mohd,H.,AzuraAmid,S.,2012.Bromelain production:currenttrendsandperspective.Arch.Sci.65,369–399.

Bardiya,N.,Somayaji,D.,Khanna,S.,1996.Biomethanationofbananapeeland pineapplewaste.Bioresour.Technol.8,73–76.

Babu,B.R.,Rastogi,N.K.,Raghayarao,K.S.M.S.,2008.Liquid–liquidextractionof bromelainandpolyphenoloxidaseusingaqueoustwo-phasesystem.Chem.Eng. Process.47,83–89.

Bradford,M.M.A.,1976.Rapidandsensitivemethodforthequantitationof micro-gramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding.Anal. Biochem.72,248–254.

Bon,E.P.S.,Ferrara,M.A.,Corvo,M.L.,2008.Enzimasembiotecnologia.Produc¸ão Aplicac¸õeseMercado,firsted.Interciência,RiodeJaneiro.

Cabral,H.,Ruiz,M.T.,Carareto,C.M.A.,Rodriguez,G.O.B.,2000.Aplantproteinase, extractedfromBromeliafastuosa,asanalternativetoproteinaseKforDNA extraction.Dros.Inf.Serv.83,178–185.

Cao,L.,(Masterdissertation)2005.ProteinseparationwithionExchangemembrane chromatography.WorcesterPolytechnicInstitute,Worcester,UnitedStates.

Costa,H.B.,(Masterdissertation)2010.Extrac¸ãoepurificac¸ãodebromelinadocaule doabacaxizeiro(Ananascomosusvar.comosus)cv.FederalUniversityofEspirito Santo,Vitória,Brazil.

Costa,H.B.,Delboni,S.G.,Fortunato,F.S.,Ventura,J.A.,2009.Proteolyticactivityin stemsof‘Vitoria’,‘SmoothCayenne’and‘Perola’pineappleplants.Act.Hort.822, 239–244.

Devakate,R.V.,Patil,V.V.,Waje,S.S.,Thorat,B.N.,2009.Purificationanddryingof bromelain.Sep.Purif.Technol.64,259–264.

Doko,B.,Bassani,V.,Casadebaig,J.,Cavailles,L.,Jacob,M.,2005.Preparationof pro-teolyticenzymeextractsfromAnanascomosusL.Merr.fruitjuiceusingsemi permeablemembrane,ammoniumsulfateextraction,centrifugationand freeze-dryingprocesses.IntImmunopharmacol.5,783–793.

Gautam,S.S.,Mishra,S.K.,DASH,V.,Goyal,A.M.,Rath,G.,2010.Comparativestudy ofextraction,purificationandestimationofbromelainfromstemandfruitof pineappleplant.ThaiJ.Pharm.Sci.34,67–76.

Hebbar,H.U.,Hemavathi,A.B.,Sumana,B.,Raghavarao,K.S.M.S.,2011.Reverse micellarextractionofbromelainfrompineapple(AnanascomosusL.merryl) waste:scale-up,reversemicellescharacterizationandmasstransferstudies. Separ.Sci.Technol.46,1656–1664.

Hebbar,H.U.,Sumana,B.,Raghavarao,K.S.M.S.,2008.Useofreversemicellar sys-temsfortheextractionandpurificationofbromelainfrompineapplewastes. Bioresour.Technol.99,4896–4902.

Harikrishna,S.,Srinivas,N.D.,Raghavarao,K.S.M.S.,Karanth,N.G.,2002.Reverse micellar extraction for downstream processing of proteins/enzymes. Adv. Biochem.Eng.Biotechnol.75,119–183.

Hernández,M.,Carvajal,C.,Marquez,M.,Báez,R.,Morris,H.,Santos,R.,Chávez,M.A., 2005.ObtencíondepreparadosenzimáticosapartirdetallosdePina(Ananas comosus)compotencialidadesdeusoemlabiotecnologiaylamedicina.Revista CENICCiênciasBiológicas36,1–12.

Ketnawa,S.,Chaiwut,P.,Rawdkuen,S.,2012.Pineapplewastes:apotentialsource forbromelainextraction.Food.Bioprod.Process.90,385–391.

Larocca,M.,Rossano,R.,Santamaria,M.,Riccio,P.,2010.Analysisofpineapple [AnanascomosusL.Merr.]fruitproteinasesby2-Dzymographyanddirect iden-tificationofthemajorzymographicspotsbymassspectrometry.FoodChem. 123,1334–1342.

Laemmli,U.K.,1970.Cleavageofstructuralproteinsduringtheassemblyofthehead ofbacteriophageT4.Nature227,680–685.

Lee,K.L., Albee,K.L.,Bernasconi,R.J.,Edmunds, T.,1997.Completeaminoacid sequenceofananainandacomparisonwithstembromelainandotherplant cysteineproteases.Biochem.J.327,199–202.

Maurer,H.R.,2001.Bromelain:biochemistry,pharmacologyandmedicaluse.Cell. Mol.LifeSci.58,1234–1245.

Murachi,T.,1976.Bromelainenzymes.In:Lorand,L.(Ed.),MethodsinEnzymology. AcademicPress,NewYork,pp.475–485.

Napper,A.D.,Bennett,S.P.,Borowski,M.,Holdridge,M.B.,Leonard,M.J.,Rogers,E.E., Duan,Y.,Laursen,R.A.,Reinhold,B.,Shame,S.L.,1994.Purificationand charac-terizationofmultipleformsofthepineapple-stem-derivedcysteineproteinases ananainandcomosain.Biochem.J.301,727–735.

Rodrigues,S.P.,Ventura,J.A.,Aguilar,C.,Nakayasu,E.S.,Almeida,I.C.,Fernandes,P.M., Zingali,R.B.,2011.Proteomicanalysisofpapaya(CaricapapayaL.)displaying typicaldiseasesymptoms.Proteomics13,2592–2602.

Rowan,A.D.,Buttle,D.J.,Barrett,A.J.,1990.Thecysteineproteinasesofthepineapple plant.Biochem.J.266,869–875.

Silvestre,M.P.C.,Carreira,R.L.,Silva,M.R.,Corgosinho,F.C.,Monteiro,M.R.P.,Morais, H.A.,2012.EffectofpHandtemperatureontheactivityofenzymaticextracts frompineapplepeel.Food.Bioprocess.Technol.5,1066–1088.

Suh,H.J.,Lee,H.,Cho,H.Y.,Yang,H.B.,1992.Purificationandcharacterizationof bromelainisolatedfrompineapple.HangukNonghwaHakhoe35,300–307.

Shevchenko,A.,Wilm,M.,Vorm,O.,Mann,M.,1996.Massspectrometricsequencing ofproteinsfromsilver-stainedpolyacrylamidegels.Anal.Chem.Germany68, 850–858.

Figure

Fig. 1. Ion exchange chromatographic purification profile for bromelain from pineapple stems.
Fig. 2 shows fractions which have proteolytic activity (fraction 2–45). After 51th fraction non proteolytic activity was observed corresponding to non-targets proteins.
Fig. 5. (a) MALDI-TOF MS spectrum from bromelain purified, (b) MALDI TOF MS/MS from peptide m/z 951 and (c) MALDI TOF MS/MS from peptide m/z 1584.

Références

Documents relatifs

Our data revealed that glycemic status preferentially affected small, dense HDL3c particles which displayed distinct compositional alterations closely related to

Plus tard, elle lui confia qu'elle avait remarquée, bien avant qu'il se décidât à l'inviter, sa prestance et son port racé.. - Dis-moi que c'est pour la

(d) Finally, as a highly efficient separator, the chroma- tographic column can be used for the theoretical interpretation of the separation of similar molecules

Alexis Dubuis, Agnès Le Masle, Ludovic Chahen, Emilie Destandau, Nadège Charon. Centrifugal partition chromatography as a fractionation tool for the analysis of lignocellulosic

Dans cette communication, nous voulons montrer que le développement du secteur coton au Cameroun, mais nous pensons que cela devrait être vrai également pour beaucoup de pays

In this study, an original device was designed to characterize the mechanical behavior of hydrogels submitted to osmotic stress on conditions that mimic plant cell

clathrate cages, hydrogen bond formation with the guests may relieve some of the steric tension built into the hydrogen bond- ing network (particularly in the large cage

Extensive catalyst and reactor characterization is provided to establish an in-depth understand- ing of the unique multiphase dynamics within the micro-packed bed reactor, including