• Aucun résultat trouvé

Unraveled mechanisms in energy production from bioresources using steam gasification

N/A
N/A
Protected

Academic year: 2021

Partager "Unraveled mechanisms in energy production from bioresources using steam gasification"

Copied!
11
0
0

Texte intégral

(1)Unraveled mechanisms in energy production from bioresources using steam gasification Lina Maria Romero Millan, Fabio Emiro Sierra Vargas, Ange Nzihou. To cite this version: Lina Maria Romero Millan, Fabio Emiro Sierra Vargas, Ange Nzihou. Unraveled mechanisms in energy production from bioresources using steam gasification. Fuel, Elsevier, 2021, 287, pp.1-10/119527. �10.1016/j.fuel.2020.119527�. �hal-02983116�. HAL Id: hal-02983116 https://hal-mines-albi.archives-ouvertes.fr/hal-02983116 Submitted on 8 Dec 2020. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2) Unraveled mechanisms in energy production from bioresources using steam gasification ´n a, b, *, Fabio Emiro Sierra Vargas b, Ange Nzihou a Lina María Romero Milla a b. Universit´e de Toulouse, IMT Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, Route de Teillet, F.81013 Albi Cedex 09, France Universidad Nacional de Colombia – Sede Bogot´ a, Facultad de Ingeniería, Ciudad Universitaria, Bogot´ a, Colombia. A B S T R A C T Keywords: Lignocellulosic biomass Steam gasification Catalytic mechanism Inorganic composition Product yield Gas efficiency. Lignocellulosic agrowastes are one of the most abundant and inexpensive bioresources on earth. However, they comprise a wide range of materials with different organic and inorganic composition that may influence their performance in energy applications. Here, we analyze the impact of inherent inorganics on the steam gasification performance of bioresources, using an approach combining the analysis of the gasification reaction mechanisms, and the assessment of the process product distribution and energy balance. We proved that the inorganic ratio K/ (Si + P) is a valuable indicator of the biomass gasification reactivity and product yield. Under the same experimental conditions, samples with K/(Si + P) higher than 1 followed a catalytic gasification behavior, resulting in higher gas yields and process gas efficiencies in comparison to samples with K/(Si + P) below 1. This work is expected to bring new insights in the field and could facilitate the adaptation of the process parameters to the feedstock characteristics and the application requirements.. 1. Introduction Each year, billion tons of agricultural and agroindustrial wastes are generated all around the world, representing one of the most abundant and inexpensive bioresources on earth [1]. Being widely available, agrowastes constitute a valuable and renewable source of energy in developed and developing countries, in the framework of an environ­ mentally sustainable approach, representing more than 7 million ter­ ajoules of energy, or the equivalent of more than 7.5 billion barrels of diesel [2–5]. Among the existing agrowaste conversion pathways, steam gasification is particularly interesting, as it allows the production of high heating value fuel gases (10 and 18 MJ/m3), for the generation of heat or power [6–8], as well as the synthesis of advanced chemicals [9–11]. However, the sustainable use of these bioresources for energy produc­ tion needs to overcome different challenges related to their variability. In particular, the volume of residues generated from agricultural and agroindustrial activities is not constant throughout the year, and is regularly determined by the seasonality of crops. Therefore, the asso­ ciated gasification facilities should work intermittently, or employ multiple kinds of residues with heterogeneous characteristics. Along with the reactor configuration and the process operating conditions like temperature and steam flowrate, the characteristics of. the feedstock may also impact the performance of gasification, and particularly, the produced gas composition and yield [12–14]. Regarding the steam gasification product distribution and gas compo­ sition, several studies related to different kinds of lignocellulosic feed­ stocks have been developed [15–17], dealing with the analysis of residues individually, without comparing different materials. A few approaches working with several feedstocks described some divergences in the gas production rate and composition during gasification, attrib­ uted to the samples ash content and composition, volatile matter, par­ ticle porosity, or particle size, without defining the mechanisms associated with the described behavior [12,18,19]. In general, lignocellulosic materials are a complex mixture of natural polymers, mainly hemicellulose, cellulose, and lignin, tightly bonded by physical and chemical interactions [20,21]. They may have different proportions of the constituent polymers depending on the plant species, origin, and age, as well as several inorganic elements present in their structure [22]. In this regard, it has been proven that the biomass gasification reactivity may depend on the sample morphology, struc­ ture, and composition [23,24]. Among these parameters, the biomass inherent inorganic composition has been identified as the most influ­ encing one [25–27]. In particular, alkali and alkali earth metals (AAEM) like K, Na, Ca and Mg, are related to a catalytic effect on biomass. * Corresponding author at: Universit´e de Toulouse, IMT Mines Albi, RAPSODEE CNRS, UMR 5302, Campus Jarlard, 81013 Albi Cedex 09, France. an), fesierrav@unal.edu.co (F.E. Sierra Vargas), ange.nzihou@mines-albi.fr (A. Nzihou). E-mail addresses: lina.romero_millan@mines-albi.fr (L.M. Romero Mill´.

(3)   9?A–C6:.   2 

(4) 

(5)  .    

(6)  '(?    

(7)   9?A?E:.&

(8)  !  

(9) )           

(10)   ,   9C?CC:. & 

(11)   

(12) ;     0  7 

(13)  

(14)         

(15) 

(16)   

(17)       

(18) 

(19)            

(20)  

(21)  

(22)    . &  ,

(23) 7 ,          

(24)   

(25)    

(26)       

(27) ,       

(28)   .%   4'!54+*5   4()!5,

(29) 

(30)    

(31) , 

(32)  ; 

(33)  

(34)  

(35)  

(36) 

(37) 

(38)  

(39)  

(40)   ; .%    

(41) ,$

(42)  

(43) ,     ,       

(44)    

(45)   . %   

(46)  

(47) $         ;

(48)   

(49)   

(50)              .% 

(51)  

(52)    

(53)     

(54) 

(55)  

(56) 

(57)   

(58) 

(59)  

(60)  ;         7  

(61)  

(62)      .%    

(63)     ;; ;

(64)       

(65) .. 

(66) 

(67) (

(68)   

(69)    

(70)  ..     4, .L

(71)  

(72) 5. %

(73)   

(74)       7 ,

(75)    

(76)    . '   4'!5  4+*5     4()!5 ,

(77)  

(78)      

(79) ,  

(80)   

(81)  

(82)   

(83)  

(84) 

(85) 

(86)  

(87)  

(88)        

(89)   ,

(90) 7 9CF:  

(91) $  % 6. %      4'/#!5  

(92)    , 

(93)    

(94) 

(95)  . & 

(96)    

(97)   

(98)  

(99) 

(100)   

(101)    

(102) 

(103) 

(104) 7 

(105) .

(106)   

(107) ; 

(108)    4'!5  4()!5 

(109) 

(110)          

(111)   4+*5   .&

(112)     

(113)        

(114)    

(115) 2' #,   

(116) 

(117)   ! ).%        

(118)   7             

(119) 

(120)   ;

(121)     , 

(122)       7. 

(123) 

(124)           

(125)    

(126)    

(127)    ;  , 

(128)   ;   ,

(129) $  

(130)  

(131) 

(132) 4E@L'!;6@L()!E@L '!;6@L+* >@L'!;>@L()!  >@L'!;>@L+*  , . L5. % 

(133) ,  7,

(134)    

(135)  $ ,?F 

(136)    -

(137)  . 1!1!  *2(

(138)  & *   -

(139)   ,

(140)  

(141) 

(142)         

(143)  

(144) 0  $ 

(145) .1    D@  

(146)    

(147)   D       

(148)  

(149)  , - 

(150) .  , 

(151) 

(152) . 

(153)  7          ,       

(154)   .

(155)  . %  

(156) 

(157)   , 

(158)    

(159)  

(160)  

(161) 

(162)    

(163)    

(164)  

(165)  

(166) .% 

(167)   4 50  $  

(168) 4#?5,

(169) 

(170)    

(171)  0,

(172) 

(173) .  -  

(174)  

(175) ;      

(176) 

(177)  9C>:,    

(178)        

(179)   <  

(180)   .  

(181)    

(182)   

(183) 

(184)   

(185)  4 .65.

(186)  -

(187)  A@ ,

(188) .%    0,

(189) 8

(190)  0  $  ,-

(191)  . +  4+*5. (    4()!5. '. FD.A± @.?. FD.<± @.?. / (. >.A± @.6 F<.6± @.6. D.>± @.6 FD.?± @.6. # (3' /3'. @.C± @.6 @.<± @.6 6.>± @.6. @.D± @.6 @.<± @.6 6.<± @.6. FD.<± @.? D.>± @.6 FD.?± @.6 @.D± @.6 @.<± @.6 6.<± @.6. "   

(192)   -'

(193) . <E.>± @.C. <<.?± @.C. 6E.@± @.?. ?@.E± @.C.  . 6.F± @.6. 6.<± @.?. <<.?± @.C ?@.E± @.C 6.<± @.?. 

(194) 

(195)    4, .L 

(196)  

(197) 5. ' /    . C?.> ?@.> CD.>. >C.E 6C.> ?>.6. C@.F 6?.< FE.A. /     4B375. //". 6A.<± @.C. 6E.D± @.?. 6E.D± @.?. . ?D?± A. ?FC± CF. '  2. CE6± <C 6D@± ?A ?A@A± FF. FF6± EE 66D± 6< >CD@± A>.  # ) ! . 6<@± 6> CC@± 66 CE<± F@ C@E± FC. 6<C± 6@ C@± @.A A?E± D? 6EC<?± C>F. 6>@@± ?? >F± D 6@<± F 6@@D± 6> 6C>± C 6>± @.> ?<@± < >D@@± CE. . )

(198) -    4, .L

(199)  5.   

(200) 

(201)  1!#! )

(202)  . '   4'!5. &

(203)     437

(204)  5.  '  

(205) .  H 

(206)   % 8 # ?@@ $

(207) .! 

(208)  # &!(6DEFA.  ' 

(209)    

(210)  #&!(6A6CF–C #&!(6A6?C # &!(6A6??.  

(211) 9>E:.  H 

(212)   &2 '>@@@  

(213)  

(214) 

(215)    #&!(6A6?>.  H 

(216)        

(217)  

(218) 4&');( !5

(219)    #6DED<..  

(220)   

(221)  

(222) 

(223) 

(224) 

(225)   

(226)  ,  

(227)    #? 0,

(228)  .   8    

(229)  ;        

(230)  

(231) 4  

(232) 

(233)  5 ,

(234)  

(235) .% 

(236) 

(237) 

(238)  

(239) ,  0, ,  0  $    

(240)  .( 

(241)   0  $ 

(242) 

(243) 

(244)    $.&

(245)  ,

(246) .  

(247)   0,

(248)  @.DC3 4  0  $   34 G@.@D35  ,0  $.%    

(249)  

(250) ,       

(251)  

(252)  

(253)  ?@ ◦ '3   

(254)  

(255) . 1      

(256)  

(257)  ,

(258)   4

(259) <>@◦ ' A>@◦ '5   

(260) ,,    - 

(261)  /?(3#? 46@@3  − C@L      5 ,     

(262)         4          

(263)  

(264) 

(265) 6  C 5.%   0,

(266)        

(267)  

(268) ,@.<C3 

(269)  -

(270)  43/ @.@<33534/ 6.?5. 

(271)  >      

(272)  ,

(273)   

(274)    ,

(275)  7 %

(276)   $ 

(277)  . 

(278)  

(279)  

(280) ;*'4*'   5,.%    , 

(281)  '(/?'/F '/ 

(282) 

(283) ; .  

(284)     

(285)  

(286) ,, 

(287)  

(288)  

(289)  

(290) #?.% 

(291)    

(292) , ,  ,   

(293)     

(294)   8 , 

(295)  

(296)  

(297) 

(298) .

(299)  

(300)  ;  

(301)    

(302)   ,

(303) ,  

(304) 

(305)   .

(306)  

(307)  !   

(308)    -

(309)   ..  .)

(310)    ,

(311) 

(312)

(313)      8        

(314) 4

(315)   5

(316)   ;   

(317)  

(318) . )

(319)         ,

(320)  

(321)

(322)    , . % 

(323)     ,      

(324)     

(325)      ,,CL4

(326)  

(327)  5 

(328)  ,6@L

(329)  $.   

(330)    

(331)  

(332)  ,,CL 

(333)  . 1!%! 

(334) (  -  *- 4(

(335)  %    

(336)    -

(337)     ,   

(338)  

(339)  

(340) 

(341)  4 

(342) 5 8  4 

(343) + , 

(344) 5 

(345)   

(346) 

(347)   . .     

(348)  

(349)  −?@ ◦ '    ,  

(350)     ?;

(351)     

(352)       $ 

(353)   -

(354)       8    ,  

(355)   

(356)     

(357)   ,   

(358)   

(359)  

(360)    . ' 

(361)     

(362)  0,     

(363)  , 7,  

(364)  -

(365)     

(366)   

(367) ,

(368)  

(369) .% ;   4/?'('(?'/F5,

(370)   

(371) ;   

(372)   

(373)    .  

(374)     ,    

(375)   8  

(376) 

(377)   

(378)  ;  ,

(379) 

(380)  

(381)    -

(382)       

(383)          .

(384)       

(385) 

(386)      ,  

(387) AA.DL6@CL 

(388)  

(389)   

(390)  -

(391)   .%   

(392)   ;        

(393) ;  

(394) ; , 

(395)    8.465–4C5. mchar Char yield(%) = 100 mbiomass + msteam. 465. mliquid 100 Liquid yield(%) = mbiomass + msteam. 4?5. mgas 100 Gas yield(%) = mbiomass + msteam. 4C5. -

(396)  8  * 

(397)   8 

(398)  

(399)     .

(400)  

(401) 

(402) 

(403)   

(404)              

(405) .

(406)  

(407)        

(408)   , 

(409)          , 6@@L       

(410)  

(411)  

(412)    

(413) 

(414) . 

(415)  -

(416)    

(417) 

(418)     .  8  ;

(419)  , 

(420)  .% 

(421)    

(422) , 

(423)  

(424)          ; 

(425)  

(426) ,

(427)  7   

(428)  ,G Eprod = Esolid + Egas + Eliquid Esolid. ( ) = mchar Cpchar Tr + HHV char. 4>5. ( ) Egas = mgas hgas(Tr ) + HHV gas. 4D5. ( ) ( ) Eliquid = msteam hsteam(Tr ) + mtars htars(Tr ) + HHV tars. 4<5. , 

(429) (7 * 

(430)   

(431) 

(432)  

(433)       

(434) . (7         

(435)  9CD:    

(436)  

(437)  

(438)  

(439)  

(440)       . 

(441)  

(442)  

(443) 7*       

(444)    ; 

(445)  

(446)       

(447)   7       

(448)     

(449)  

(450)  . 933(7 933* 

(451) .      

(452) 

(453)  

(454) .   

(455)   

(456)   

(457)  

(458)         

(459)    8  

(460)  

(461)       

(462) 

(463)   8 

(464)

(465)  

(466)   .&

(467)  

(468)  

(469)     

(470)  , 

(471)    8. 4A5–46@5G E.fracgas (%) =. Egas 100 Eprod. 4A5. Echar 100 Eprod. 4E5. E.fracchar (%) =. E.fracliquid (%) =. , 

(472)  (7     

(473) 

(474)   

(475)       . 4F5. Eliquid 100 Eprod. 46@5.   

(476)  

(477)    

(478)  

(479)        

(480)  ,G.

(481) Gaseff (%) =. mgas HHV gas 100 mbiomass HHV biomass + msteam hsteam(Tr ). 4665. , 

(482) 

(483)   

(484)              

(485) 993* 993

(486)  

(487)  .     

(488)  

(489) , 7 : ;       

(490)  

(491)  

(492)  

(493)   

(494)     

(495) . 1!<! =2(

(496)  (- - % $     

(497) ,   

(498)  

(499)    

(500)       

(501)   

(502) 

(503)      , 

(504) 

(505)  

(506)   

(507)     .% 

(508)  

(509)   

(510)  

(511)         8.46?5G. α(t) =. m0 − m(t) m0 − mash. 46?5. , 

(512) $            :;      

(513) 7     .

(514)  -

(515)   $    

(516)   

(517)  

(518) 

(519)    =  

(520)  

(521) . 

(522)  ;  .% 

(523)    

(524)    -

(525)        

(526)   

(527)  α. & 

(528) 

(529)    ; 

(530) 

(531) 

(532) 

(533)

(534)   

(535)  .#

(536)   

(537)      

(538)   ,      

(539)   -

(540)   

(541)

(542)      

(543)    -

(544)      

(545)     

(546)    8.46F5, 

(547)    .     

(548) 6  C . R(α)(app) =. 1 dα 1 − α(t) dt. R(α)(app)average =. n 1∑ 1 dα n t=1 1 − α(t) dt. 46C5 46F5. 1!>! 7( (7(?

(549) 

(550) 4 7  *2(

(551)  

(552)  -0

(553) ( %       

(554) ;, $ /  %C@C@)   

(555)  ; 

(556)  4! 5 ,   

(557)   

(558)   M;

(559)  

(560)  4 HM5     

(561)  . 

(562)   

(563)               ; , 

(564) 

(565)     B ( B ; ?@@

(566)    

(567)   

(568)  4% 5 ,  

(569)   

(570)  M;

(571) 

(572) 4 HM5  .%  

(573)  

(574)  ;   

(575)         

(576) ,

(577)      M;

(578)   

(579)   4MH5. %      

(580)  ,

(581)   4

(582)   $ , ?>@ μ5 ,

(583)  

(584)

(585)       )   ); 

(586) M’

(587) )

(588) )H 

(589)   

(590)  '2

(591)   

(592)  46.>FC N5 ,   

(593)

(594)    F 7"       F@  . %   

(595)   

(596) ,

(597)   ,?θ = 6@?θ = <@,    $@.@>◦ . %

(598)  

(599)  

(600) 

(601)  

(602)   

(603)   4%)H5 ,

(604)  

(605) 

(606)   

(607) 

(608)   ' &&  

(609)  $

(610)     

(611) -;    

(612)      ;

(613)   

(614) .

(615)  6>@    ,

(616)     8

(617) $;   

(618) ?> ◦ ' 6@@@ ◦ ' > ◦ '3 

(619) .  0,>@3 .% 0 , 

(620)  *'    

(621) ;*'.H

(622)  -

(623)  ,

(624) 

(625) 

(626)  , . 

(627) 

(628)     ,      

(629)  ,   -    

(630)   ,6@L

(631)  $..   

(632) 

(633)     %!#! )

(634) 

(635) (  *2(

(636)  (-  

(637) ( -. %       ;

(638)    

(639)        

(640) 

(641)  ,

(642)  

(643)  

(644)    7G    4'!5   4+*5       4()!5. %  -

(645)  

(646)    ,   

(647)  

(648)   

(649)       

(650)  

(651) 

(652)    

(653)   

(654)     

(655)        8     

(656)     . ?. &,   

(657)  

(658)  

(659) <>@ ◦ ' A>@ ◦ '    

(660) 6   

(661) @.>@ @.EF3  4@.DD 6.F6#3 5

(662)    4'!5

(663) @.F< @.>F3  4@.<> @.A6#3 5

(664)  4+*5

(665) @.FF @.>D3 4@.<E @.AF#3 5 

(666)   4()!5.%    6AC>

(667) ;    

(668)  ,   8   

(669)  

(670)  

(671) .%   -

(672)  

(673)  

(674) 

(675)    %?. % 

(676)     ,  

(677)       

(678)   ,   

(679)  

(680) .&

(681) 

(682) 

(683)  

(684)   

(685)  $

(686)    

(687)   

(688)  ,

(689) ,   

(690)  

(691)  

(692) <>@◦ ' A>@◦ ' 

(693)  @.C> @.?>  @.@A  ?.?A 6.6A  @.C? 

(694)        

(695)  .% 

(696)   

(697)  , -   

(698)     

(699)       

(700) ;    , 

(701) 

(702)  4'+ /?(→ '(+ /? + 6C6 7B375 

(703)    

(704)  

(705)  

(706) 

(707)     

(708)  96C6E?F:./,

(709)   ,

(710)      .  

(711) 

(712)    

(713)  

(714)       ; 

(715) 

(716) 

(717) .

(718)       

(719)    

(720)  ,

(721)  

(722) 

(723) '! 

(724)  ()!+*, .    

(725)  

(726) 

(727) 

(728) <>@◦ ' A>@◦ '.!  

(729)   

(730)  

(731)        

(732)      ?A 

(733) ;      

(734)  '! 

(735)    6@  > 

(736)  +*  ()!

(737)  4 .?5.% 

(738)   

(739) 

(740)    , . 

(741) 

(742)   8 ,

(743)  

(744) 

(745) '!. %  -

(746)  

(747)   

(748)    

(749)         

(750)     

(751)  

(752)  

(753)  .# '!-       , +*()!  ,  

(754)   

(755) 

(756)   .C.%  

(757) 

(758)     ,   

(759) 

(760)   

(761)    

(762) 

(763)  

(764)  

(765)  

(766)    

(767)   '! ,,  

(768)  

(769)  +*()!.

(770)    A>@◦ '. +*()!

(771)   

(772)

(773)  >6L6FL '! 

(774)  

(775)   

(776)  

(777)      ,     

(778)  

(779)  . 

(780)   ,  

(781)  

(782) 

(783)   G'!  ,     ;  

(784)   +*()!  

(785)  . H   

(786)   

(787) 

(788) 

(789)  

(790)  ;  

(791) 

(792)  

(793)    

(794)   

(795)   

(796) ;     . 

(797)    '!  ()!  , 

(798)   

(799)        

(800)    

(801)  

(802)  

(803) 

(804)    

(805) 4

(806)  5.&

(807)  +*()!  ,  

(808)   

(809)     ; .! '!   2', ()!+*

(810)  

(811)  !  )

(812)  %6.(  =           

(813)  

(814)  

(815) ,    !  

(816) ) .     

(817)   

(818) 9C?C<CA:7  

(819)  

(820)  ,

(821) 79?DCE:. & 

(822) 

(823)      07  7 

(824)  4 5 , 

(825) 

(826)  4'+ /?(→ '( + /?5 

(827) -

(828) 

(829)          

(830)   , 

(831) , ; 8  -   

(832)  9F@F6:. 

(833)  .  --  ,     

(834) .

(835)  

(836)  !   

(837)     

(838) 

(839)  .555

(840)   

(841)      4'!54+*5   4()!5 <>@ ◦ 'A>@ ◦ '

(842) 6 .555

(843) 

(844)         ;

(845)  .4.

(846)    5. 

(847)

(848) !   ;

(849)   

(850)    

(851) 

(852)  

(853)  $-

(854)   . )

(855)   

(856)  . )

(857)  

(858) 

(859)  . * 4L5. ,. ! 43 5.  8 43 5. *43 5. ! 4L5.  8 4L5. *4L5. '!I<>@◦ 'I6  '!I<>@◦ 'I?  '!I<>@◦ 'IC  '!IA>@◦ 'I6  '!IA>@◦ 'I?  +*I<>@◦ 'I6  +*I<>@◦ 'I?  +*I<>@◦ 'IC  +*IA>@◦ 'I6  +*IA>@◦ 'I?  +*IA>@◦ 'IC  ()!I<>@◦ 'I6  ()!I<>@◦ 'I?  ()!I<>@◦ 'IC  ()!IA>@◦ 'I6  ()!IA>@◦ 'I?  ()!IA>@◦ 'IC . @.?C @.?@ @.6D @.6? @.@F @.?C @.?6 @.?@ @.6> @.6? @.@A @.?> @.?F @.?F @.?C @.?@ @.6D. @.E? 6.EA ?.E< @.FA 6.6A @.E< ?.66 C.F@ @.A> 6.AF ?.<D @.E< ?.6? C.66 @.<C 6.D? ?.D?. @.>@ @.<> 6.?D @.EF 6.D? @.F< @.D> @.<E @.>F @.E? 6.CF @.FF @.D> @.AA @.>D 6.@@ 6.C>. C<.@L ?C.CL 6C.@L 6D.EL C.EL CC.FL ?6.FL 6>.<L ?6.AL A.EL C.FL C<.6L ?>.6L 6E.FL C>.CL 6E.AL 6?.DL. 6<.@L C@.DL C?.DL 6@.6L 6>.FL ?6.EL CF.FL FC.EL ??.EL C6.FL CF.>L 6A.?L ?<.6L C6.EL 6>.>L ?6.<L ?<.FL. FD.@L FD.?L >F.FL <C.@L A@.<L FF.<L FF.?L F@.>L >>.FL >E.<L D?.@L FF.AL F<.AL FA.<L FE.?L >A.>L D@.@L. CC.?L C<.6L >?.@L >F.DL <A.CL C6.@L CF.FL CC.DL CC.CL F>.CL >C.AL C>.>L F>.EL FE.CL C>.6L >F.>L D@.CL. + >@L'!I>@L+* >@L'!I>@L()! E@L'!I6@L+* E@L'!I6@L()!. @.6D @.6< @.6> @.6?. @.D> @.<? @.FD @.DA. @.<D @.<C @.AE @.AD. ?F.?L ?<.FL ??.DL 6E.@L. 6C.<L 6F.AL E.CL 6F.6L. D?.6L ><.AL DA.6L DD.EL. FD.>L FF.DL >?.<L >6.?L. $G  4'!54+*5  4()!5.  !  

(860)      GI 

(861)  

(862) I .  + ,

(863)   A>@◦ '

(864) 6 .. 

(865)     

(866)   

(867)  

(868)  

(869)      .  

(870) 

(871)      

(872)   4 . F5. %      '!  

(873)    

(874)   

(875)    

(876) 7 7  

(877)  4

(878) C<@@37

(879)  5.&

(880)   -            

(881)  ,    

(882)      

(883) ,   

(884)  ,  7. /,

(885)   

(886)                7!  )   

(887)  ,  

(888)  . 

(889)      9?DC?CCCE:. & 

(890) 

(891)   

(892)   . 7            

(893)  -

(894) 

(895)       8          

(896)  9F?–FF:.H      +*()!  ;     4

(897)  D@@@6?@@37

(898)  

(899)  5       !  )  4

(900) ?@F@@<C@@37

(901)  

(902)  5 -  

(903)   

(904)   

(905)      ; 

(906) 

(907) , '!.%      '!    

(908)    ! ),

(909)    ;  .

(910)  

(911)  *

(912)   ,     .5*   

(913)  

(914) G<>@◦ '.5*   

(915)  

(916) GA>@◦ '.%    

(917)    

(918)   <>@ ◦ 'A>@ ◦ '

(919) 

(920)  -   

(921)

(922)  

(923)  

(924) .. HM! ; HM 

Références

Documents relatifs

We have therefore investigated whether the presence of circulating nanosystems affects the TNF-α-induced monocytic cell recruitment by endothelial cells grown under non-uniform

Pour cela vous pour- rez utiliser tout ce que nous avons vu jusque maintenant (fonctions, listes, utilisation de modules...). À partir du script précédent, refaire le même programme

The objective of this study was thus to (1) characterize the properties of bagasse and its chars, produced at different heating conditions and (2) study the

countries. Nevertheless, information related to this technology remains small and fragmented. In this paper, the status of RHG has been summarized, highlighting domestic and industrial

probabilities of the same blocks, obtained in raster generated with the BMS model. We would like here to point out that the exact determination of the potential raises, beyond

value of parameter K is 0 and gives us a non migration strategy (a static placement based on initial position of nodes). The maximum value of K is the maximum number of mobile nodes

Dans l’état des lieux sur la façon dont les questions religieuses dans le bassin méditerranéen sont abordées dans l’enseignement, le regard didactique porté ici

Observatoire sur la responsabilité sociale de l’entreprise « ORSE », développement durable et entreprise, Editions AFNOR, Paris, France, 2004, p94... THE