• Aucun résultat trouvé

Multilayer CdHgTe-based infrared detector: 2D/3D microtomography, synchrotron emission and finite element modelling with stress distribution at room temperature and 100 K

N/A
N/A
Protected

Academic year: 2021

Partager "Multilayer CdHgTe-based infrared detector: 2D/3D microtomography, synchrotron emission and finite element modelling with stress distribution at room temperature and 100 K"

Copied!
13
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in:

https://sam.ensam.eu

Handle ID: .

http://hdl.handle.net/10985/18176

To cite this version :

Anne-Laure LEBAUDY, Raphaël PESCI, Boris PIOTROWSKI - Multilayer CdHgTe-based infrared

detector: 2D/3D microtomography, synchrotron emission and finite element modelling with stress

distribution at room temperature and 100 K - Materialia - Vol. 9, p.100511 - 2020

Any correspondence concerning this service should be sent to the repository

(2)

Multilayer

CdHgTe-based

infrared

detector:

2D/3D

microtomography,

synchrotron

emission

and

finite

element

modelling

with

stress

distribution

at

room

temperature

and

100

K

A.L.

Lebaudy

,

R.

Pesci

,

B.

Piotrowski

ENSAM-Arts et Métiers ParisTech, LEM3 UMR CNRS 7239, 4 rue Augustin Fresnel, 57078 Metz Cedex 3, France

a

b

s

t

r

a

c

t

ThemechanicalbehaviourofaCdHgTe-basedinfrareddetectorwasevaluatedafterprocessingatseveral temper-aturestodeterminetheimpactofthermomechanicalloadingonresidualstressandreliability.Thearchitecture ofthedetectorwasfirstentirelycharacterized,relyingonSEM,X-raymicrotomographyanddiffractionanalysis, inordertogetthenature,themorphologyandthecrystallographicorientationofalltheconstitutivelayers, andinparticulartheindiumsolderbumps.Theresultsnotablyshowedtheunexpectedsinglecrystalaspectof theindiumbumpswitharepeatabletruncatedconegeometry.Toobtainthethermomechanicalresponseofthe structureafterprocessingandintherangeofoperatingtemperatures(from430Kto100K),a3DFiniteElement modelwasthendeveloped.Asexpected,thenumericalresultsshowedastressgradientevolutioninthe struc-turefromhightolowtemperatures,withhighlocanjvvlstressaround30MPaintheCdHgTeat100K,mainly duetothethermalexpansioncoefficientmismatchbetweenthedifferentlayers.Theyhighlightedthesignificant influenceofthegeometryandthesinglecrystalnatureofthebumpsaswellasthebehaviourlawofthedifferent materials.

1. Introduction

Thedemandtoincreasefunctionalityandperformanceofelectronic deviceshasledtothegradualminiaturizationofelectronicpackaging. Theflipchipprocesswherethechipisassembledfacedownontothe circuitboardisidealforsizeconsiderations[1]:thisarchitecturedoes notneedextracontactareaonthesidesofthecomponentandthe con-nectionlengthisminimised,whichisrelevantforhighfrequency ap-plications.Intheinfrareddetection field,theflipchiptechnologyis exploitedforseveralphotodiodecircuitsin InSb,GaN, CdHgTe dedi-catedtodifferentcutoff wavelengths.Thepackagingiscomplexand con-tainsseveralmaterialssuchasmetal,semi-conductororunderfillresin, whichhaveverydifferentmechanicalbehaviours(thermalexpansion, elasticconstants,amongothers).Theinterconnectsizedecreasingand theglobalarchitecturecomplexificationleadtosevere thermomechan-icalloadingsduringthemanufacturingstepsandrunningconditions: theycaninduceresidualstress,mainlycomingfromthemismatchin thethermalexpansioncoefficient(CTE)ofthevariousmaterialsused

[2],warpageormechanicalfailure[3]inthemicroelectronic assem-bliesandaffecttheirreliability.Suchresidualstresseshaveoftenbeen observedandquantifiedinthinorthickplates,forexampleafter weld-ing[4,5],withagreatimpactoftensilevaluesonthestructureintegrity

orfatiguelimit,sothattheyshouldberationalised.Byapproximating thestructuretoathinfilmandtheStoneyformulation[6]usingthe curvatureofthesubstrate,itispossibletocalculatetheresidualstresses inthechipabovebyneglectingtheinterconnectionlayer.Thismethod isverylimitedanddoesnotallowforanestimationoftheevolution ofstressthroughallthelayers.Someexperimentaltechniquessuchas Ramanspectroscopy[7], X-raydiffraction[8]orKossel Microdiffrac-tion[9]can alsobe used, buttheyarelimitedin scopedue tolocal heating,lowelectrical conductionorthethicknessofthelayers.The mostcommonapproachtoestimatethestressvaluesistouseFinite El-ementMethod(FEM)andsimulatethestackofchipandconnections underthermalloading.Ifliteraturepresentssomepapersabout2D rep-resentations[10,11],theincreasingnumberofsolderbumpsinthe as-sembliesledtothedevelopmentof3Dmodels[12].Theresultsenable toobserveastressgradientthroughoutthearchitectureandinall di-rections.However,manyhypothesesareoftenformulatedconcerning thematerialproperties,withthedifferentlayersincludingsingle crys-tals usuallyassumedtobe isotropic,andeitherplanestressorplane strainconditionsareconsidered[13].Inthecaseoftheinterconnection zone,theshapeofthesolderbumpscanberoughlyassimilatedto cylin-dersor truncatedspheres whilethematerialanisotropyisneglected, andtolimitthenumberofelementsinmodels,manyauthorspropose toreplacetheinterconnectionlayerwithahomogeneouslyequivalent material[14].Theseassumptionshelptodecreasethecomputingtime andtomodelthewholeassembly,butitmakesitimpossibletorender

(3)

Fig.1.ArchitectureoftheIRdetectorconsidered.

astressgradientineachlayer[15]andtheycanleadtoa misestima-tionof thestressvalues.Today, themainchallengeforstress analy-sisinflipchippackagesisthesignificantgradientatthemicrometric scale.Theinterconnectionlayercanbeverythincomparedtothetwo interconnectedcircuitswhich canintroducehighstrain inthesolder bumps.Moreover,themechanicalbehaviouroftheconstitutive materi-alsisoftennotwellknown.Themodellingscalehastobeadaptedto therequiredobservationsandtheimpactoftheinputdataontheresults mustbeevaluatedtodeterminewhatthemostinfluentialparameters are.

Thepresentstudyaimsatestimatingthelevelofstressthatappears inaninfraredCdHgTe-baseddetectorafterprocessingatroom temper-atureandat100Kduringservicelife.A3DFEMmodelisdeveloped toprovide abetterunderstandingofthestrain/stressgradientinthe structureunderthermalloadingandtoimprovethereliability.The rel-evanceofsuchamodelatalocalscalestronglydependsontheaccurate knowledgeoftheactualarchitectureofthecomponent.First,a charac-terisationsteprelyingonSEMcoupledtoEDSandEBSD,X-ray microto-mographyandsynchrotronemissionhasbeencarriedouttoapprehend thegeometry,thechemicalcompositionandthecrystallographyofall thelayersofthestructure,especiallytheindiumsolderbumpsinthe in-terconnectionlayer,whichseemstobethemostcriticalinthestructure, consideringtheobservedfailuremodes.Fromtheseconsiderations,a3D FEMmodelwasdevelopedandthermalloadingsrepresentativeofthe componentlifecyclewereapplied.Thesesimulationsmadeitpossibleto showthestressgradientsarisingintheseverallayersatroom tempera-turebutalsoatoperatingtemperature(77K).Aparametricstudyonthe inputparameterswasthencarriedouttodeterminethemostinfluential variablesonthestressvalues.Finally,thestressdistributionwas com-paredtoexperimentalvaluesobtainedat77Kduringapreviouswork usinganX-raydiffractionmethodforsinglecrystal.

2. Experimental procedure

2.1. Presentationofthedetectorarchitecture

Thisworkconsidersaflipchipinfrareddetector(midwave-infrared MWIR)witha30μmpitch320×256I/OpixelsIRfocalplanearray.The correspondingarchitectureispresentedinFig.1:aCdHgTethinlayer (detectorcircuit)isinterconnectedtoasiliconsubstrate(readout cir-cuit)throughindiumbumpsandanepoxyunderfill.

Thisarchitectureleadstosomesymmetrywithorthotropic proper-ties:theindiumsolderbumpsarealignedparallel/perpendiculartothe edgesofthedetectioncircuit.Fourmainprocessstepsarenecessaryto manufacturethedetector(allstepsaredescribedin[16]):theindium bumpdepositingonthesiliconcircuit,thehybridisationoftheCdHgTe detection circuit,theunderfilling stepandthefinaldetectioncircuit thinning.Duringthehybridisationstep,heatinguntil430Kisapplied (aboveindiummeltingtemperature);thenbothmechanicaland chemi-calpolishingsofthedetectorcircuitareperformedtokeeptheactive de-tectionCdHgTelayerverythincomparedtothethicknessofthesilicon circuit.Duringmanufacturingandservicelife,thecomponentis there-foresubjectedtointensetemperaturevariationsfrom430Kto77K.The CTEmismatchbetweentheCdHgTedetectorchip,theinterconnection layerandthesiliconcircuitismainlyresponsibleforresidualstress initi-ationandwarpageintheassemblythatcanleadtoseveralfailuremodes suchassolderbumpdamageorcracksintheCdHgTechip.Inorderto better understandtheappearanceof residualstress,especiallyin the detectioncircuitandthesolderbumps,thegeometryandthematerials constitutiveofthedifferentlayershadtobepreciselyknowntobuild thefiniteelementmodel.Acompletecharacterisationoftheassembly wasthereforecarriedoutandparticularemphasiswasputonthe inter-connectionlayerandthesolderbumps.

(4)

Fig.2. (a)Solderbumpsvisualisationbymicrotomography(b)Exampleofapost-processingofthestackwithImageJ® (c)Solderbumprepresentedasatruncated cone.

Table1

Indiumsolderbumpaveragethicknessinboththecentreandtheedgesofthecomponent.

Mean value Standard deviation Solder bump thickness (μm) Component centre 6.52 6.54

Component edge 0.11 0.13 Diameter in contact with CdHgTe (μm) Component centre 17.4 0.16 Component edge 16.8 0.19 Diameter in contact with silicon (μm) Component centre 12.8 0.12 Component edge 12.3 0.14 2.2. Geometricalcharacterisation

WhilethegeometryofthesiliconandCdHgTecircuitsiswellknown, themorphologyoftheinterconnectionlayercomposedofsolderbumps inanepoxymatrixstillremainstobe confirmedafterthe hybridisa-tionstepbecausevisuallyinaccessible.Inordertoaccuratelymodelthe structure,effortshavebeenmadeinX-raymicrotomographytoobtain theprecise3Ddescriptionofthesolderbumpsinthecentreandonthe edgesoftheassembly.Ithastheadvantageofbeingnon-destructive, whileachievingaveryacceptablespatialresolution.Thismethod ex-ploitstheselectiveabsorption propertiesof theX-raysbythematter toobservethe sampleinside[17]: ina tomograph,thesampleis il-luminatedwithanX-raysourceandtheintensitymodulationsofthe transmittedbeamarerecoveredas animagebya 2Ddetector. Dur-ingan acquisition cyclewhose duration varies from a fraction of a secondtoseveral hours,some projectionsarecollected accordingto differentangularpositions ofthesampleinrotation.Thedistanceto thedetector,thechoiceoftheacquiredimagenumberaswellasthe anglesteparerealisedaccordingtothedesiredresolution.The recon-structionof3D objectsismadefrom theangularprojections:a grey levelis associatedwitheach voxelof thevolume,whichinforms on theattenuationcoefficientof thematter. Theanalyses wererealised

using aPhoenixv|tome|xm 300/180tomographfromGeneral Elec-tricMeasurementandControlequippedwitha16 megapixel Dyn41-100 detector.Thetubeof thesetup canreach anacceleration volt-age of 180kV andgenerate anX-ray beamallowinga veryfine de-tail detection (downto0.5μmvoxel size).Without any cutting,the analyses wereperformed witha1μm3 resolution andled toagood

estimation of the solder morphology andrepartition. To be statisti-cally representative, a large volume of thesample, approximatively 2.0×2.0×1.0mm3 was analysed,corresponding to a field of about

4500soldersbumps,bothinthecentreandattheedges ofthe com-ponent.Afterthresholdapplication,the3Dvisualisationofthesolder bumpswiththesoftwareMyVgl® wasveryprecise,asshowninFig.2

(a).

TheopensourceimageJ® softwarepresentedin[18]wasusedfor partofthepost-processingintheinterconnectionzone:anexampleis giveninFig.2(b).Byaveragingsolderdiametersinallimages,itwas possibletovisualizethetypicalgeometryofanindiumsolderbump:the detaileddimensionsaregiveninTable1,withsimilarresultsinboththe centreandtheedgesoftheIRdetector.Thefinal3Drepresentationcan beeasilyassimilatedtoatruncatedcone(Fig.2(c)),withmaximumand minimumdiametersincontactwiththeCdHgTecircuitandthesilicon substrate,respectively.

(5)

Fig.3.CrystallographicorientationofthesiliconandCdHgTesinglecrystals.

2.3. Crystallographicanalyses

Afterthegeometriccharacterisationoftheindiumsolderbumps,it wasnecessarytodeterminethecrystallographicnature ofeach crys-tallinelayerof thestructurein order toidentifytherelevant consti-tutiverelation of each material tosupply thefinite element model. ElectronBackscattereddiffraction(EBSD)analyseswereperformed us-ingaJEOL7001F FEGSEMequippedwitha CCDcamera from Ox-fordInstruments.The CdHgTeandthesilicon wereeasily accessible withtheelectronbeambecausetheyhademergentsurfaces.The anal-ysesestablished that they weretwo single crystals(111) and (100) oriented,respectively,asshowedinFig.3,withamisorientationless than1°.

Somecomponentswerecutandpreparedwithspecifictechniquesin ordertoaccesstheinterconnectionzone,especiallytheindiumsolder bumps.Thesectionswerefirstcarefullyprepared(sawingand polish-ing)usingaLeicaEMTXPfollowedbyionicpolishingwithaLeicaEM TIC3X.Thislastpolishingtechniqueprovidedidealsurfaceconditions forperformingEBSDmappingswithoptimalindexingrate.The equip-mentusedallowedioncross-sectioncuttingatroomtemperatureorat lowtemperaturewhenthesetupwassuppliedwithliquidnitrogen.Due tothelowmeltingtemperatureofindiumanditsdiffusionproperties, theionicpolishingwascarriedoutat153Kwithanacceleration volt-ageof10kVandperformedinthecentreoftheassembly.Then,phase andorientationmappingswereconductedonseveralsolderbumpsin theionicpolishedarea.EBSDmappingswereperformedwithabeam energyof20kV,withastepsizeofroughly0.5μm;theywerethen post-processedusing theChannel5suite. Intotal,adozen indiumsolder bumpsweremapped,showingthattheywereallsinglecrystalswith randomorientation,asshowninFig.4.TheEBSDorientationimages arecolour-codedtoindicatethegrainorientationgivenbythestandard triangle(tetragonallattice).

Inordertoconfirmtheseobservationsconsideringagreater num-berofsolderbumps,ringdiffractionexperimentswerecarriedouton thebeamlineID11attheESRF(EuropeanSynchrotronRadiation Facil-ity)inGrenoble,France.Asexploitedby[19,20],thismethodallowsto identifytheseveralphasespresentinasample.Themeasurementswere performedwitha78.5keV(𝜆=0.158Å)monochromaticX-raybeamin transmissionmode.Aschematicrepresentationoftheexperimental de-viceisshowninFig.5(a).The0.2×0.2mm2incidentbeam

correspond-ingtoafieldof about40 indiumsolderbumpsentered normallyto thespecimens,formingcompleteDebye–Scherrerringsfromtheseveral crystallographicphasesofthestructure.The2Ddiffractionringswere recordedbyaFrelon2DCCDcamerawitharesolutionof2048×2048 pixels (47.2×47.2 μm2 pixel size). A distance sample/camera of

288.2mmwaschosentorecoveramaximumofdiffractionringswhile keepinganacceptableresolutionfortheirproperindexing.Thesamples

Fig.4. EBSDmappingsshowingthemeancrystallographicorientationofthree indiumsolderbumps.

wereplacedinsuchawaythatthebeamwasfocusedinthecentreofthe assembly,"full-chip"zone,toacquirethediffractionringsofthe detec-tioncircuit,theinterconnectionzoneandthereadingcircuit simultane-ously.TheideawastopenetratefirstthesiliconsubstratewiththeX-ray beamandexitthroughthethinneddetectioncircuitsidetominimizethe amountofmaterialcrossedbythediffractedbeamcomingfromindium soldersandlimitthediffractionringattenuation.Anexampleofa gen-erateddiffractionpatternacquiredbythecameraisshowninFig.5(b). The diffraction patternsobtained haveboth diffraction spotsand completerings.Eachringcorrespondstodiffractingplanes{hkl}ofa definitephase:itiscomposedofseveralindividualspotsdiffractedat thesameBraggangle,eachspotbeinggeneratedbyagrainina diffrac-tionposition.Itisthereforepossibletoidentifythephasespresentinthe assembly,theircrystallographicstructureaswellastheirpolycrystalline ormonocrystallinenature.Giventhesmallbeamsizeused,acomplete ring willbe characteristicofapolycrystallinephasewithsmallgrain size.InFig.5(b),theveryintensespotscorrespondtosiliconand Cd-HgTesinglecrystals;othersareduetoremainingphases.Inorderto in-dexthediffractionringsandassociatethemtotheirrespectivephases,it isnecessarytoproceedtoapreliminarysteptodeterminetheir associ-ateddiffractionangles.TheFit2Dsoftwarewasusedforpost-processing tointegratetheDebye–Scherrerringsandgeneratetheequivalentofa 2𝜃 scan[21].Theinputdataincludethepixelsizeofthecamera,the wavelengthoftheradiationconsideredaswellasthecamera-to-sample distance.Theseparametersarethenrefined;theuserhasthepossibility tomanuallycorrectthecentreofthebeamandthenon-orthogonality ofthedetectorwithrespecttotheincomingbeam.Thisstepcanalso be performedmoreaccuratelyusing acalibrationmaterialsuchasa nanocrystallinepowder[22].Inourcase,thecalibrationisbasedon diffraction peaksof thesilicon,thelessstrainedlayer(becausevery thickcomparedtoothers).AsshowninFig.6,severaldiffuse continu-ousdiffractionlines/diffractionringscanbeattributedtoverythin poly-crystallinelayersintheassemblysuchastheUnderBumpMetallization (UBM).Thediffractionringsofindiumhavealsobeenidentified accord-ingtotheirdiffractionangle𝜃 associatedtothe{hkl}diffractingplanes (surroundedlines/diffractionringsinthe2𝜃 scanpresentedFig.6):they arediscontinuous,showingthepresenceofonlyafewgrainswith dif-ferentorientations.

This resultconfirmstheconclusions from EBSDmappingson the cross sectionsanalysed:each indiumsolderbumpis asinglecrystal. Thiscanbeofcrucialimportancesincethetetragonalcrystalofindium leadstoahighlyanisotropicthermomechanicalbehaviouralongthe dif-ferentcrystallographicaxes.Thefactthatitispresentinasinglecrystal

(6)

Fig.5. (a)Diffractionringsetup(b)Diffractionpatternofthecomponentacquiredbythe2Ddetector.

Fig.6. Ringdiffraction:identificationofthediscontinuousdiffractionringsof indium.

formwithrandomorientationsintheIRdetectorcangeneratea me-chanicalresponsethatcandiffergreatlyfromoneindiumsolderbump toanother(onepixelofthedetectortoanother).Consideringthese var-iousgeometricandcrystallographicobservations,a3Dfiniteelement modellingwasbuilttosimulatethecompletestressdistributioninthe IRdetector.

3. Finite element modelling 3.1. Architectureandmeshing

The3DFEMmodeldevelopedinthisworkaimstoshow,atthescale ofthelayerorofasolder(thatisapixeloftheIRdetector),thepresence ofstrain/stressgradientsunderthermalloadingsandthereforeto eval-uatetheimpactoftemperaturevariationsonthestresslevelreached

Fig.7. Boundariesconditionsconsideredforthe3Dmodel.

inCdHgTe,indiumandsilicon.Itmustbeasrepresentativeofthe ac-tualgeometryoftheassemblyaspossiblewithoutnecessarilymodelling theentirestructure,inordertohighlighttheeffectofstressgradients onaverylocalscalebyconsideringmaterialswithveryhigh hetero-geneousproperties.Theunderbumpsmetallizationbetweenthe detec-tion/readoutcircuitsandindiumsolderwasignoredinordertosimplify themodelandanidealbondingalongthematerialinterfaceswas as-sumed.Onlythethreemainlayersoftheassemblywereconsideredin thesimulations:

- ThedetectioncircuitinCdHgTe.

- The interconnection zone consisting of a field of indium solder bumpsembeddedinanepoxymatrix.

- Thesiliconsubstrate.

Thesolderbumpsweremodelledastruncatedconesasobservedin theX-raymicrotomographyreconstructions.

ThemeshoftheCdHgTelayerandtheinterconnectionzone(solders andepoxymatrix)wasrealisedusinglinearhexahedralelements.Atthe interfacewiththeinterconnectionzone,thefirst50μmofsiliconwere alsofinelymeshedwithlinearhexahedralelements;then,adecreasing meshwasappliedusingquadratictetrahedralelementsinorderto de-creasethecalculationtime.Thismeshallowedtoobtainreliablestress

(7)

50 100 150 200 250 300 350 400 450

Epoxy element

deactivation

Epoxy element

activation

« strain free »

Underill step

Underill

temperature

er

ut

ar

e

p

m

e

T)

K(

Room temperature

Melting temperature

of indium

Hybridisation

100 K

Operating

temperature

Fig.8. Thermalloadingsconsideredinthemodel.

distributionatthesiliconsurface:indeed,this layerismore than40 timesthickerthanthecombineddetectioncircuitandinterconnection layer,sothatitisrelevanttoconsiderthatitisonlyunderloadingat itsextremesurface.Ameshconvergenceanalysisshowedthatasizeof 1.3μmisnecessarynottoinfluencethestressvalues.

3.2. Geometrichypotheses,boundaryconditionsandthermalloadings

Duringhybridisation,beforethinning,thedetectioncircuitconsists oftwomainlayers,theCdHgTeepitaxiallayerandaCdZnTesubstrate

[16].Inordertominimisethenumberofnodesinthemodel,the pres-enceoftheCdZnTelayerwasnottakenintoaccountintheassembly. Thethermalcycleisthereforeappliedtothegeometryofthefinal detec-tioncircuit,sowithonlytheactivelayerofCdHgTe.Thisisarequired assumptiontodecreasethenumberofelementstomeshthesilicon sub-strate,whichissignificantlythickerthantheCdHgTe.Theboundary conditionsofthemodelareshowninFig.7.Thestructurehastwoplanes ofsymmetry:conditionsUx=0andUy=0respectivelyappliedontwo facesofthemodel(allthelayersconsidered).Then,theunderfillstep inducestheformationofanepoxy"beading"surroundingandrisingon theflanksofthedetectioncircuit:inordertotakeitintoaccount (con-sideringitsthicknessandthehighdifferenceofthermalexpansionwith theCdHgTe layer),thedisplacements of thelatterwerealsolimited (Ux-CdHgTe=0andUy-CdHgTe=0).

Althoughthethermalconductivityisdifferentforalltheconstitutive materials,theassemblyisassumedtohaveahomogeneoustemperature ateachcomputationtime.TheadoptedthermalcycleisshowninFig.8. Inordertosimulatetheunderfillstep,itwasdecidedtodeactivatethe epoxyelements("strainfree")atthebeginningofthecalculationandto reactivatethemat353K(Abaqusoption),theglasstransition temper-atureofepoxy,abovewhichitwasconsideredthatepoxydidn’thave anyimpactonthemechanicalbehaviourofthestructure.

Table2

ElasticconstantsofCdTeandHgTe.

References C 11 C 12 C 44 Uncertainty Temperature (K) CdTe [25] 53.51 36.81 19.94 + / − 0.2% 298 [26] 61.5 43.0 19.6 + / − 18% 77 [24] 53.8 37.4 20.2 + / − 3% 298 56.2 39.3 20.6 + / − 3% 77 HgTe [27] 54.8 38.1 20.4 + / − 0.5% 290 58.7 41.0 21.7 77 [28] 53.61 36.60 21.23 + / − 0.8% 298 58.63 40.59 22.41 78 [29] 50.8 35.8 20.5 200 3.3. Materialproperties

Thedetectioncircuitconsistsofa(111)-orientedCdHgTesingle crys-tal.WhileCdHgTehashighperformanceinthefieldofinfrared detec-tionduetoitsopticalandelectricalproperties,ithasmuchlower me-chanicalpropertiesthanothermaterialsusedforthisapplication.Itis generallyconsideredasa"soft"material[23],withaverylow mechan-icalstrength.Duetothedifficultyinmeasuringtheelasticproperties of athin-film material,fewdataaboutthemechanicalbehaviourare availableinliterature:onlyvaluesfortheCdTeandHgTemanufactured withmethodsallowingtoobtainlargesinglecrystalscanbefound.In thisstudy,thestiffnesstensorsatroomtemperatureand77Kproposed by[24]fortheCdTehavebeenused(Table2).

TheplasticbehaviourofCdHgTeisalsonotwellknown.Theyield stresshasbeenestimatedat12MPabyBalletetal.[30].Thisvaluecan beimpactedbyapossiblediffusionofthezincpresentintheCdZnTe epitaxialsubstratetotheCdHgTeactivelayerbeforethinning.With4% zincintheCdHgTe[31],theyieldstresscanbemultipliedby4for ex-ample,leadingtoavalueofabout60MPa;ithasbeenfixedat30MPa inourmodel.TheCTEproposedbyWilliamsetal.[32]andBagotetal.

(8)

Fig.9. EvolutionoftheCTEforindiumsinglecrystalasafunctionoftemperature[36].

Table3

Elasticconstantsofindiumsinglecrystalaccordingto[37,38,39].

[37] [38] [39] Elastic constants 300 K 77 K 298 K 300 K 351 K 371 K 391 K 412 K 422 K 429.7 K C 11 45.35 52.6 445 45.1 43.3 425 42.1 41.4 41.1 40.9 C 33 45.15 50.8 444 45.3 43.5 42.9 42.3 41.7 41.3 41.1 C 44 6.51 7.6 6.55 6.53 6.3 6.17 6.03 5.89 5.83 5.78 C 66 12.07 16 12.2 11.9 10.7 10.3 9.88 9.46 9.21 9.05 C 12 40.01 40.6 39.5 39.7 39.8 39.6 39.5 39.1 39.2 39.1 C 13 41.51 44.6 40.5 41.1 40.9 40.4 40.3 40.1 39.9 39.5

[33]correspondingtoatemperaturerangefrom293Kto693Kandfrom 0Kto80Krespectively,havealsobeenused.Indiumischaracterised byalowmeltingpoint,asmallyieldstressandaveryhighductility at293Kand77K.ThesepropertiescombinedwithitshighCTE com-paredtoCdHgTeandsiliconareveryinterestingfortheinterconnection layerwhenoperatingatlowtemperature.Themechanicalpropertiesof polycrystallineindiumarewellknown:thebehaviourlawsfrom4Kto 295KhavebeendeterminedbyReedetal.[34],confirmingthehigh levelofplasticityandtheCTEgivenbyTouloukian[35].Onthe con-trary,fewdataaboutindiumunderitssinglecrystalformareavailable, buttheypointtoaconsiderableanisotropyduetothetetragonallattice withanotable ratiobetween thetwolatticeparameterscanda.For example,Collinsetal.[36]showedthattheCTEisverydifferentalong theaxisofthecrystalconsidered.Fig.9presentstheresultsobtained fordifferentauthors,withIn(ǁ),theCTEmeasuredalongthequadratic axisofindium,In(⊥),thatmeasuredaccordingtoaplanenormaltothe quadraticaxis,andIn(av),theaverageCTE.

The6elasticconstantsofindiumforseveraltemperatureswerealso determinedbyseveralauthors(Table3).Severalsimulationswerethen

Table4

MechanicalpropertiesofEpotek301–2asafunctionoftemperature.

Temperature (K) Young modulus (MPa) Poisson’s ratio

293 3664 0.358

250 4109 0.365

200 4474 0.349

150 5745 0.334

100 6993 0.350

launchedtocomparetheresultsconsideringthepropertiesofindiumas bothpolycrystalandsinglecrystal.

Epoxypolymers(commonlyknownasepoxies)arewidelyusedin microelectronicsforthemanufactureofflipchipassembliestofillthe interconnectionzonebetweenthechipanditssubstrate,thatistosayto fillthegapbetweenthesolderbumps.ThegradeusedintheIRdetector isEpotek301–2andwascharacterisedbyCeaseetal.[40]for temper-aturesrangingfrom300Kto100K.ThevaluesofYoung’smodulusE andPoisson’sratioobtainedarepresentedinTable4.

(9)

Fig.10. Sectionalviewofthestressdistributioninthedifferentlayersoftheassemblyat293K.Therightpartisazoomoftheframedzonewithafinerscale.

Atroomtemperature,Epotek301–2hasapurelyelasticbehaviour withayieldstress/strength around40MPa.Itwillthenvary signifi-cantlywithtemperature,asmostofthermoplastics,withaglass transi-tiontemperatureTg=213K;themanufacturerindicatesthattheCTEis 61.10−6K−1belowthistemperatureand180.10−6K−1beyondit.

Thesubstrateofthecomponentisanorientedsiliconsinglecrystal (100),thebehaviourof whichis elastic,witha yieldstress/strength closeto130MPa.TheCijklelasticityconstantsconsideredforthemodel

camefrom[41]andtheCTEasafunctionoftemperaturefrom[42]. Forallthesinglecrystalmaterials,theelasticconstantsare imple-mentedintheFiniteElementmodelinatwo-step-process.First,basing ontheexperimentalresults,thecrystallographicorientationofCdHgTe, siliconandtheindiumbumpsareidentifiedandtheelasticconstantsare giveninthecrystalbasisforeachmaterial.Then,theorientationofeach crystalisintroducedintheFiniteElementmodel(whereaglobal coor-dinatesystemimposestheglobalorientation)throughaspecific calcu-lationthatactsasatransfermatrixbetweeneachcrystalandtheglobal coordinatesystem.

4. Results and discussion

4.1. Simulationswithpolycrystallineindiumsolderbumps

The3Dmodellingstrategyallowstovisualizethestressgradients alongthethickness,inallthelayersoftheassembly,througha well-defined cuttingplane.Themaindrawbackof theFEMsimulationsis thecomputationaltime.Toseethestrain/stressgradientatthesolder scale,itisnotpossibletomodelthetotalityofthestructure(morethan 80,000solderbumps).Firstsimulationswith36,144,324and1296 solder bumps werelaunched andshowed that144 were representa-tiveofthewholeassembly,withconvergingresults.Inthispaper,all therepresentations ofthestress variationappearingintheassembly werevisualizedusingdiagonalsections.Onlyhalfofthearchitecture is presented in thefollowing figuresshowing theedgeandthe cen-treofthestructureduetothesymmetryconditions.At293K,we no-ticethatintheCdHgTelayer,thecomponentsofthestresstensor tak-ingthehighestvaluesare𝜎xxand𝜎yy,closeto30MPatheedgesand

(10)

zz yy yz xz xy

100 K

xx 10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa 10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa 10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa 10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa 10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa 10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa 4 MPa 12 MPa 8 MPa -8 MPa -4 MPa -12 MPa 0 MPa 4 MPa 12 MPa 8 MPa -8 MPa -4 MPa -12 MPa 0 MPa 4 MPa 12 MPa 8 MPa -8 MPa -4 MPa -12 MPa 0 MPa 4 MPa 12 MPa 8 MPa -8 MPa -4 MPa -12 MPa 0 MPa 4 MPa 12 MPa 8 MPa -8 MPa -4 MPa -12 MPa 0 MPa 4 MPa 12 MPa 8 MPa -8 MPa -4 MPa -12 MPa 0 MPa

Component edge

Component centre

Fig.11. Sectionalviewofthestressdistributioninthedifferentlayersoftheassemblyat100K.Therightpartisazoomoftheframedzonewithafinestscale.

Component edge

Purely elastic polycristalline indium σyy

σxx

Component edge Component centre

σyy

Reference model

Component edge Component centre

20 MPa 60 MPa 40 MPa -40 MPa -20 MPa -60 MPa 0 MPa

CdHgTe with a yield stress of 60 MPa

10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa 10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa Out of scale

Out of scale Out of scale

a) c) b) Component centre σxx σxx σyy

Fig.12. Comparisonofthenumericalresults(a)Standardmodel(reference)(b)CdHgTewithayieldstressof60MPa(c)Polycrystallineindiumwithapurelyelastic behaviour.

around10MPainthecentre(Fig.10);azoomoncertainzonesmakes itpossible tohighlightgreater tensile values inthe areasin contact withthesolderbumps.Theepoxyisinuniformbiaxialtensionaround 15MPaandtheindiumsolderbumpsarealsoinslighttensionfor𝜎xx

and𝜎yy(2MPa);thesiliconisinbiaxialtensionwithvaluesranging from4MPato12MPaundertheindiumsolderbumps.Finally,itcanbe notedthattheaffectedsilicondepthunderthesolderisapproximately 8μm.

Whencoolingat100K,interestingresultscanbenoted(Fig.11):

- Biaxialtensionisintensifiedalong𝜎xxand𝜎yyintheCdHgTe,with valuesfrom30MPaabovethesolderbumpsto18MPainthe inter-solderareas;theepoxy shows somevalues outsidethescale pre-sented(greyarea:35MPaonaveragefor𝜎xxand𝜎yy).Thisis con-sistentwiththeexperimentalstressvaluesobtainedin[43],inwhich theauthorsusedX-RayDiffraction(XRD)witha0.8mm2beamto

makesome mappingsfromthecentretotheedgeoftheCdHgTe chip:inparticular,themeasurementsat77Kshowedtensionstress valuesuptoabout30MPa.

(11)

3 MPa 9 MPa 6 MPa -6 MPa -3 MPa -9 MPa 0 MPa

Single crystal indium local stress scale

Component edge Component centre

One single crystal indium solder (orientation 1)

10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa Out of scale 3 MPa 9 MPa 6 MPa -6 MPa -3 MPa -9 MPa 0 MPa

Single crystal indium local stress scale σxx

σxx

Component edge Component centre

Reference model: elasto-plastic polycristalline indium

10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa Out of scale

Component edge Component centre

One single crystal indium solder (orientation 3)

10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa Out of scale 3 MPa 9 MPa 6 MPa -6 MPa -3 MPa -9 MPa 0 MPa

Single crystal indium local stress scale σyy X Y Z Global Abaqus coordinate system

Crystallographic orientation of one single crystal indium solder bump surrounded by polycrystalline solder bumps

Orientation 1 Orientation 2 Orientation 3

c a b c a b

Orientation 2 with a 45 rotation around a axis σyy

Component edge Component centre

One crystal indium solder (orientation 2)

10 MPa 30 MPa 20 MPa -20 MPa -10 MPa -30 MPa 0 MPa Out of scale 3 MPa 9 MPa 6 MPa -6 MPa -3 MPa -9 MPa 0 MPa

Single crystal indium local stress scale σxx

σyy

Fig.13. Influenceofoneindiumsolderbumpmodelledassinglecrystal:differentcrystallographicorientationsandthermalexpansioncoefficientsconsidered (100K).

- Thesolderbumpsattheedgeoftheassemblyareintension,while thoseinthecentreareincompressionwithtensionintheirperiphery (forboth𝜎xxand𝜎yy).Thisparticularstressstateisrelatedtothe differenceintheCTEbetweentheepoxymatrixandindium(61.10−6

K−1and30.10−6K−1,respectively).

- Thestressvariationsinthesiliconareenhancedwiththeapparition ofcompressionvaluesofabout−7MPaaccordingto𝜎xxand𝜎yyin thezonesundertheepoxy.

- Thelayerwiththemostimportantvaluesin𝜎zzisthe interconnec-tionzone,withsolderbumpsincompressionandtheepoxyin ten-sion.

- Thevaluesof𝜎yzand𝜎xzareamplified,especiallyintheCdHgTe andthesiliconbetweenthesolderbumps.Theepoxyisalsoslightly affected.

- Finally,thevaluesof𝜎xyaregenerallylow:onlytheepoxylocally reachescompressionlevelsaround−12MPaintheareasincontact withtheindiumsolderbumps.

Theresultsshowthegreatinfluenceof themechanicalproperties andtheCTEmismatchbetweeneachlayerofthestructureonthestress values.Thestressgradientscanbeappreciatedattwoscales:between theedgeandthecentreoftheassembly,andatthelocalscale consid-eringonesolderbump/pixeloftheIRdetector.Thedifferencebetween theedgeandthecentreistypicallyduetotheCTEmismatchbetween theCdHgTeandthesilicon.Indeed,theCdHgTedetectioncircuitcanbe assimilatedtoathinfilmcomparedtothesiliconcircuitthickness.The CdHgTehasaCTEtwicesmallerthanthesilicon,whichexplainsthe in-ducedtensilestressstateappearingduringcoolingfrom430Kto100K. Thestressgradientishigherat293Kthanat100KbecausetheCdHgTe hasstarted toyield,sothatthebiaxialtensile stateof CdHgTetends tobeuniformatlowtemperature(around30MPaaccordingto𝜎xxand

𝜎yy).Tokeepthestaticequilibriumofthestructureundertheincreasing tensilestateoftheCdHgTelayer,alowcompressivemeanstateappears

inthesiliconsubstrate.Moreover,stressheterogeneitiesinthesolder zoneappearat293Kandareenhancedat100K:thisphenomenon cor-respondstothemismatchbetweentheCTEofCdHgTe,indium,epoxy andsilicon.Thesiliconisincompressionundertheepoxy(−10MPato −20MPa)andintensionunderthesolders(8–18MPa)withinadepth of afewmicrons.Thus,usingapolycrystallinebehaviourlawfor in-dium,heterogeneitiescanalreadybeobservedunderthermalloading, whetheritispixelbypixelorbetweenthecentreandtheedgeofthe detector.

4.2. Influenceoftheinputparameters

Inthissection,thefocusismadeontheinfluenceoftheinput pa-rameters ofthemodelonthenumericalresults.Asexplainedin2.4, oneofthesourcesofuncertaintiestopredictthestressdistributionin theIRdetectoristhelackofknowledgeabouttheCdHgTe thermome-chanicalproperties.Severalsimulationsconsideringthedifferentelastic constantsproposedbyalltheauthors(Table3)haveshownaverylow impactonthestressvaluesinallthelayersat100K(<1%).Thequestion oftheplasticityoftheCdHgTeisalsoveryimportant,especiallydueto thepossiblediffusionofZncomingfromtheCdZnTesubstratebefore thinning.IntheresultspresentedinSection3.1(Fig.12(a)),theyield stressoftheCdHgTewasfixedat30MPa,avalueestimatedfrom lit-eratureandtheresidualstressmeasurementspresentedin[43].Other simulationswithayieldstressof 60MPa werelaunched (Fig.12(b)) andshowedthegreatimpactonthenumericalresultssincethe max-imal stressvalues observedwereof thesameorder ofmagnitude.A strongerstressgradientwasalsoobservedintheCdHgTelayerbetween theedgeandthecentreoftheassembly.Onthecontrary,neither sili-connorindiumwasreallyaffected,duetotheirthicknessandtheirhigh plasticity,respectively.Itisthereforeveryimportanttowelldefinethe mechanicalbehaviouroftheCdHgTeinordertogetstressvaluesas rep-resentativeaspossiblewiththemodel.IntheflipchipFEMfield,most

(12)

ofthe authorsmadethehypothesisthat circuitandsoldermaterials couldbeconsideredaspurelyelastic[11,14].Thematerialproperties ofindiumannouncedbyPlötneretal.[44]showedavery lowyield stresswithhighplasticity.Apureelasticlawforindiumwasalso imple-mentedinthemodelforcomparison(Fig.12(c)).Thevaluesof𝜎xxand

𝜎yyinthiscasewerethusverydifferent:thesiliconbelowtheindium solderswasmorestressedwithnegativevaluesoutoftherepresented scale(−30MPa),whiletheCdHgTejustabovewasincompression con-trarytothepreviousresults.Asforindium,itwasinhightensionwith stressvaluesoutofscale.Theseresultswerethedirectconsequenceof theabsenceofplasticityinindium:thestressvaluesincreasedwithout anylimitation.

4.3. Influenceofcrystallographicorientationforindiumsolderbumpsas singlecrystals

SincetheEBSDandXRDresults showedthateach indiumsolder bumpwasasinglecrystal,complementarysimulationswerelaunched consideringthisparticularaspect.Morespecifically,theaimwastosee ifthegreatanisotropyofthecrystallographicorientationandtheCTE ofindiumpresentedbyCollinsetal.[36]couldincreasethestress gra-dientsintheassembly,especiallyatlowtemperature,sincethesolder expansion/contractionunder thermalloadingwassupposedtoaffect thelevelofstressintheotherlayers.Severalsimulationswerelaunched consideringonlyoneindiumsolderbumpasasinglecrystalandthe othersaspolycrystalline.Fig.13presentstheresultsobtainedforthree differentorientationsofonesolderbumpat100K,inparticularthosefor whichthedifferenceismaximised(anisotropyenhancedformechanical propertiesandCTE),whenconsideringthedifferentaxesofthe tetrago-nallatticeofindium.Theyshowaweakimpactonthestressdistribution intheCdHgTejustabove,andiftheindiumsolderbumpsaremostlyin tensionwithlowcompressioninthecentreat293Kand100K,when polycrystallineorsinglecrystalswithorientation1or3,someofthem canbefullyincompressionwithhigherstressvaluesduetotheir crystal-lographicorientationandtheparticularevolutionoftheCTE(especially fororientation2).Itshouldnotedthatthiseffectissimilarwhen consid-eringallthesolderbumpsassinglecrystals,withorientationscloseto orientation2alwaysinducinghigherstress/deformationinthebump. Theselocalvariationsinthestressvalues canleadtopossiblesolder cracksattheinterfacewiththeCdHgTeand/orsiliconlayersand ex-plainthe“randomlysupposed” apparitionofdefectssuchasdeadpixels inthedetector.

5. Conclusions

Inthiswork,thestrain/stressevolutioninanIRdetectorsubjected tothermalloadingsduringitscyclelifehasbeennumericallystudied. Conclusionsofthisstudycanbesummedupasfollows:

- Theexperimentalresultsgaveaverydetaileddescriptionofthe de-tectorstructure.Thetomographyanalysesledtoanexcellent defini-tionofthe3Dsolderbumpgeometryafterthelastprocessstep.EBSD andringdiffractionprovidedafirsttwo-dimensionaldescriptionof thenatureandcrystallographyofthedifferentlayers.Themost im-portantpointsarethepresenceofCdHgTeandsiliconsinglecrystals aswellasthesinglecrystalnatureofindiumsoldersandtherandom repartitionoftheircrystallographicorientation,afeaturethatuntil nowwascompletelyunknown.Theycouldsubsequentlybe imple-mentedinthefiniteelementmodelwiththeiranisotropic mechan-icalproperties,whichwasessentialforthemodeldevelopmentto simulatestrain/stressheterogeneitiesatthescaleofonepixelofthe detector.

- Thefiniteelementmodelwasveryusefultoobservelocal hetero-geneitiesinsidetheCdHgTeandsiliconlayersandtoestimatethe stresslevelineachindiumsolderbump.Heterogeneitiesappeared atthescaleofthesolderbumpat293Kandwereamplifiedat100K.

WhereasthebiaxialtensilestateofCdHgTetendedtobeuniformat lowtemperature(around30MPaaccordingto𝜎xxand𝜎yyconsistent withthevaluesobtainedexperimentallyat77K[43]),siliconwasin compressionunderepoxy(−10a−20MPa)andintensionunderthe solderbumps(8–18MPa)withinadepthofafewmicrons.Thus, us-ingapolycrystallinebehaviourlawforindium,heterogeneitiescan alreadybeseenpixelbypixelwhenapplyingthermalfieldsbetween thecentreandtheedgeofthedetector.Inordertohaveamore pre-ciseestimationofthestressstateineachpixelofthedetector,other simulationswerelaunchedconsideringthesinglecrystalnatureof eachsolderbumpaswellastheinfluenceofthecrystallographic ori-entationandtheanisotropicCTEofindium.Thenumericalresults showedthattheCdHgTelawwasaweakimpacted,butaccording totheircrystallographicorientation,theindiumsolderbumpscould bemoreincompressionat293Kand100K:thisdifferenceinthe stress/deformationcouldleadtopossiblecracksattheinterfacewith theCdHgTeand/orsiliconlayersandexplainsomedefectssuchas thedeadpixelsappearinginthedetectorduringelaborationand ser-vicelife.

Declaration of Competing Interest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

Acknowledgements

ThisworkwassupportedbyRegionLorraineinFrancein collabora-tionwithCEA(Commissariatà l’EnergieAtomique).

References

[1] J.H. Lau , Flip Chip Technologies, McGraw-Hill, New York, 1996 .

[2] M. Song , Z. Wei , B. Wang , L. Chen , J.A. Szpunar , Study on copper protrusion of through-silicon via in a 3-D integrated circuit mat, Sci. Eng. A 755 (2019) 66–74 . [3] H.M. Tong , Y.S. Lai , C. Wong , Advanced Flip Chip Packaging, Springer, 2012 . [4] J.Y. Wan , J.W. Jiang , J. Li , G. Sun , D.K. Kim , W. Woo , Weld residual stresses in

a thick plate considering back chipping: neutron diffraction, contour method and finite element simulation study, Mater. Sci. Eng. A 699 (2017) 62–70 .

[5] W. Jiang , W. Chen , W. Woo , S.T. Tu , X.C. Zhang , V. Em , Effects of –low-temperature transformation and transformation-induced plasticity on weld residual stresses: nu- merical study and neutron diffraction measurement, Mater. Des. 147 (2018) 65–79 . [6] G.G. Stoney , The tension of metallic films deposited by electrolysis, Proc. R. Soc. A

82 (1909) 172–175 .

[7] J. Chen , I.D. Wolf , Theoretical and experimental raman spectroscopy study of me- chanical stress induced by electronic packaging, IEEE Trans. Comp. Pack. Techol. 28 (2005) 484–492 .

[8] A. Declémy , P.O. Renault , XRD measurement of thermal strain in insb-based devices, Phys. Status Solidi 204 (2007) 1041–1046 .

[9] R. Pesci , K. Inal , S. Berveiller , E. Patoor , Stress analysis by kossel microdiffraction on a nickel-based single crystal superalloy during an in situ tensile test - Comparison with classical X-Ray diffraction, Mat. Sci. Forum 681 (2011) 1–6 .

[10] S.C. Chen , Y.C. Lin , C.H. Cheng , The numerical analysis of strain behavior at the solder joint and interface in a flip chip package, J. Mater. Process. Technol. 171 (2006) 125–131 .

[11] M.L. Sham , J.K. Kim , J.H. Park , Thermal performance of flip chip packages: nu- merical study of thermo-mechanical interactions, Comput. Mater. Sci. 43 (2008) 469–480 .

[12] X. Cheng , C. Liu , V.V. Silberschmidt , Numerical analysis of thermo-mechanical be- havior of indium micro-joint at cryogenic temperatures, Comput. Mater. Sci. 52 (2012) 274–281 .

[13] Q. Yao , J. Qu , Three-dimensional versus two-dimensional finite element modeling of flip-chip packages, J. Elect. Packag. 121 (1999) 196–201 .

[14] W. Kpobie , N. Bonfoh , C. Dreistadt , M. Fendler , P. Lipinski , 3D modeling of flip chip assemblies with large array and small pitch: validation of the proposed model, in 14th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems, in: EuroSimE, 2013, pp. 1–6 . [15] X. Zhang , Q. Meng , Y. Lü, J. Si , Assessment of InSb infrared detector arrays assembly

procedure employing ANSYS, Opt. Quant. Elec. 51 (2019) 92 .

[16] P. Castelein , F. Marion , J.L.J.P. Baylet , N. Moussy , O. Gravrand , A. Durand , J.P. Cha- monal , J.L. Destefanis , Megapixel hgcdte mwir focal plane array with a 15-μm pitch, Proc. SPIE 5074 (2008) 5074/1-5074/8 .

[17] E. Maire , J.Y. Buffiere , L. Salvo , J.J. Blandin , W. Ludwig , J.M. Letang , On the appli- cation of X-ray microtomography in the field of materials science, Adv. Eng. Mater. 3 (2001) 539–546 .

(13)

[18] M.D. Abramoff, P.J. Magalhães , S.J. Ram , Image processing with imagej, Biophys. Intern. 11 (2004) 36–42 .

[19] J.D. DeFouw , J.P. Quintana , D.C. Dunand , In situ X-ray synchrotron diffraction study of mgb2 synthesis from elemental powders, Acta Mater. 56 (2008) 1680–1688 . [20] I. Weißensteiner , M. Petersmann , P. Erdely , A. Stark , T. Antretter , H. Clemens ,

V. Maier-Kiener , Deformation-induced phase transformation in a Co–Cr–w–Mo al- loy studied by high-energy X-ray diffraction during in-situ compression tests, Acta Mater. 164 (2019) 272–282 .

[21] M.L. Young , J.D. Almer , M.R. Daymond , D.R. Haeffner , D.C. Dunand , Load parti- tioning between ferrite and cementite during elasto-plastic deformation of an ultra- high-carbon steel, Acta Mater. 55 (2007) 1999–2011 .

[22] V. Taupin , R. Pesci , S. Berbenni , S. Berveiller , R. Ouahab , O. Bouaziz , Lattice strain measurements using synchrotron diffraction to calibrate a micromechanical model- ing in a ferrite-cementite steel, Mat. Sci. Eng. A 561 (2013) 67–77 .

[23] P. Capper, Properties of narrow-gap cadmium-based compounds, london: INSPEC, the institution of electrical engineers, 1994.

[24] R.D. Greenough , S.B. Palmer , The elastic constants and thermal expansion of sin- gle-crystal cdte, J. Phys. D 6 (1973) 587–592 .

[25] H.J. McSkimin , D.G. Thomas , Elastic moduli of cadmium telluride, J. Appl. Phys. 33 (1962) 56–59 .

[26] D. Berlincourt , H. Jaffe , L.R. Shiozawa , Electroelastic properties of the sulfides, se- lenides, and tellurides of zinc and cadmium, Phys. Rev. 129 (1963) 1009–1017 . [27] T. Alper , G.A. Saunders , The elastic constants of mercury telluride, J. Phys. Chem.

Solids 28 (1967) 1637–1642 .

[28] R.I. Cottam , G.A. Saunders , Ultrasonic attenuation in hgte from 2 to 300 K, Philos. Mag. 32 (1975) 1231–1243 .

[29] J.G. Mavroides , D.F. Kolesar , Elastic constants of hgte, Solid State Commun. 2 (1964) 363–364 .

[30] P. Ballet , X. Baudry , B. Polge , D. Brellier , J. Merlin , P. Gergaud , Strain determina- tion in quasi-lattice-matched lwir hgcdte/cdznte layers, J. Elec. Mater. 42 (2013) 3133–3137 .

[31] K. Guergouri , R. Triboulet , A. Tromson-Carli , Y. Marfaing , Solution hardening and dislocation density reduction in cdte crystals by Zn addition, J. Cryst. Growth 86 (1988) 61–65 .

[32] M.G. Williams , R.D. Tomlinson , M.J. Hampshire , X-ray determination of the lattice parameters and thermal expansion of cadmium telluride in the temperature range 20–420 °C, Solid State Commun. 7 (1969) 1831–1832 .

[33] D. Bagot , R. Granger , S. Rolland , Elastische eigenschaften von einkristallinem sili- cium in abhangigkeit von der temperatur und der versetzungsdichte, Phys. Status Solidi 177 (1993) 295 .

[34] R.P. Reed , C.N. McCowan , R.P. Walsh , L.A. Delgado , J.D. McColskey , Tensile strength and ductility of indium, Mater. Sci. Eng. A 102 (1988) 227–236 . [35] Y.S. Touloukian, Thermophysical properties of matter, volume 13: thermal expan-

sion, 1977.

[36] J.G. Collins , J.A. Cowan , G.K. White , Thermal expansion at low temperatures of anisotropic metals: indium, Cryogenics (Guildf) 7 (1967) 219–224 .

[37] B.S. Chandrasekhar , J.A. Rayne , Elastic constants of indium from 1.4° to 300°K, Phys. Rev. 124 (1961) 1011–1014 .

[38] D.R. Winder , C.S. Smith , Single-crystal elastic constants of indium, J. Chem. Solids 4 (1958) 128–134 .

[39] C.L. Vold , M.E. Glicksman , E.W. Kammer , L.C. Cardinal , The elastic constants for single-crystal lead and indium from room temperature to the melting point, J. Chem. Solids 38 (1977) 157–160 .

[40] H. Cease , P.F. Derwent , H.T. Diehl , J. Fast , D. Finley , Measurement of Mechanical Properties of Three Epoxy Adhesives at Cryogenic Temperatures for CCD Construc- tion, 2006, pp. 1–19. Fermi Lab Report Fermilab-TM-2366-A .

[41] H.J. McSkimin , Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica, J. Appl. Phys. 24 (1953) 988–997 .

[42] T. Middelmann , A. Walkov , G. Bartl , R. Schödel , Thermal expansion coefficient of single-crystal silicon from 7K to 293K, Phys. Rev. B 92 (2015) 174113/1–174113/7 . [43] A.L. Lebaudy , R. Pesci , M. Fendler , X-ray diffraction residual stress measurement at room temperature and 77K in a microelectronic multi-layered single-crystal struc- ture used for infrared detection, J. Electron. Mater. 47 (2018) 6641 .

[44] M. Plötner , B. Donat , A. Benke , Deformation properties of indium-based solders at 294 and 77K, Cryogenics (Guildf) 31 (1991) 159–162 .

Figure

Fig. 1. Architecture of the IR detector considered.
Fig. 2. (a) Solder bumps visualisation by microtomography (b) Example of a post-processing of the stack with ImageJ® (c) Solder bump represented as a truncated cone.
Fig. 4. EBSD mappings showing the mean crystallographic orientation of three indium solder bumps.
Fig. 5. (a) Diffraction ring set up (b) Diffraction pattern of the component acquired by the 2D detector.
+6

Références

Documents relatifs

We will denote by L the language corresponding to words associated to recurrent configurations on simple wheels of any size: a word of length n belongs to L if and only if

Schoenberg [S1, S2] established that this sequence has a continuous and strictly increasing asymptotic distribution function (basic properties of distribution functions can be found

When the strong (I 100 µ m &gt; 1 Jy) point sources are removed from the ISSA maps, we recover a power spectrum typical of cirrus emission at low spatial frequencies but with still

A Partial Wave Analysis (PWA) of the centrally produced K + K − system has been per- formed assuming the K + K − system is produced by the collision of two particles (referred to

In order to explain the disorder of only one dmpe and for the compounds (2b, 8 and 10a)where the disorder is modelised in the refinement by two dmpe (named A and B branch) at 50

Tt, on observe un spectre magnetique B six composantes superpost5 B un doublet quadrupolaire,. tandis qu'au-dessus de Ttr les six composantes du spectre magnktique

The isomer shift of the P-branch decreases and that of the V-branch increases as the external field increases; a small discontinuity occurs a t the phase

different polarisation branches and which not only gives correct temperature dependence of three- phonon relaxation rates in the high as well as low temperature