• Aucun résultat trouvé

Influence of the crystallization rate on the mixed hydrate: experimental and modelling work

N/A
N/A
Protected

Academic year: 2021

Partager "Influence of the crystallization rate on the mixed hydrate: experimental and modelling work"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01589968

https://hal.archives-ouvertes.fr/hal-01589968

Submitted on 19 Sep 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Influence of the crystallization rate on the mixed

hydrate: experimental and modelling work

Saheb Maghsoodloo Babakhani, Baptiste Bouillot, Jean - Michel Herri

To cite this version:

Saheb Maghsoodloo Babakhani, Baptiste Bouillot, Jean - Michel Herri.

Influence of the

crys-tallization rate on the mixed hydrate: experimental and modelling work. Carolyn Koh; Dendy

Sloan; Timothy Collet. 9th International Conference on Gas Hydrates - ICGH9, Jun 2017,

Den-ver, United States.

Proceedings of 9th International Conference on Gas Hydrates - ICGH9,

pp.03P068_1664_Maghsoodloo_sec, 2017. �hal-01589968�

(2)

www.postersession.com

Experimental set-up

Conclusions

Influence of the crystallization rate on the mixed hydrate:

experimental and modelling work

MAGHSOODLOO Saheb*, BOUILLOT Baptiste, HERRI Jean-Michel

Ecole des Mines de Saint-Etienne, SPIN, CNRS 5307, LGF, F-42023 Saint-Etienne, France

* Corresponding author: saheb.m@emse.fr

References

Introduction

During

the

last

decade,

our

“GasHyDyn” team has measured

equilibrium

data

for

many

gas

mixtures, and this work adds new data

involving propane based on different

crystallization rates.

Objectives

 Effects of crystallization rate

 Gas composition in all phases

 Hydrate volume and water

conversion

 Thermodynamic model by

implementing Kihara parameters

1. Cryostat

2. Reactor 2L, 100bar

3. Windows 12 * 2cm

4. Gas bottles

5. Agitator

6. Temperature sensors Pt 100

7. Sampling liquid

8. HPLC pump

9. Granulometric sensors LASENTECH

10. Sampling gas ROLSI

11. Gas chromatograph

12. Air supply, He

13. Display pressure and temperature

14. Computer recording data

Results

Type of

experiment

Gas composition

(%)

Reactor

volume (L)

Water

injected

(g)

Initial

pressure

(bar)

Initial

temperature

(°C)

CH

4

C

3

H

8

Quick crys.

86.14

13.86

2.36

801.37

16.8

10.9

Slow crys.

86.14

13.86

2.36

801.37

16.8

10.9

Initial conditions of the experiments

10

13

16

19

22

25

28

0

3

6

9

12

15

Pr

essur

e

(bar)

Temperature (°C)

Quick crystallization rate

Slow crystallization rate

Pressure-Temperature diagram during the crystallization and final state of

mixed methane-propane hydrate

Gas

Method

P

(bar)

T (°C)

Molar gas

fraction

Molar hydrate

fraction

Water

conversi

on (%)

Hydrate

volume

(cc)

CH

4

C

3

H

8

CH

4

C

3

H

8

Methane

-Propane

Qu

ick

cr

y

sta

ll

izatio

n

14.5

0.45

0.9928 0.0072 0.6906

0.3094 20.49 207.86

14.6

1.50

0.9911 0.0089 0.6877

0.3123

16.11

162.67

15.9

5.80

0.9746 0.0254 0.6754

0.3246

13.99

139.78

17

7.90

0.9624 0.0376 0.6608

0.3392

12.69

126.26

18.9

10.40 0.9388 0.0612 0.6375

0.3625

11.17

110.54

Slow

cr

y

sta

ll

izatio

n

20

10.35 0.9364 0.0636 0.5744

0.4256

6.03

60.41

18.1

7.95

0.9641 0.0359 0.6016

0.3984

8.23

81.90

17

5.70

0.9795 0.0205 0.6136

0.3864

8.56

84.78

16

2.55

0.9907 0.0093 0.6271

0.3729

11.06 108.21

15.8

1.55

0.9927 0.0073 0.6292

0.3708

12.69

123.33

The results of experiments for two different crystallization rates

 Different rate of crystallization leads to

different:

 Final pressure

 Hydrate volume and water conversion

 Propane composition in hydrate phase

Modelling

The algorithm of Kihara parameters optimization

Reference

ε/K

σ

a

(Sloan, 1998)

203.31

3.3093

0.6502

(Ng and Robinson,

1977)

213.58

3.2296

0.6700

(Barkan and

Sheinin, 1993)

194.55

3.3144

0.8340

(Moradi and

Khosravani, 2013)

493.70

4.5190

0.6502

This work

195.00

3.3400

0.6502

Kihara parameters from literature and this work

30,6

32,2

26,9

142,1

14,5

0

40

80

120

160

Ng

Barkan

Sloan

Moradi

This work

A

ve

ra

ge

dev

iatio

n

(%

)

198 Equilibrium points

from a wide range of

temperature , pressure

and gas mixtures

involving propane

The capability of hydrate equilibrium pressure prediction based on different

Kihara parameters from literature and this work

 Based on the results, it can be

supposed that in slow crystallization

process the hydrate crystal are more

homogenous.

 At quick crystallization process

which the driving force is high,

kinetic could be dominant more than

thermodynamic.

 The thermodynamic model based on

the new Kihara parameters had a

better accordance with a wide range

of equilibrium data from literature.

[1]E. D. Sloan and J. Koh Carolyn, Clathrate Hydrates of Natural Gases, 3rd ed. Taylor & Francis, 2007.

[2]N. H. Duc, F. Chauvy, and J.-M. Herri, “CO2 capture by hydrate crystallization – A potential solution for gas emission of steelmaking industry,” Energy Convers. Manag., vol. 48, no. 4, pp. 1313–1322, avril 2007.

[3]J.-M. Herri, M. Cournil, and E. Chassefiere, “Thermodynamic modelling of clathrate hydrates in the atmosphere of Mars,” HAL, 2011.

[4]J. Douzet, M. Kwaterski, A. Lallemand, F. Chauvy, D. Flick, and J.-M. Herri, “Prototyping of a real size air-conditioning system using a tetra-n-butylammonium bromide semiclathrate hydrate slurry as secondary two-phase refrigerant – Experimental investigations and modelling,” Int. J. Refrig., vol. 36, no. 6, pp. 1616–1631, Sep. 2013.

[5]M. Karamoddin and F. Varaminian, “Water desalination using R141b gas hydrate formation,” Desalination Water Treat., vol. 52, no. 13–15, pp. 2450–2456, Apr. 2014.

[7]D. Le Quang, D. Le Quang, B. Bouillot, J.-M. Herri, P. Glenat, and P. Duchet-Suchaux, “Experimental procedure and results to measure the composition of gas hydrate, during crystallization and at equilibrium, from N2–CO2–CH4–C2H6–C3H8–C4H10 gas mixtures,” Fluid Phase Equilibria, Oct. 2015.

[8]J.-M. Herri, A. Bouchemoua, M. Kwaterski, A. Fezoua, Y. Ouabbas, and A. Cameirao, “Gas hydrate equilibria for CO2–N2 and CO2–CH4 gas mixtures—Experimental studies and thermodynamic modelling,” Fluid Phase Equilibria, vol. 301, no. 2, pp. 171–190, 2011.

Références

Documents relatifs

On peut se demander, étant donné la présence de faibles taux de zinc, bien moins fréquente dans les statuettes romaines que dans le domaine de la vaisselle, s'il

nouvelle organisation agile de l’entreprise. La consultante-facilitatrice était en retrait durant toute la durée de l’atelier. Elle ne prenait la parole que lors de moments

154    ا ﻊﻣﺗﺟﻣ ﻲﻓ سﻛﻌﻟا نوﻛﺗ و ﻘﺛ ىرﺧأ ﺔﻓﺎ ، ﻊﻣﺗﺟﻣﻟا ﻲﻓ ةأرﻣﻟا رود نﺈﻓ ﺔﻳﺑرﻌﻟا تﺎﻌﻣﺟﻣﻟا ﻲﻓو .يوﻋرﻟا ﺎﻬﻣوﻬﻔﻣﺑ ﺔﻣوﻣﻷاو ﻲﻋوﺿﺧﻟا ﺎﻬﻣوﻬﻔﻣﺑ ﺔﺟوزﻟا رود ءادا ﻲﻓ رﺻﺣﻧﻳ 1

Sur la base de nos résultats nous concluons que CBIQ, un potentiateur de CFTR, aurait un effet activateur sur KCa3.1 via la déstabilisation d’un état fermé du canal à travers

Si nous prenons pour exemple le graphe viaire de Manaus, nous observons que les données du développement de la ville entre 1895 et 2014 correspondent en partie aux résultats

However, our PCA analysis showed a closer genetic proximity between maize landraces from the Eastern part of SWF and Northern Flint landraces located in the North of Europe

Dans la première sous- période, nous avons rejeté l'hypothèse nulle d'une racine unitaire au profit de l'hypothèse alternative de stationnarité en écarts à

Jean-Marc Boussard, Françoise Gérard et Marie-Gabrielle Piketty, « Des effets de la libéralisation des marchés agricoles », Économie rurale [En ligne], 296 | Novembre-décembre