• Aucun résultat trouvé

Cosmological Parameters and Gravitational Lensing Statistics.

N/A
N/A
Protected

Academic year: 2021

Partager "Cosmological Parameters and Gravitational Lensing Statistics."

Copied!
4
0
0

Texte intégral

(1)

Gravitational Lensing Statistics

PHILLIPHELBIG

Hamburger Sternwarte 1Gojenbergsweg112

D-21029 Hamburg1 Germany

INTRODUCTION

Lensing statistics gives a metho d of testing the cosmological constant at

in-termediate redshifts|at low and high redshifts the p ossibilities for measuring 

0

are limited and even at intermediate redshifts 

0

often cancels out in observable

relations|usingwell-understoo dlensingtheoryandstandardastrophysical

assump-tions.

Ithasrecentlyb eensuggestedbymanyauthors(see,forexample,Fukugitaetal. 1

and references therein) that gravitational lensing statistics canprovidea means of

distinguishingb etweendi erentcosmologicalmodels,moste ectivelyconcerningthe

value of the cosmological constant. Ko chanek 2

has suggested a metho d based not

onthetotalnumb eroflenssystemsbutratherontheredshiftdistributionofknown

lens systems characterised by observables such as redshift and image separation.

Lo oking at a few di erent models, he concludes that at,  -dominatedmodels are

ve totentimes lessprobablethanmore `standard' models. The advantage ofthis

metho d is that it is not plagued by normalisation dicultiesas are most schemes

involving thetotalnumb er oflenses.

SinceKo chanek wasapparentlyabletogetsomeinterestingresultsusing

statis-tics based on only four gravitational lens systems, I wanted to exlpore this more

thoroughlybylo oking atnotjust a few butall models characterised by

0

and

0

aswell asvaryingdegrees ofhomogeneity. Ialso lo oked atselection e ectsand did

somesimulations togeta handleon what theresultsmean.

THEORY

I make the `standard assumptions' that the Universe can b e described by the

Rob ertson-Walker metric and that lens galaxies can b e modelled as non-evolving

singularisothermalspheres(SIS).Thisleadsanequationfortherelativedi erential

opticaldepth 3 d dz = ( 1+z d ) 2 a a3 2  a a3 D s D  2 (1+ ) 2

(2)

D 2 d 1 p Q( z d ) exp 0  a a3 D s D ds  2 (1) wherea3:=4  0 v 3 c 1

( v3:=v of an L3galaxy ), istheFab er-Jackson/Tully-Fisher

exp onent, the Schechter exp onent, D

d

theangular sizedistance b etween the

ob-serverand thelens and

Q( z d ) :=(1+z d ) 2 ( 0 z d +10 0 )+ 0 : (2)

The optical depthdep endson the cosmologicalmodelthrough Q( z

d

) aswell as

throughtheangularsizedistances,b ecauseofthefactthatD

ij =D ij ( z i ;z j ; 0 ; 0 ;).

The in uence of , which gives the fraction of homogeneously distributed, as

op-p osedtocompact,matterisfeltonlyinthecalculationoftheangularsizedistances,

whereas thecosmological modelin the narrowersensemakes its in uence felt here

aswellasthrough Q( z

d

). The angularsizedistancescanb ecalculatedforarbitrary

cosmologicalmodelsbythepro ceduregiven inKayser&Helbig. 4

CALCULATIONS

The following gravitational lens systems meet my selection criteria: 0142-100

(UM673),0218+357,1115+080(TripleQuasar),1131+0456,1654+1346and3C324.

(Formore details on these systems seeRefsdal&Surdej. 5

)

Iconsidered thefollowingrangesof valuesforthe cosmologicalparameters:

010 <  0 < +10 0 < 0 < 10

In order to measure the relative probability of a given cosmological model, I

de nedthequantityf asfollows: p

0<f := R z l 0 d R zs 0 d <1 ; (3) wherez l

istheobserved lens redshiftfora particular system. ( z

d

is usedtodenote

the variable corresp onding to lens redshift as opp osed to the measured value for

a particular lens.) The distribution of the di erent f values (one for each lens

systeminthesample)inbequally-sizedbins intheinterval ]0,1[ givestherelative

probability pof agiven cosmological model, with

p= b Y i=1 1 n i ! (4) where n i

is the numb er of systems in the i -th bin. (This de nition allows only a

few discrete values, of course.) The variable b is a free parameter; since the most

(3)

My resultsarein Fig.1, plot b. (This isfor =0 : 5;the resultsdo notdep end

strongly on . 3

See Kayser & Helbig 4

for a discussion of this parameter.) One

can see basically that areas of equal probability o ccur in some fashion which is

not stochastic. Although there are only a few discreet values for the probability

asde ned in Eq. (4), nevertheless one sees a degeneracy|there is a widerange of

cosmological models for a given probability. Plot c shows the result of neglecting

theobservationalbias,e.g. assumingthatthelens couldhaveits redshiftmeasured

whateverthisredshift were. Asacomparisonwithplotbshows,this leadstoabias

againstmodels withahighmedianexp ectedlens redshift|thosenearthede Sitter

model.

Forcomparison,Ihavealsotestedthemetho donthesystemsusedbyKo chanek, 2

using m

lim

=1 und =1,b oth of which he implicitlyassumes. (Of course, when

oneconsiders nite values form

lim

,one cannot includesystems with lens redshifts

whichhaveb eendeterminedbymeansotherthanmeasuredemissionredshifts,such

as absorption lines (which assumes that the lens is also the absorber).) The

re-sultsareinplot d wheretherelativeprobabilities are0, 1

6 ,

1

2

and 1and comparing

the various models examined by Ko chanek con rm his conclusions. For instance,

the relative probabilities of the Einstein-de Sitter and de Sitter model are 1 and

1

6

,con rminghisresult that at,  -dominatedmodels are 5{10timesless probable

thanstandardones. (However,takingm

lim

intoaccount and/orusing only directly

measured lens redshifts would pro duce quite di erent results, as discussed ab ove.)

Thisplotarti ciallyindicatesalowprobability formodelsnearthedeSittermodel

forthesamereasons asthose discussedin connectionwith plotc.

NUMERICAL SIMULATIONS

Forthenumericalsimulations,theobservables 00

(theradiusoftheEinsteinring

or half the image separation corresp onding to the diameter of the Einsteinring),

z

s

and galaxy typ e were chosen randomly from an interval roughly corresp onding

to the observed range of values in order to pro duce synthetic data comparable to

real observations. For a given cosmological model, the corresp onding lens redshift

z

l

foreachsystemwascalculatedfromtheobservablesanda randomlygeneratedf

through (numerical) inversion of Eq. (3). This catalog wasthen used todetermine

arelative probabilityforeachofthep ointsinthe 

0

-0

plane inthesamemanner

asforthereal systems.

The Kolmogorov-Smirnov(K-S) test is of course a well understo o d metho d for

testing if two distributions are statistically signi cantly di erent. (See, e.g., Press

et.al. 6

fora generaldiscussionand de nition oftheK-S probability.) However,this

test canonlyb e usedfordistributions withmore than20 datap oints. Therefore

I plot inFig. 1 in plots b, c, and d the probability given by Eq. (4) and in plot e

theK-S probability.

I have done simulations for a variety of world models and also for numb ers of

systemsb etween20 and 50. Intheinterest of brevity, Ipresent only oneplot. Plot

(4)

z

a

0.6 1.2 1.8 2.4

z

m

0.6 1.2 1.8 2.4

20.0

22.0

24.0

26.0

28.0

l

b

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

c

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

d

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

e

W

-2.0 -1.0 0.0 1.0

0.5

1.0

1.5

2.0

Figure 1: a. Therelative di erential optical depth (thin curve) and the calculated lens

brightnessm(thickcurve) asfunctionsofz

d

. TheworldmodelisthedeSittermodel(

0 =

1 : 0,

0

=0 : 0)andtheobservablesarethoseforthegravitationallenssystem01420100.The

ordinategivesthemagnitudeinJohnsonR . Forrealisticlimitingsp ectroscopicmagnitudes

(24 m

)itisclearthatonecannotsampletheprobabilit ydistributionwithoutastrongbias.

b. Relativeprobabilit yforthesystemsmentionedinthetext,witharealisticvalueform

lim .

Here andin theother halftoneplots,the relativeprobabilit yincreases linearlyfrom white

to black. c. The same as b., but neglecting m

lim

, which, as in plot d.,mak esthemodels

near thede Sittermodelapp earmore probablethantheyare. d. Relativeprobabilit yfor

thesystems used byKo chanek. e. Resultsbasedon a catalogue of50 sim ulatedsystems.

(Notethe di erent scale on the axes.) The cosmological model used to generate the lens

redshiftsisthehomogeneousEinstein-de Sittermodel(=1 : 0,

0

=0 : 0,

0 =1 : 0).

probability|the white area has p=0 due tothe factthat at least onelens would

b e fainter than m

lim

in these world models, as discussed in Helbig & Kayser 3

|

I conclude that, although one can qualitatively understand the physics which at

least in part is resp onsible for the results presented in Fig. 1, the actual relative

probabilities are more indicative of intrinsic scatter in the redshifts of the lenses

thana hint ofthecorrect cosmologicalmodel.

SUMMARY AND CONCLUSIONS

Forknown gravitational lens systems theredshift distribution of thelenses was

compared with theoretical exp ectations for 10 4

Friedmann-Lema^tre cosmological

models,whichmorethancovertherangeofp ossiblecases. Thecomparisonwasused

forassigningarelative probabilitytoeachof themodels. However,mysimulations

indicate that a reasonable numb er of observed systems cannot deliver interesting

constraints on thecosmological parameters using this metho d. Therefore, it seems

that lensing statistics can tell us something ab out the cosmological model only if

onemakes useof all information, which meanscoming togrips withnormalisation

diculties.

REFERENCES

1.Fukugita,M.,K.Futamase,M.Kasai&E.L.Turner. 1992. ApJ393;1.

2.Ko chanek,C.S.1992. ApJ384;1.

3.Helbig,P.&R.Kayser. 1995. A&Asubmitted.

4.Kayser, R.&P.Helbig. 1995. A&Asubmitted.

5.Refsdal,S. &J.Surdej. 1994. Rep.Prog.Phys. 56;117.

Figure

Figure 1: a. The relative dierential optical depth (thin curve) and the calculated lens

Références

Documents relatifs

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Premier article avec une longue soie interne, le second avec deux soies apicales, dont l'externe est plus courte; exopodite triarticulé, avec 4 soies et épines

2 Cassez le chocolat en morceaux, mettez-les dans un bol en verre, puis.. faites fondre

Je peux écrire une histoire sur mon temps libre après avoir terminé une activité en classe ou bien sur l'heure proposée le lundi après-midi.. Je prends une petite feuille

Il  est  oisif,  presque  douloureusement  oisif,  il  s’en  va  faire  un  tour  au  cimetière  d’Auteuil  qui  est  à  deux  pas  et  de  dimensions 

As there are only three such close pairs in our selected sample, we may estimate that this does not induce a noticeable bias in our estimated distribution of projected separations..

L’analyse statistique est présentée afin de répondre aux hypothèses. Discussion Cette étude confirme que les niveaux de détresse psychologique chez les infirmières

in sociologie et anthropologie, op.. ~ 35 ~  ﺮﻣﻷا ﻚﻟﺬآ يﺬﻟا وﺪﺒﻳ عﺮﺒﺘﻣ رﺎﺴﻣ يأ لﻼﺧ ﻦﻴﺑ ﺞﻳﺰﻣ كﺎﻨه ﻟ ةﺮﺳﻸﻟ ﻪﺟﻮﺗ عﺮﺒﺗ ﻴ ﻞﺻاﻮﺘ ﺰﻴﻴﻤﺗ نود صﺎﺨﺷﻷا ﻒﻠﺘﺨﻣ