• Aucun résultat trouvé

VII REFERENCES BIBLIOGRAPHIQUES

Dans le document UNIVERSITE MONTPELLIER (Page 60-67)

60

61 microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. The ISME Journal. 5, 1735-1747

Bini E (2010) Archaeal transformation of metals in the environment. FEMS Microbiol Ecol. 73, 1-16

Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J. Park J, Makino T, Kirkham MB, Scheckel, K (2014) Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize? Journal of hazardous materials. 266, 141-166

Brake SS, Dannelly HK, Connors KA, Hasiotis ST (2001) Influence of water chemistry on the distribution of an acidophilic protozoan in an acid mine drainage system at the abandoned Green Valley coal mine, Indiana. Appl. Geochem. 16, 1641-1652

Bruneel O, Duran R, Koffi K, Casiot C, Fourçans A, Elbaz-Poulichet F, Personné J-C (2005) Microbial diversity in a pyrite-rich tailings impoundment (Carnoulès, France).

Geomicrobiology Journal. 22, 249 - 257

Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personné JC (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France. Applied and Environmental Microbiology. 72, 551-556

Bruneel O. Pascault N., Egal M., Bancon-Montigny C., Goni M., Elbaz-Poulichet F., Personné J.-C., Duran R. (2008) Archaeal diversity in a Fe-As rich acid mine drainage at Carnoulès (France). Extremophiles. 12, 563-571

Bruneel O, Volant A, Gallien S, Chaumande B, Casiot C, Carapito C, et al. (2011) Characterization of the active bacterial community involved in natural attenuation processes in arsenic-rich creek sediments. Microb Ecol. 61, 793-810

Butler BA (2011) Effect of imposed anaerobic conditions on metals release from acid-mine drainage contaminated streambed sediments. Water Res. 45, 328-336

Carvalhais LC, Dennis PG, Tyson GW, Schenk, PM (2012). Application of metatranscriptomics to soil environments. Journal of microbiological methods. 91, 246-251

Casiot C, Leblanc M, Bruneel O, Personné J-C, Koffi K, Elbaz-Poulichet F (2003a) Geochemical processes controlling the formation of As-rich waters within a tailings impoundment. Aquatic Geochemistry. 9, 273-290

Casiot C, Morin G, Juillot F, Bruneel O, Personné JC, Leblanc M et al. (2003b) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res. 37, 2929-2936

Chen LX, Li JT, Chen YT, Huang LN, Hua ZS, Hu M, Shu WS (2013) Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environmental microbiology. 15, 2431-2444

Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B and Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science. 311, 1283- 1287

Costa PS, Scholte LLS, Reis MP, Chaves AV, Oliveira PL, Itabayana LB, Suhadolnik MLS, Barbosa FAR., Chartone-Souza E, Nascimento AMA. (2014) Bacteria and genes involved in arsenic speciation in sediment impacted by long-term gold mining. Plos one. 9, e95655

Das S, Jean J-S, Kar S, Chou M-L, Chen C-Y (2014) Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. J Hazard Mater. 272, 112–120

62 de-Bashan LE, Hernandez J-P, Nelson KN, Bashan Y, Maier R (2010) Growth of Quailbush in acidic, metalliferous desert mine tailings: effect of Azospirillum brasilense Sp6 on biomass production and rhizosphere community structure. Microb. Ecol. 60, 915-27

Delavat F, Lett MC and Lievremont D (2012) Novel and unexpected bacterial diversity in an arsenic-rich ecosystem revealed by culture-dependent approaches. Biol Direct. 7, 28

Denef VJ, Mueller RS, and Banfield JF (2010) AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. The ISME journal. 4, 599-610

Edgar RC, Haas BJ, Clemente JC, Quince C and Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200

Edwards KJ, Bond PL, Druschel GK, McGuire MM, Hamers RJ & Banfield JF (2000a) Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California. Chem Geol. 169, 383–397

Edwards KJ, Bond PL and Banfield JF (2000b) Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: a chemotactic response to sulphur minerals? Environ. Microbiol. 2, 324-332

Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000c). An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science. 287, 1796-1799.

Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth's biogeochemical cycles. Science 320:1034-1039

Gadanho M, Libkind D and Sampaio JP (2006) Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt. Microbial ecology. 52, 552-563

Galand PE, Casamayor EO, Kirchman DL and Lovejoy C (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA. 106, 22427–22432

Gifford SM, Sharma S, Rinta-Kanto JM and Moran MA (2011) Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME Journal. 5, 461-472

Gilbert JA and Dupont CL (2011) Microbial metagenomics: beyond the genome.

Annual Review of Marine Science, 3, 347-371.

Glick BR (2010) Using soil bacteria to facilitate phytoremediation Biotechnology Advances. 28, 367-374

Goebel BM and Stackebrandt E (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol. 60, 1614–1621

Golyshina OV and Timmis KN (2005). Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments.

Environ Microbiol. 7, 1277-1288

González V, García I, del Moral F, de Haro S, Sánchez JA, Simón M (2011) Impact of unconfined sulphur-mine waste on a semi-arid environment (Almería, SE Spain) Journal of Environmental Management. 92, 1509-1519

Hakkou R, Benzaazoua M., Bussière B (2008a) Acid mine drainage at the abandoned Kettara mine (Morocco): 1. Environmental characterization. Mine Water Environ. 27, 145–

159

63 Hakkou R, Benzaazoua M, Bussière B, (2008b) Acid mine drainage at the abandoned Kettara mine (Morocco): 2. Mine waste geochemical behavior. Mine Water Environ. 27, 160–

170

Hakkou R, Benzaazoua M, Bussière B (2009) Laboratory evaluation of the use of alkaline phosphate wastes for the control of acidic mine drainage. Mine Water Environ. 28, 206–218

Hallberg KB (2010) New perspectives in acid mine drainage microbiology.

Hydrometallurgy. 104, 448–453

Halter D, Goulhen-Chollet F, Gallien S, Casiot C, Hamelin J et al. (2012a) In situ proteo-metabolomics revealed metabolite secretion by the acid mine drainage bioindicator, Euglena mutabilis. The ISME J. 6, 1391-1402

Halter D, Casiot C, Heipieper HJ, Plewniak F, Marchal M, Simon S, et al. (2012b) Surface properties and intracellular speciation revealed an original adaptive mechanism to arsenic in the acid mine drainage bio-indicator Euglena mutabilis. Applied microbiology and biotechnology. 93, 1735-1744

Harrison JJ, Ceri H, Turner RJ (2007). Multimetal resistance and tolerance in microbial biofilms. Nature Reviews Microbiology. 5, 928-938

Héry M, Casiot C, Resongles E, Gallice Z, Bruneel O, Desoeuvre O, Delpoux S (2014) Release of arsenite, arsenate and methyl-arsenic species from streambed sediment impacted by acid mine drainage : a microcosm study. Environmental Chemistry. 11, 514-524

Hudson-Edwards KA and Dold B (2015). Mine Waste Characterization, Management and Remediation. Minerals. 5, 82-85

Huse SM, Welch DM, Morrison HG and Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol. 12, 1889-1898

Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–10

Jiang JQ, Ashekuzzaman SM, Jiang A, Sharifuzzaman SM, Chowdhury SR (2013) Arsenic contaminated groundwater and its treatment options in Bangladesh. International journal of environmental research and public health. 10, 18-46

Johnson DB and Hallberg KB (2003) The microbiology of acidic mine waters. Research in Microbiology. 154, 466-473

Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review.

Sci Total Environ. 338, 3–14

Johnson DB, Hallberg KB (2008) Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv. Microb. Physiol. 54, 201–255

Johnson DB (2014) Recent Developments in microbiological approaches for securing mine wastes and for recovering metals from mine waters. Minerals. 4, 279-292

Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals Biotechnology Advances. 28, 61-69

Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation Journal of Trace Elements in Medicine and Biology. 18, 355-364

64 Kidd P, Barceló J, Pilar Bernal M, Navari-Izzo F, Poschenrieder C, Shilev S, Rafael C, Monterroso C (2009) Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environmental and Experimental Botany. 67, 243- 259

Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Frontiers in plant science. 5

Koffi K, Leblanc M, Jourde H, Casiot C, Pistre S, Gouze P and Elbaz-Poulichet F (2003) Reverse oxidation zoning in mine tailings generating arsenic-rich acidic waters (Carnoulès, France). Mine water and the environment. 22, 7-14

Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M., et al., Shu WS (2012) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. The ISME journal. 7, 1038-1050

Langmuir D (1997) Acid mine waters. In. McConnin, R., Aqueous Environmental Geochemistry, Prentice-Hall, Inc., New Jersey, pp. 457-478

Leblanc M, Achard B, Othman DB, Luck JM, Bertrand-Sarfati J, Personné JC (1996) Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites). Applied Geochemistry. 11, 541-554

Leblanc M, Casiot C, Elbaz-Poulichet F and Personné C (2002) Arsenic removal by oxidizing bacteria in an heavily arsenic contaminated acid mine drainage system (Carnoulès, France). Geological Society of London Special Publication « Mine Water Hydrogeology and Geochemistry » (Younger P.L. and Robin N.S. Eds). In Geological Society, London, Spec.

Publication. 198 pages, 267-274

Lett MC, Muller D, Lièvremont D, Silver S, Santini J (2012) Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J Bacteriol. 194, 207–8

Lièvremont D, Bertin PN, and Lett M-C (2009) Arsenic in contaminated waters:

biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie. 91, 1229-1237

Lghoul M, Maqsoud A, Hakkou R, and Kchikach A (2014) Hydrogeochemical behavior around the abandoned Kettara mine site, Morocco. Journal of Geochemical Exploration. 144, 456-467

Ma Y, Prasad MNV, Rajkumar M, Freitas H. (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils Biotecnology advances. 29, 248-258

McClintock TR, Chen Y, Bundschuh J, Oliver JT, Navoni J, Olmos V, Villaamil Lepori E, Ahsan H, Parvez, F. (2012) Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Science of the Total Environment. 429, 76-91

Marchal M, Briandet R, Halter D, Koechler S, DuBow MS, Lett MC, Bertin PN (2011).

Subinhibitory arsenite concentrations lead to population dispersal in Thiomonas sp. PloS one.

6(8), e23181

Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol. 7, 47–59

Needleman SB and Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 48, 443-453

Nordstrom (2002) Public health-worldwide occurrences of arsenic in ground water.

Science. 296, 2143–2145

65 Oremland RS and Stolz JF (2003) The ecology of arsenic. Science. 300, 939-944

Oremland RS and Stolz JF (2005). Arsenic, microbes and contaminated aquifers. Trends in microbiology. 13, 45-49

Oremland RS, Kulp TR, Blum JS, Hoeft SE, Baesman S, Miller LG, Stolz JF (2005). A microbial arsenic cycle in a salt-saturated, extreme environment. Science. 308, 1305-1308

Oremland RS, Saltikov CW, Wolfe-Simon F, Stolz JF (2009) Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol J. 26, 522–536

Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science.

276, 734–740

Park JM, Lee JS, Lee JU, Chon HT, Jung MC (2006) Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. J Geochem Explor. 88, 134-138

Pedrós-Alió C (2007) Ecology, dipping into the rare biosphere. Science. 315, 192–193 Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, Head IM et al. (2009) Noise and the accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods. 6, 639–641

Quince C, Lanzen A, Davenport RJ & Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics. 12, 38

Ren WX, Li PJ, Zheng L, Fan SX, Verhozina VA (2009). Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans.

Journal of hazardous materials. 162, 17-22

Rajkumar M, Ae N, Prasad MNV, Freitas H. (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28, 142-149

Rajkumar M, Sandhya S, Prasad MNV, and Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology advances. 30, 1562-1574

Rappé MS and Giovannoni SJ (2003) The uncultured microbial majority. Annual Rev.

Microbiol. 57, 369-94

Rowe OF, Johnson DB (2008) Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors. Syst Appl Microbiol. 31, 68–77

Sand W, Gehrke T, Jozsa P-G, Schippers A (2001) (Bio)chemistry of bacterial leaching-direct vs. inleaching-direct bioleaching. Hydrometallurgy. 59, 159-175

Sarkar A; Kazy KS; Sar P (2014) Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment. Environ Sci Pollut Res. 21, 8645–

8662

Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy. 104, 342–350

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75, 7537-7541

Singer PC, Stumm W (1970) Acid mine drainage: the rate-determining step. Science.

167, 1121–1123

66 Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA. 103, 12115–12120

Smouni A, Ater M, Auguy F, Laplaze L, El Mzibri M, Berhada F, Filali-Maltouf A, Doumas P. (2010) Evaluation de la contamination par les éléments-traces métalliques dans une zone minière du Maroc oriental Cah. Agric. 19, 1-7

Stolz JF, Basu P, and Oremland RS (2010) Microbial arsenic metabolism: new twists on an old poison. Microbe. 5, 53–59

Sun W, Sierra-Alvarez R, Milner L, Field JA (2010) Anaerobic oxidation of arsenite linked to chlorate reduction. Appl Environ Microbiol. 76, 6804–6811

Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, and Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 428, 37-43

Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—Part A. Appl Microbiol Biotechnol. 97, 7529–7541

Volant A, Desoeuvre A, Casiot C, Lauga B, Delpoux S, Morin G, Personné JC, Héry M, Elbaz-Poulichet F, Bertin P and Bruneel O (2012) Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France. Extremophiles. 16, 645-657.

Volant A, Bruneel O, Desoeuvre A, Héry M, Casiot C, Bru N, Delpoux S, Fahy A, Javerliat F, Bouchez O, Duran R, Bertin PN, Elbaz-Poulichet F and Lauga B (2014) Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and others drivers along an acid mine drainage. FEMS Microbiology Ecology. 90, 247-263

Yang Y, Li Y, Sun QY (2014) Archaeal and bacterial communities in acid mine drainage from metal-rich abandoned tailing ponds, Tongling, China. Transactions of Nonferrous Metals Society of China. 24, 3332-3342

Whitman WB, Coleman DC and Wiebe WJ (1998) Prokaryotes: the unseen majority.

Proceedings of the National Academy of Sciences. 95, 6578-6583

Yamamura S and Amachi, S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. Journal of bioscience and bioengineering. 118, 1-9

Yamanaka K and Okada S (1994). Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals. Environmental Health Perspectives. 102, 37-40

Younger PL (1997) The longevity of minewater pollution: a basis for decision-making.

Science of the Total Environment. 194, 457-466

Yunus M, Sohel N, Hore SK, Rahman M (2011) Arsenic exposure and adverse health effects: a review of recent findings from arsenic and health studies in Matlab, Bangladesh.

The Kaohsiung journal of medical sciences. 27, 371-376

Zargar K, Conrad A, Bernick DL, Lowe TM, Stolc V, et al. (2012) ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases.

Environ Microbiol. 14, 1635–45

67

Dans le document UNIVERSITE MONTPELLIER (Page 60-67)

Documents relatifs