• Aucun résultat trouvé

CHAPITRE 5 : Conclusion générale, bilan & perspectives

4. Q UELQUES PERSPECTIVES

La caractérisation moléculaire d’un complexe d’espèces ne peut être exhaustive, ne serait-ce que par les difficultés d’échantillonnage. La situation sécuritaire déjà délicate, ne fait que s’accroître au Mexique depuis une dizaine d’années et ne permet pas pour l’heure, de se rendre sans crainte dans les zones frontalières avec les Etats-Unis (Etats du Nord, dans lesquels on retrouve L. montanus ssp. glabrior et L. montanus ssp. montesii) et avec le Guatemala (Etats du Chiapas, dans lequel on retrouve L. kellermanianus et L. montanus var. austrovolcanicus). Néanmoins, l’inclusion de ces taxons du complexe L. montanus associée à un échantillonnage parmi des espèces moins étroitement liées comme les espèces pérennes des Rocheuses (e.g. L.

lepidus et L. albifrons) permettraient de calibrer davantage la variation génétique et

phénotypique à l’intérieur de L. montanus. Sans nul doute, ce plus large échantillonnage permettrait de tester l’hypothèse de monophylie du complexe avec robustesse. Au vu de nos résultats, il semblerait que l’hypothèse monophylétique soit privilégiée, mais l’inclusion de l’ensemble des taxons L. montanus et d’espèces externes plus éloignées dans les analyses apporterait une réponse plus claire.

Malgré un postulat de départ clairement axé sur le manque de résolution des caractères morphologiques dans la détermination des taxons du complexe L. montanus, il reste essentiel de combiner aux patrons moléculaires d’autres types de données parmi lesquelles les préférences écologiques et les caractères morphologiques. En effet, la récente prolifération des études portant sur des complexes d’espèces de plantes ou d’autres groupes d’organismes est généralement basée sur la découverte de différenciation génétique basée sur des données moléculaires et sur des données morphologiques et écologiques. Ainsi, le choix restreint de traits morphologiques « objectifs » apporterait des éléments corroboratifs aux données génétiques

133

pour clarifier les relations de parenté à l’intérieur du complexe. Plutôt que des données strictement métriques (peu recommandables dans les études populationnelles ou à faible échelle taxinomique), la conception de matrices morphologiques basées sur des rapports de variables morphométriques semble mieux adaptée, afin d’éviter les problèmes d’analyse et de statistiques liés à l’effet taille. Il faudrait distinguer les vraies différences quantitatives (divergence et singularité morphologique) des fausses différences (notamment basées sur des adaptations locales aux conditions abiotiques générant par exemple des tailles plus modestes en haute altitude).

La collecte de données écologiques, notamment autour des préférences pédologiques et édaphologiques de chaque population et taxon, fournirait des variables supplémentaires qui complèteraient les variables bioclimatiques nécessaires à la modélisation des distributions de niches. Assez peu utilisés, les tests d’identité de niches sont fiables pour savoir s’il y a ou non, chevauchement des préférences écologiques. Etant donné que les modèles actuels de distribution de niches ne font aucune hypothèse biologique concernant l’utilisation de micro- habitats ou l’existence d’interactions entre taxons, des auteurs20 ont récemment proposé une approche mathématique qui note la similarité de niches de 0 (pas de chevauchement de niches) à 1 (chevauchement complet). Ce type de test semble tout à fait adapté à l’échelle populationnelle et permettrait de confirmer l’absence de spéciation écologique chez L. montanus avec beaucoup plus de précision.

Un échantillonnage plus dense requiert de fait, une plus grande connaissance des marqueurs moléculaires utilisés, tant pour éviter un poids trop important des homoplasies que pour éviter des effets d’incongruence liés à la saturation des séquences utilisées. L’ajout d’espèces moins apparentées, pour tester notamment l’hypothèse monophylétique, devra être fait sous condition de vérifier l’état de saturation des marqueurs utilisés. Lorsque deux sites de deux taxons portent le même nucléotide, il n’est pas possible a priori de savoir s’il y a eu 0, 2 ou plus de mutations dans l’histoire de cette séquence. Il n’est pas possible également de déterminer si l’identité de séquence est le fruit d’une convergence (c’est-à-dire une succession de mutations qui provoque un retour à l’état initial, générant un jeu de données qualifié de « saturé ») ou si la séquence demeure inchangée. Le phénomène de saturation, qui peut se calculer en comparant le nombre de différences observées (inférées par les modèles analytiques choisis) et le nombre réel de mutations : plus la pente de la courbe est faible, plus le niveau de saturation est important21.

20 Voir les travaux conduits par Warren et al. (2008).

21 Plus en détail, le taux de saturation apparaît comme étant généralement plus important sur le troisième nucléotide

des codons (une pente moyenne de 0.16), les deux premières positions étant moins sujettes à des substitutions multiples (pente moyenne de 0.43) (Jeffroy et al., 2006).

135

137

R

EFERENCES BIBLIOGRAPHIQUES

Aguirre-Planter, E., Jaramillo-Correa, J.P., Gómez-Acevedo, S., Khasa, D.P., Bousquet, J., Eguiarte, L.E., 2012. Phylogeny, diversification rates and species boundaries of Mesoamerican firs (Abies, Pinaceae) in a genus-wide context. Molecular Phylogenetics and Evolution 62, 263-274.

Aïnouche, A.K., Bayer, R.J., 2000. Genetic evidence supports the new Anatolian lupine accession,

Lupinus anatolicus, as an Old World “rough-seeded” lupine (section Scabrispermae) related to L. pilosus. Folia Geobotanica 35, 83-95.

Aïnouche, A.K., Bayer, R.J., 2003. Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on Internal Transcribed Spacer sequences (ITS) of nuclear ribosomal DNA. American Journal of Botany 86, 590-607.

Aïnouche, M.L., Baumel, A., Salmon, A., Yannic, G., 2003. Hybridization, polyploidy and speciation in

Spartina (Poaceae). New Phytologist 161, 165-172.

Aïnouche, A., Bayer, R.J., Misset, M.T., 2004. Molecular phylogeny, diversification and character evolution in Lupinus (Fabaceae) with special attention to Mediterranean and African lupines. Plant Systematics and Evolution 246, 211-222.

Albach, D.C., Montserrat Martinez-Ortega, M., Fischer, M.A., Chase, M.W., 2004. A new classification of the tribe Veroniceae – problems and a possible solution. Taxon 53, 429-452.

Albach, D.C., Utteridge, T., Wagstaff, S.J., 2005. Origin of Veroniceae (Plantaginaceae, formerly Scophulariaceae) on New Guinea. Systematic Botany 30, 412-423.

Archibald, J.K., Wolfe, A.D., Johnson, S.D., 2004. Hybridization and gene flow between a day- and night-flowering species of Zaluzianskya (Scrophulariaceae s.s., tribe Manuleeae). American Journal of Botany 91, 1333-1344.

Archibald, J.K., Mort, M.E., Crawford, D.J., Santos-Guerra, A., 2006. Evolutionary relationships within recently radiated taxa: comments on methodology and analysis of inter-simple sequence repeat data and other hypervariable, dominant markers. Taxon 55, 747-756.

Avise, J.C., 1989. Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43, 1192-1208.

Avise, J.C., 2000. Phylogeography: the history and formation of species. Harvard University Press, Cambridge.

Balakirev, E.S., Ayala, F.J., 2003. Pseudogenes: are they ‘junk’ or functional DNA? Annual Review of Genetics 37, 123-151.

Bardon, L., Chamagne, J., Dexter, K.G., Sothers, C.A., Prance, G.T., Chave, J., 2012. Origin and evolution of Chrysobalanaceae: insights into the evolution of plants in the Neotropics. Botanical Journal of the Linnean Society 171, 19-37.

138

Bell, C.D., Donoghue, M.J., 2005. Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Organisms, Diversity & Evolution 5, 147-159. Bendich, A.J., 2004. Circular chloroplast chromosomes: the grand illusion. The Plant Cell 16, 1661-

1666.

Bermúdez-Torres, K., Herrera, J. M., Figueroa Brito, R., Wink, M., Legal, L., 2009. Activity of quinolizidine alkaloids from three Mexican Lupinus against the lepidopteran crop pest

Spodoptera frugiperda. Biocontrol 54, 459-466.

Biémont, C., Vieira, C., 2006. Genetics: Junk DNA as an evolutionary force. Nature 443, 521-524. Blondel, J., 1995. Biogéographie : Approche écologique et évolutive. Masson, Paris.

Bornet, B., Branchard, M., 2001. Nonanchored Inter Simple Sequence Repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Molecular Biology Reporter 19, 209-215.

Braatne, J.H., Bliss, L.C., 1999. Comparative physiological ecology of lupines colonizing early successional habitats on Mount St. Helens. Ecology 80, 891-907.

Brambilla, M., Janni, O., Guidali, F., Sorace, A., 2008. Song perception among incipient species as a mechanism for reproductive isolation. Journal of Evolutionary Biology 21, 651-657.

Bryson, R.W., Garcia-Vazquez, U.O., Riddle, B.R., 2011. Relative roles of Neogene vicariance and Quaternary climate change on the historical diversification of bunchgrass lizards (Sceloporus

scalaris group) in Mexico. Molecular Phylogenetics and Evolution 62, 447-457.

Bryson, R.W., Riddle, B.R., 2012. Tracing the origins of widespread highland species: a case of Neogene diversification across the Mexican sierras in an endemic lizard. Biological Journal of the Linnean Society 105, 382-394.

Camacho, F.J., Liston, A., 2001. Population structure and genetic diversity of Botrychium pumicola (Ophioglossaceae) based on Inter-Simple Sequence Repeats (ISSR). American Journal of Botany 88, 1065-1070.

Carey, D.B., Wink, M., 1994. Elevational variation of Quinolizidine alkaloid contents in a lupine (Lupinus

argenteus) of the Rocky Mountains. Journal of Chemical Ecology 20, 849-857.

Carlquist, S., Baldwin, B.G., Carr, G. (Eds.), 2003. Tarweeds and silverswords. Missouri Botanical Garden Press, St. Louis.

Chandler, G.T., Bayer, R.J., Crisp, M.D., 2001. A molecular phylogeny of the endemic Australian genus

Gastrolobium (Fabaceae: Mirbelieae) and allied genera using chloroplast and nuclear markers.

American Journal of Botany 88, 1675-1687.

Citerne, H.L., Toby Pennington, R., Cronk, Q.C.B., 2006. An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proceedings of the National Academy of Sciences 103, 12017-12020.

Comes, H.P., Kadereit, J.W., 1998. The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science 3, 432-438.

139

Corona, A.M., Morrone, J.J., 2005. Track analysis of the species of Lampetis (Spinthoptera) Casey, 1909 (Coleoptera: Buprestidae) in North America, Central America, and the West Indies. Carribean Journal of Science 41, 37-41.

Crawford, D.J., Mort, M.E., 2004. Single-locus molecular markers for inferring relationships at lower taxonomic levels: observations and comments. Taxon 53, 631-635.

Culley, T.M., Wolfe, A.D., 2001. Population genetic structure of the cleistogamous plant species Viola

pubescens Aiton (Violaceae), as indicated by allozyme and ISSR molecular markers. Heredity 86,

545-556.

David Archibald, J., Deutschman, H., 2001. Quantitative analysis of the timing of the origin and diversification of extant placental orders. Journal of Mammalian Evolution 8, 107-124.

Dawkins, R., 1976. The selfish gene. Oxford University Press, New York.

Delgado, P., Salas-Lizana, R., Vazquez-Lobo, A., Wegier, A., Anzidei, M., Alvarez-Buylla, E.R., Vendramin, G.G., Piñero, D., 2007. Introgressive hybridization in Pinus montezumae Lamb and

Pinus pseudostrobus Lindl. (Pinaceae): morphological and molecular (cpSSR) evidence.

International Journal of Plant Sciences 168, 861-875.

del Moral, R., Rozzell, L.R., 2005. Long-term effects on Lupinus Lepidus on vegetation dynamics at Mount St. Helens. Plant Ecology 181, 203-215.

Dunn, D.B., 1971. A case of long range dispersal and rapid speciation in Lupinus. Transactions of the Missouri Academy of Science 5, 26-38.

Dunn, D.B., 1972. Lupinus mexicanus Cerv. ex Lag. Rhodora 74, 489-494.

Dunn, D.B., Harmon, W.E., 1977. The Lupinus montanus complex of Mexico and Central America. Annals of the Missouri Botanical Garden 64, 340-365.

Dunn, D.B., 1984. Cytotaxonomy and distribution of the New World lupin species in Proceedings of the Third International Lupin Conference. La Rochelle, France, p. 67-85.

Drummond, C.S., Hamilton, M.B., 2007. Hierarchical components of genetic variation at a species boundary: population structure in two sympatric varieties of Lupinus microcarpus (Leguminosae). Molecular Ecology 16, 753-769.

Drummond, C.S., 2008. Diversification of Lupinus (Leguminosae) in the western New World: derived evolution of perennial life history and colonization of montane habitats. Molecular Phylogenetics and Evolution 48, 408-421.

Drummond C.S., Eastwood, R.J., Miotto, S.T.S., Hughes, C., 2012. Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovations with incomplete taxon sampling. Systematic Biology 61, 443-460.

Eastwood, R.J., Drummond, C.S., Schifino-Wittmann, M.T., Hughes, C.E., 2008. Diversity and evolutionary history of lupins – insights from new phylogenies in: Palta, J.A., Berger, J.B. (Eds.), Proceedings of the 12th International Lupin Conference – Lupins for health and wealth. Fremantle, Australia, p. 346-354.

140

Escaravage, N., Cambecèdes, J., Largier, G., Pornon, A., 2011. Conservation of the rare Pyreneo- Cantabrian endemic Aster pyrenaeus (Asteraceae). AoB PLANTS 2011, plr029 doi: 10.1093/aobpla/plr029.

Ferrusquía-Villafranca, I., 1993. Geology of Mexico: a synopsis. Oxford University Press, Oxford. Ferrusquía-Villafranca, I., 1998. Geología de México: Una sinopsis, in: Ramamoorty, T.P., Bye, R., Lot,

A., Fa, J. (Eds.), Diversidad Biológica de México: Orígenes y Distribución. Instituto de Biología, UNAM, México, p. 3-108. Foote, M., 1997. Estimating taxonomic durations and preservation probability. Paleobiology 23, 278-300.

Fryer, G., Iles, T.D., 1972. The cichlid fishes of the great lakes of Africa: their biology and evolution. Oliver & Boyd, Edinburgh.

Fuentes, E., Planchuelo, A.M., 2000. Wild lupins as pioneers on Riverside sand Banks in: van Santen, E., Wink, M., Weissmann, S., Römer, P. (Eds.), Lupin, an ancient crop for the new millennium. Proceedings of the 9th International Lupin Conference, Klink, Germany, p. 316-319.

Garriga, M., Parra, P.A., Caligari, P.D.S., Retamales, J.B., Carrasco, B.A., Lobos, G.A., Garcia-Gonzales, R., 2013. Application of inter-simple sequence repeats relative to simple sequence repeats as a molecular marker system for indexing blueberry cultivars. Canadian Journal of Plant Science 93, 913-921.

Ge, X.J., Yu, Y.Y., Yuan, Y.M., Huang, H.W., Yan, C., 2005. Genetic diversity and geographic differentiation in endangered Ammopiptanthus (Leguminosae) populations in desert regions of northwest China as revealed by ISSR analysis. Annals of Botany London 95, 843-851.

Givnish, T.J., Sytsma, K.J., Smith, J.F., Hahn, W.S., 1995. Molecular evolution, adaptive radiation, and geographic speciation in Cyanea (Campanulaceae, Lobelioideae) in: Wagner, W.L., Funk, V. (Eds.), Hawaiian biogeography: Evolution on a hot spot archipelago. Smithsonian Institution Press, Washington D.C., p. 288-337.

Givnish, T.J., 1997. Adaptive radiation and molecular systematics: Aims and conceptual issues in: Givnish, T.J., Sytsma, K.J. (Eds.), Molecular evolution and adaptive radiation. Cambridge University Press, New York, p. 1-54.

Givnish, T.J., Millam, K.C., Theim, T.T., Mast, A.R., Patterson, T.B., Hipp, A.L., Henss, J.M., Smith, J.F., Wood, K.R., Sytsma, K.J., 2009. Origin, adaptive radiation, and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proceedings of the Royal Society B 276, 407-416.

Givnish, T.J., 2010. Ecology of plant speciation. Taxon 59, 1326-1366.

Gong, Y.B., Huang, S.Q., 2009. Floral symmetry: pollinator-mediated stabilizing selection on flower size in bilateral species. Proceedings of the Royal Society B. 276, 4013-4020.

Gonzalez-Rodriguez, A., Bain, J.F., Golden, J.L., Oyama, K., 2004. Chloroplast DNA variation in the

Quercus affinis-Q. laurina complex in Mexico: geographical structure and associations with

nuclear and morphological variation. Molecular Ecology 13, 3467-3476.

141

Hayakawa, H., Hamachi, H., Matsuyama, K., Muramatsu, Y., Minamiya, Y., Ito, K., Yokoyama, J., Fukuda, T., 2011. Interspecific hybridization between Arisaema sikokianum and A. serratum (Araceae) confirmed through nuclear and chloroplast DNA comparisons. American Journal of Plant Sciences 2, 521-526.

Heinze, B., 2007. A database of PCR primers for the chloroplast genomes of higher plants. Plant Methods 3, 4.

Hoskuldsson, A., Robin, C., 1993. Late Pleistocene to Holocene eruptive activity of Pico de Orizaba, Eastern Mexico. Bulletin of Volcanology 55, 571-587.

Huang, D.I., Friar, E.A., 2011. Relationships in the Lupinus albifrons species complex (Fabaceae) based on two highly variable chloroplast regions. Systematic Botany 36, 362-370.

Hubby, J.L., Lewontin, R.C., 1966. A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54, 577-594.

Hughes, A.L., 1999. Adaptive evolution of genes and genomes. Oxford University Press, Oxford. Hughes, C., Eastwood, R., 2006. Island radiation on a continental scale: exceptional rates of plant

diversification after uplift of the Andes. Proceedings of the National Academy of Sciences 103, 10334-10339.

Jeffroy, O., Brinkmann, H., Delsuc, F., Philippe, H., 2006. Phylogenomics: the beginning of incongruence? Trends in Genetics 22, 225-231.

Jiménez, J.F., Güemes, J., Sánchez-Gómez, P., Rosselló, J.A., 2005. Isolated populations or isolated taxa ? A case study in narrowly-distributed snapdragons (Antirrinhum sect. Sempervirentia) using RAPD markers. Plant Systematics and Evolution 252, 139-152.

Johanesson, K., 2001. Parallel speciation: a key to sympatric divergence. Trends in Ecology & Evolution 16, 148-153.

Kadereit, G., Mucina, L., Freitag, H., 2006. Phylogeny of Salicornioideae (Chenopodiaceae): diversification, biogeography, and evolutionary trends in leaf and flower morphology. Taxon 55, 617-642.

Kasprzak, A., Šafár, J., Janda, J., Doležel, J., Wolko, B., Naganowska, B., 2006. The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.). Cellular & Molecular Biology Letters 11, 396-407.

Käss, E., Wink, M., 1997. Molecular phylogeny and phylogeography of Lupinus (Leguminosae) inferred from nucleotide sequences of the rbcL gene and ITS 1+2 regions of rDNA. Plant Systematics and Evolution 208, 139-167.

Kim, S.C., Mc Gowen, M.R., Lubinsky, P., Barber, J.C., Mort, M.E., Santos-Guerra, A., 2008. Timing and tempo of early and successive adaptative radiations in Macaronesia. PloS ONE3, e2139.

142

Kocher, T.D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5, 288-298.

Koopman, W.J.M., 2005. Phylogenetic signal in AFLP data sets. Systematic Biology 54, 197-217. Kozak, K.H., Wiens, J.J., 2006. Does niche conservatism promote speciation? A case study in North-

American salamanders. Evolution 60, 2604-2621.

Leslie, A.B., Beaulieu, J.M., Rai, H.S., Crane, P.R., Donoghue, M.J., Mathews, S., 2012. Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences 109, 16217-16221.

Levin, D.A., 2002. The role of chromosomal change in plant evolution. Oxford University Press, Oxford.

Lewis, G., Schrire, B., Mackinder, B., Lock, M., 2005. Legumes of the world. Richmond, U.K.: Royal Botanic Garden, Kew.

Li, W.H., 1997. Molecular Evolution. Sinauer Associates, Sunderland, MA.

Li, M., Wunder, J., Bissoli, G., Scarponi, E., Gazzani, S., Barbaro, E., Saedler, H., Varotto, C., 2008. Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 24, 727-745.

Li, L.F., Häkkinen, M., Yuan, Y.M., Hao, G., Ge, X.J., 2010. Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa. Molecular Phylogenetics and Evolution 57, 1-10.

Liu, P.L., Wan, Q., Guo, Y.P., Yang, J., Rao, G.Y., 2012. Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PlosOne 7, e48970. Luan, S., Chiang, T.Y., Gong, X., 2006. High genetic diversity vs. low genetic differentiation in Nouelia

insignis (Asteraceae), a narrowly distributed and endemic species in China, revealed by ISSR

fingerprinting. Annals of Botany London 98, 583-589.

Loveless, M.D., Hamrick, J.L., 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15, 65-95.

LPGW, 2013. Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62, 217-248.

Macias, J.L., 2005. Geología e historia eruptiva de algunos de los grandes volcanes activos de México. Boletín de la Sociedad Geológica Mexicana 3, 379-424.

Magallón, S., Sanderson, M.J., 2001. Absolute diversification rates in angiosperm clades. Evolution 55, 1762-1780.

Magnússon, B., Magnússon, S.H., Sigurdsson, B.D., 2004. Plant succession in areas colonized by the introduced Nootka lupin in Iceland in: van Santen, E., Hill, G.D. (Eds.), Wild and cultivated lupins from the tropics to the poles. Proceedings of the 10th International Lupin Conference, Canterbury, New Zealand, p. 19-24.

143

Mahé, F., Pascual, H., Coriton, O., Huteau, V., Navarro Perris, A., Misset, M.T., Aïnouche, A., 2011. New data and phylogenetic placement of the enigmatic Old World lupin: Lupinus mariae-josephi H. Pascual. Genetic Resources and Crop Evolution 58, 101-114.

Marshall, C.J., Liebherr, J.K., 2000. Cladistic biogeography of the Mexican transition zone. Journal of Biogeography 27, 203-216.

Matos, J.A., Schaal, B.A., 2000. Chloroplast evolution in the Pinus montezumae complex: a coalescent approach to hybridization. Evolution 54, 1218-1233.

Maynard Smith, J., Haigh, J., 1974. The hitch-hiking effect of a favourable gene. Genetical Research 23, 23-35.

Mayr, E., 1940. Speciation phenomena in birds. The American Naturalist 74, 249-278.

Meimberg, H., Abele, T., Bräuchler, C., McKay, J.K., Pérez de Paz, P., Heubl, G., 2006. Molecular evidence for adaptive radiation Micromeria Benth. (Lamiaceae) on the Canary Islands as inferred from chloroplast and nuclear DNA sequences and ISSR fingerprint data. Molecular Phylogenetics and Evolution 41, 566-578.

Meloni, M., Perini, D., Filigheddu, R., Binelli, G. 2006. Genetic variation in five Mediterranean populations of Juniperus phoenicea as revealed by Inter-Simple Sequence Repeat (ISSR) markers. Annals of Botany London 97, 299-304.

Miao, H.B., Chen, F.D., Zhao, H.B., Fang, W.M., Shi, L.M., 2008. Genetic diversity and construction of fingerprinting of Chrysanthemum cultivars by ISSR markers. Scientia Agriculura Sinica 41.

Minobe, S., Fukui, S., Saiki, R., Kajita, T., Changtragoon, S., Shukor, N.A.A., Latiff, A., Ramesh, B.R., Koizumi, O., Yamazaki, T., 2010. Highly differentiated population structure of a Mangrove species, Bruguiera gymnorhiza (Rhizophoraceae) revealed by one nuclear GapCp and one chloroplast intergenic spacer trnF-trnL. Conservation Genetics 11, 301-310.

Moreno-Letelier, A., Piñero, D., 2009. Phylogeographic structure of Pinus strobiformis Engelm. Across the Chihuahuan Desert filter-barrier. Journal of Biogeography 36, 121-131.

Mort, M.E., Crawford, D.J., Santos-Guerra, A., Jansen, R.K., 2003. Relationships among the Macaronesian members of Tolpis (Asteraceae: Lactuceae). American Journal of Botany 89, 518- 526.

Møller, A.P., Eriksson, M., 1995. Pollinator preference for symmetrical flowers and sexual selection in plants. Oikos 73, 15-22.

Nagaraja, Nagaraju, J., Ranganath, H.A., 2004. Molecular phylogeny of the nasuta subgroup of

Drosophila based on 12S rRNA, 16S rRNA and Col mitochondrial genes, RAPD and ISSR

polymorphisms. Genes & Genetic Systems 79, 293-299.

Nagaraju, J., Kathirvel, M., Kumar, R.R., Siddiq, E.A., Hasnain, S.E., 2002. Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proceedings of the National Academy of Sciences 99, 5836-5841.

144

Nan, P., Shi, S., Peng, S., Tian, C., Zhong, Y. 2003. Genetic diversity in Primula obconica (Primulaceae) from Central and South-west China as revealed by ISSR markers. Annals of Botany London 91, 329-333.

Neophytou, C., Dounavi, A., Fink, S., Aravanopoulos, F.A., 2011. Interfertile oaks in an island environment: high nuclear genetic differentiation and high degree of chloroplast DNA sharing between Q. alnifolia and Q. coccifera in Cyprus. A multipopulation study. European Journal of Forestry Research 130, 543-555.

Ohno, S., 1972. So much ‘junk’ DNA in our genome. Brookhaven Symposia in Biology 23, 366-370. Orgel, L.E., Crick, F.H.C., 1980. Selfish DNA: the ultimate parasite. Nature 284, 604-607.

Ornelas, J.F., Ruiz-Sanchez, E., Sosa, V., 2010. Phylogeography of Podocarpus matudae (Podocarpaceae): pre-Quaternary relicts in northern Mesoamerican cloud forests. Journal of Biogeography 37, 2384-2396.

Palmer, J.D., Thompson, W.F., 1982. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence sis lost. Cell 29, 537-550.

Palmer, J.D., 1985. Comparative organization of chloroplast genomes. Annual Review of Genetics 19, 325-354.

Pannell, J.R., Charlesworth, B., 2000. Effects of metapopulation processes on measures of genetic diversity. Philosophical Transactions of the Royal Society of London Series B 355, 1851-1864. Pascual, H., 2004. Lupinus mariae-josephi (Fabaceae), nueva y sorprendente especie descubierta en

España. Anales del Jardín Botánico de Madrid 61, 69-72.

Peterson, A.T., Soberón, J., Sánchez-Cordero, V., 1999. Conservatism of ecological niches in evolutionary time. Science 285, 1265-1267.

Planchuelo, A.M., Dunn, D.B., 1984. The simple leaved lupines and their relatives in Argentina. Annals of the Missouri Botanical Garden 71, 92-103.

Plitmann, U., Heyn, C.C., 1984. Old World Lupinus: Taxonomy, evolutionary relationships and links with New World species in Proceedings of the Third International Lupin Conference. La Rochelle, France, p. 55-66.

Poe, S., Wiens, J.J., 2000. Character selection and the methodology of morphological phylogenetics in: Wiens, J.J. (Ed.), Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington D.C., p. 20-36.

Pradeep Reddy, M., Sarla, N., Siddiq, E.A., 2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128, 9-17.

Przyborowski, J.A., Weeden, N.F., 2001. RAPD-based assessment of genetic similarity and distance between Lupinus species in section Albus. Journal of Applied Genetics 42, 425-433.

Pyrame de Candolle, A.P., 1813. Théorie élémentaire de la botanique ou exposition des principes de la classification naturelle et de l’art de décrire et d’étudier les végétaux. Déterville, Paris.

145

Qiu, Y.X., Luo, Y.P., Comes, H.P., Ouyang, Z.Q., Fu, C.X., 2007. Population genetic diversity and structure of Dipteronia dyerana (Sapindaceae), a rare endemic from Yunnan province, China,

Documents relatifs