• Aucun résultat trouvé

4.3 Symmetric product of a curve

4.3.3 Transform of the tautological sheaf of a line bundle

Corollary 4.3.7 In characteristic0,σL[n]is poly-stable. In any characteristic, it is semistable.

Proof.

The first assertion follows from remark 4.3.1. To prove the second assertion, we use the fact that a maximal semistable subsheaf isSn-linearized, and then follow the proof of proposition 4.3.6.

4.3.3 Transform of the tautological sheaf of a line bundle

In this paragraph we want to use the proof of Ein and Lazarsfeld of the stability ofMLfor line bundles (cf. [EL92]), to show that when degL>2g+nthe total transform

NL =ML[n] =ker(H0(C,L)⊗ OSnCL[n]) is stable.

In [EL92] the stability of the Picard bundle is shown proving the stability of a total transform, we recall their argument, as it is useful for a better under-standing of the stability ofNL.

4.3. SYMMETRIC PRODUCT OF A CURVE 59 Consider a pointed smooth curve(C,x0)of genus g > 1, for alldthere is a Picard scheme Picd(C), which is a fine moduli scheme for line bundles of degreedonC. And a universal sheafU onC×Picd(C)such thatU|C×ξ = Lξ for all points ξ ∈ Picd(C), representing a line bundle Lξ, andU|x

0×Picd(C) = OPicd(C).

The Picard sheafPdis the push forward ofUto Picd(C). Whend>2g−1, Pdis a vector bundle, whose fiber upon a pointξ∈Picd(C)isH0(C,Lξ).

The Picard schemes are all isomorphic, an isomorphism Picd(C)−→˜ Picd+1(C) is given by the mapL7→L⊗ OC(x0). In degree 0 the Picard scheme is the Jaco-bian of the curveH1(C,OC)/H1(C,Z), and is smooth projective of dimension g.

The Picard schemes Picd(C)have a canonical polarization. It is given by the theta divisorΘ⊂ Picd(C), which is the ample divisor represented by the image of the map

Cg−1→Picg−1(C),(x1, . . . ,xg−1)7→ OC(x1+· · ·+xg−1)

in Picg−1(C). By the isomorphisms above it corresponds to ample divisors on all Picard schemes.

Given a line bundleA∈Picd(C), we can consider the applications vrA:Cr→Picd−r(C), (x1, . . . ,xr)7→A⊗ OC(−x1− · · · −xr). Then by Poincar´e’s formula, whenr<gthe class of the image is

Wr := [Θ]g−r/(g−r)!

in particular, the class of the imagev1A(C)is[Θ]g−1/(g−1)!.

Hence to prove stability of Pd with respect toΘ, i.e. to show that for all subsheavesF,→Pdwe have

c1(F).[Θ]g−1

rk(F) < c1(Pd).[Θ]g−1 rk(Pd) ,

it is sufficient to show that(v1A)Pdis stable for anA∈Picd+1(C), and then ap-ply theorem 1.2.25. And this is done, whend>2g, by showing that(v1A)Pd= MA⊗ OC(x0), and that the transformMAis stable.

Remark 4.3.8 To show that the stability of Pdis implied by the stability of a curve whose class is a multiple of [Θ]g−1, it is not used in [EL92] a restric-tion result like theorem 1.2.25 but rather the generality of the line bundleA∈ Picd+1(C).

Remark 4.3.9 Actually Ein and Lazarsfeld show something stronger than sta-bility ofML, they prove thatMLis cohomologically stable, but we will not use such concept.

We can use the same argument to show the stability of the total transform NLof a tautological bundleL[n]onSnC.

Theorem 4.3.10 Let C be a smooth curve of genus g >2, and let L be a line bundle on C of degree d > 2g+n. Then NL is a stable bundle on SnC with respect to the polarizationH.˜

To prove this we show that for all (x1, . . . ,xn−1) ∈ Cn−1 the restriction NL|x1+···+xn1+Cis stable, and then use theorem 1.2.25

Proof.

We want to show that for all(x1, . . . ,xn−1)∈Cn−1the restrictionNL|x1+···+xn1+C is stable.

To prove it we could just use the restriction to x1+· · ·+xn−1+C of the exact sequence

0→π1∗(π2L⊗ O(−Z))→H0(C,L)⊗ OS2C→L[n]→0 ,

but it seems more clarifying if we look at our total transform as the pull back of the Picard bundle via by the map

vnL :SnC→Picd−n(C), (x1, . . . ,xn)7→L⊗ OC(−x1− · · · −xn). Claim: (vnL)(Pd−n) =NfL⊗ OSnC(x0+Sn−1C).

From the claim we deduce thatNL|x1+···+xn1+CisML(−x1−···−xn1)tensorized by a line bundle, hence it is stable by Ein and Lazarsfeld results, or by Butler’s theorem (3.1.4).

To prove the claim, we can observe that(vnL)(Pd−n) = π1∗((vnL×1C)U) by the theorem on cohomology and base change. Then use see-saw principle to show that

(vnL×1C)U =π2L⊗ OSnC×C(−Z)⊗π1OSnC(x0+Sn−1C),

where π1 andπ2are the two naturale projections of SnC×C, p1 is the pro-jection of Picd−n(C)×C to the first factor. And U is the universal sheaf on Picd−n(C)×C.

Bibliography

[Bea03] Arnaud Beauville,Some stable vector bundles with reducible theta divisor, Manuscripta Math.110(2003), no. 3, 343–349.

[Bog93] Fedor A. Bogomolov,Stability of vector bundles on surfaces and curves, Einstein metrics and Yang-Mills connections (Sanda, 1990), Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993, pp. 35–49.

[BS58] Armand Borel and Jean-Pierre Serre, Le th´eor`eme de Riemann-Roch, Bull. Soc. Math. France86(1958), 97–136.

[BS91] M. Beltrametti and A. J. Sommese,Zero cycles and kth order embeddings of smooth projective surfaces, Problems in the theory of surfaces and their classification (Cortona, 1988), Sympos. Math., XXXII, Academic Press, London, 1991, With an appendix by Lothar G ¨ottsche, pp. 33–

48.

[But94] David C. Butler,Normal generation of vector bundles over a curve, J. Dif-ferential Geom.39(1994), no. 1, 1–34.

[BV04] Arnaud Beauville and Claire Voisin,On the Chow ring of a K3surface, J. Algebraic Geom.13(2004), no. 3, 417–426.

[Che58] Claude Chevalley, Anneaux de Chow et applications, S´eminaire C.

Chevalley : 2e ann´ee, ´Ecole Normale Sup´erieure, Secr´etariat de math´ematique, Paris, 1958.

[D˘an99] Gent¸iana D˘anil˘a,Formule de verlinde et dualt´e ´etrange sur le plan projec-tif, Ph.D. thesis, Universit´e de Paris 7, 1999.

[D˘an01] ,Sur la cohomologie d’un fibr´e tautologique sur le sch´ema de Hilbert d’une surface, J. Algebraic Geom.10(2001), no. 2, 247–280.

[D˘an04] , Sur la cohomologie de la puissance sym´etrique du fibr´e tau-tologique sur le sch´ema de Hilbert ponctuel d’une surface, J. Algebraic Geom.13(2004), no. 1, 81–113.

61

[Don85] S. K. Donaldson,Anti self-dual Yang-Mills connections over complex al-gebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50(1985), no. 1, 1–26.

[Don87] ,Infinite determinants, stable bundles and curvature, Duke Math.

J.54(1987), no. 1, 231–247.

[EL92] Lawrence Ein and Robert Lazarsfeld,Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves, Com-plex projective geometry (Trieste, 1989/Bergen, 1989), London Math.

Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 149–156.

[Fle84] Hubert Flenner,Restrictions of semistable bundles on projective varieties, Comment. Math. Helv.59(1984), no. 4, 635–650.

[Ful98] William Fulton,Intersection theory, second ed., Ergebnisse der Math-ematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Se-ries. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998.

[GH96] Lothar G ¨ottsche and Daniel Huybrechts, Hodge numbers of moduli spaces of stable bundles on K3surfaces, Internat. J. Math.7(1996), no. 3, 359–372.

[Gro58] Alexander Grothendieck, La th´eorie des classes de Chern, Bull. Soc.

Math. France86(1958), 137–154.

[Gro95] ,Techniques de construction et th´eor`emes d’existence en g´eom´etrie alg´ebrique. IV. Les sch´emas de Hilbert, S´eminaire Bourbaki, Vol. 6, Soc.

Math. France, Paris, 1995, pp. Exp. No. 221, 249–276.

[HL97] Daniel Huybrechts and Manfred Lehn,The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braun-schweig, 1997.

[Kle66] Steven L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2)84(1966), 293–344.

[Kle74] ,The transversality of a general translate, Compositio Math.28 (1974), 287–297.

[Kob87] Shoshichi Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ, 1987, Kan ˆo Memorial Lectures, 5.

[LP95] Joseph Le Potier,Fibr´es vectoriels sur les courbes alg´ebriques, Publica-tions Math´ematiques de l’Universit´e Paris 7—Denis Diderot [Mathe-matical Publications of the University of Paris 7—Denis Diderot], 35,

BIBLIOGRAPHY 63 Universit´e Paris 7—Denis Diderot U.F.R de Math´ematiques, Paris, 1995, With a chapter by Christoph Sorger.

[Mac03] Catriona Maclean, Quelques r´esultatas en th´eorie des d´eformations en g´eom´etrie alg´ebrique, Ph.D. thesis, Universit´e de Paris 6, 2003.

[Mer99] Vincent Mercat, Le probl`eme de Brill-Noether pour des fibr´es stables de petite pente, J. Reine Angew. Math.506(1999), 1–41.

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Re-sults in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994.

[MR82] V. B. Mehta and A. Ramanathan, Semistable sheaves on projective va-rieties and their restriction to curves, Math. Ann.258(1981/82), no. 3, 213–224.

[Mum68] D. Mumford,Rational equivalence of0-cycles on surfaces, J. Math. Kyoto Univ.9(1968), 195–204.

[NS65] M. S. Narasimhan and C. S. Seshadri,Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2)82(1965), 540–567.

[O’G96] Kieran G. O’Grady,Moduli of vector bundles on projective surfaces: some basic results, Invent. Math.123(1996), no. 1, 141–207.

[PR88] Kapil Paranjape and S. Ramanan, On the canonical ring of a curve, Algebraic geometry and commutative algebra, Vol. II, Kinokuniya, Tokyo, 1988, pp. 503–516.

[Roj80] A. A. Rojtman,The torsion of the group of0-cycles modulo rational equiv-alence, Ann. of Math. (2)111(1980), no. 3, 553–569.

[Sca05] Luca Scala,Cohomology of the hilbert scheme of points on a surface with values in representations of tautological bundles. Perturbations of the met-ric in seiberg-witten equations, Ph.D. thesis, Universit´e de Paris 7, 2005.

[UY86] K. Uhlenbeck and S.-T. Yau,On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math.39(1986), no. S, suppl., S257–S293.

[Voi06] Claire Voisin,On the chow ring of certain algebraic hyper-k¨ahler mani-folds, e-print:math.AG/0602400, February 2006.

Documents relatifs