• Aucun résultat trouvé

401 402

The FAB-garden toolbox is a holistic, process-oriented methodology and complements existing studies with 403

a new, transdisciplinary point of view. To be meaningful, several considerations are to be made when 404

adopting the approach in experiments. The time investment for action research and citizen science should 405

not be underestimated. Inadequate communication about citizen science aspects or research findings will 406

cause mistakes in data gathering and participants losing their motivation. The research team should carefully 407

consider the aims of the citizen science approach and consequently which monitoring tasks are assigned to 408

volunteers. Lakeman-Fraser et al. (2016) highlight the common trade-off between outreach goals and 409

rigorous scientific data in citizen science projects. Whereas some projects focus on large, solid datasets 410

(crowd sourcing), other projects are more process oriented (social learning). The BEL-Landscape case, and 411

more generally the FAB-garden toolbox, takes on the win-win approach for both rigorous data and social 412

learning (Lakeman-Fraser et al. 2016). In the BEL-landscape case, all tasks that ask expert knowledge are 413

performed by the principal investigator (arthropod trapping, sensor installation, pest identification, herbivory 414

estimation). Tasks that require no specific knowledge and can be clearly explained in guidelines, are assigned 415

to the volunteers (watering, weeding, harvest protocols). The principal researcher frequently visits the 416

individual FAB-gardens for the expert based monitoring and is therefore able to verify the practices of the 417

volunteers and provide feedback and explanations. In the BEL-Landscape observatory, volunteers are 418

nevertheless asked to observe and share their findings on prevalence and identification of pest species to 419

stimulate learning and enthusiasm. These participant observations are helpful for the principal investigator 420

who can consequently observe this through a standardized method. In any scientific approach that is process-421

oriented, and especially when balancing social learning and crowd-sourcing, the principal researcher takes a 422

non-traditional scientific role. Facilitation skills are needed to perform a role as knowledge broker between 423

all different land users to manage the participation process. It is required to involve partners with expertise 424

in this field of action research.

425

The number of FAB-gardens needs consideration because it reflects a trade-off in research objectives. More 426

gardens render more data, at a spatially larger extent. This will, however, decrease the level of volunteer 427

involvement per measurement point. In that case, only basic monitoring can be requested from volunteers 428

because this does not require intense follow up by the researchers (towards crowd sourcing). The latter, 429

however, diminishes the possibility to construct social theories on peoples’ opinions on FAB, because no 430

frequent interactions are maintained with participants. Even more, close involvement of a limited number of 431

volunteers ensures a trust-based relationship between the researcher and citizens. In our experience, this 432

engages volunteers to assemble at least the minimal asked dataset and alert the researchers if problems 433

occur. Besides the intensity of the monitoring, the number of FAB-gardens should be in line with the number 434

and type of landscape variables that will be used as explanatory variables (Pasher et al. 2013). In the BEL-435

Landscape case we sampled 40 FAB-gardens along uncorrelated gradients of high and low green SNH. Similar 436

sampling densities along a landscape gradient are also used in other studies. Hass et al. (2019) sampled with 437

introduced bumblebee colonies in two fields (maize and oil seed rape) in 20 landscapes of 1 X 1 km² along 438

uncorrelated gradients of compositional and configuration heterogeneity. Dainese et al. (2017) sampled 26 439

field margins (three margin types) along uncorrelated gradients of arable land cover and hedgerow cover in 440

a 1 km buffer. The advantage of sampling along a landscape gradient (Dainese et al. 2017; Hass et al. 2019) 441

compared to replicated sampling in contrasting landscapes (Holzschuh et al. 2007) is that nuances between 442

different landscape compositions can be better described.

443

Given the small (1 m²) size of the FAB-gardens, no absolute values for ES but only relative differences in 444

ecosystem indicators between FAB-gardens are observed, so as to optimize landscape scale management for 445

multifunctional ecosystem performance. This will deliver insights in the effectiveness of landscape 446

management for multifunctional ecosystem performance, but not on the efficiency or absolute values at field 447

scales. The small size allows the tool to easily fit in between fields and is therefore more acceptable for land 448

users to coexist with their current practices. The time necessary to manage the FAB-garden is rather low and 449

allows volunteers to focus on the individual plants to recognize plant specific pest species and flowering 450

processes. The small scale proves to be effective to get land users in touch with ES.

451

Thoughtful use of our social-ecological framework will deliver valuable new insights on improving the 452

effectiveness of FAB strengthening efforts in many rural areas. We therefore invite other research groups, 453

society organizations and policy makers to test our toolbox with FAB-gardens, or derivatives thereof, in many 454

distinct contexts. Through their social function of triggering interest, the FAB-gardens make knowledge 455

accessible for stakeholders who are to implement research findings and thereby increase the impact of 456

scientific work.

457

8. References

458

Albrecht, M., B. Schmid, Y. Hautier, and C. B. Müller. 2012. Diverse pollinator communities enhance plant 459

reproductive success. Proceedings of the Royal Society B: Biological Sciences 279: 4845–4852.

460

ALV. 2018. Landbouwgebruikspercelen (Agricultural land use parcels map).

461

Angelstam, P., M. Manton, M. Elbakidze, F. Sijtsma, M. Cristian, A. Noa, A. Pedro, B. Peter, et al. 2019. LTSER 462

platforms as a place-based transdisciplinary research infrastructure : learning landscape approach through 463

evaluation. Landscape Ecology 6: 1461–1484.

464

Barnaud, C., E. Corbera, R. Muradian, N. Salliou, C. Sirami, A. Vialatte, J. P. Choisis, N. Dendoncker, et al. 2018.

465

Ecosystem services, social interdependencies, and collective action: A conceptual framework. Ecology and 466

Society 23: 15.

467

Batáry, P., A. Báldi, D. Kleijn, and T. Tscharntke. 2011. Landscape-moderated biodiversity effects of agri-468

environmental management: a meta-analysis. Proceedings of the Royal Society of London B: Biological 469

Sciences 278: 1894–1902.

470

Batáry, P., L. V. Dicks, D. Kleijn, and W. J. Sutherland. 2015. The role of agri-environment schemes in 471

conservation and environmental management. Conservation Biology 29: 1006–1016.

472

Bianchi, F. J. J. A., V. Mikos, L. Brussaard, B. Delbaere, and M. M. Pulleman. 2013. Opportunities and 473

limitations for functional agrobiodiversity in the European context. Environmental Science and Policy 27: 223–

474

231.

475

Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, et al.

476

2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.

477

Chaplin-Kramer, R., M. E. O’Rourke, E. J. Blitzer, and C. Kremen. 2011. A meta-analysis of crop pest and natural 478

enemy response to landscape complexity. Ecology Letters 14: 922–932.

479

Creswell, J. W. 2009. Research design: qualitative, quantitative, and mixed methods approaches. 3rd ed.

480

Thousand Oaks: Sage.

481

Dainese, M., S. Montecchiari, T. Sitzia, M. Sigura, and L. Marini. 2017. High cover of hedgerows in the 482

landscape supports multiple ecosystem services in Mediterranean cereal fields. Journal of Applied Ecology 483

54: 380–388.

484

Dainese, M., E. A. Martin, M. A. Aizen, M. Albrecht, I. Bartomeus, R. Bommarco, L. G. Carvalheiro, R.

485

Chaplin-kramer, et al. 2019. A global synthesis reveals biodiversity-mediated benefits for crop production.

486

Science Advances 5: 1–13.

487

Dickinson, J. L., J. Shirk, D. Bonter, R. Bonney, R. L. Crain, J. Martin, T. Phillips, and K. Purcell. 2012. The current 488

state of citizen science as a tool for ecological research and public engagement. Frontiers in Ecology and the 489

Environment 10: 291–297.

490

van Dijk, W. F. A., A. M. Lokhorst, F. Berendse, and G. R. de Snoo. 2016. Factors underlying farmers’ intentions 491

to perform unsubsidised agri-environmental measures. Land Use Policy 59: 207–216.

492

Duffy, J. E., C. M. Godwin, and B. J. Cardinale. 2017. Biodiversity effects in the wild are common and as strong 493

as key drivers of productivity. Nature 549: 261–264.

494

ELN-FAB. 2012. Functional agrobiodiversity: Nature serving Europe’s farmers. Tilburg, the Netherlands.

495

Emmerson, M., M. B. Morales, J. J. Oñate, P. Batáry, F. Berendse, J. Liira, T. Aavik, I. Guerrero, et al. 2016.

496

How Agricultural Intensification Affects Biodiversity and Ecosystem Services. In Advances in Ecological 497

Research, ed. A. J. Dumbrell, R. L. Kordas, and G. Woodward, 55:43–97. Advances in Ecological Research.

498

Oxford: Academic Press.

499

Enqvist, J. P., M. Tengo, and Ö. Bodin. 2020. Are bottom-up approaches good for promoting social – ecological 500

fit in urban landscapes? Ambio 49: 49–61.

501

Gonthier, D. J., K. K. Ennis, S. Farinas, H.-Y. Hsieh, A. L. Iverson, P. Batáry, J. Rudolphi, T. Tscharntke, et al.

502

2014. Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal 503

Society of London B: Biological Sciences 281: 20141358.

504

Happe, A. K., F. Riesch, V. Rösch, R. Gallé, T. Tscharntke, and P. Batáry. 2018. Small-scale agricultural 505

landscapes and organic management support wild bee communities of cereal field boundaries. Agriculture, 506

Ecosystems and Environment 254: 92–98.

507

Hass, A. L., Y. Clough, L. Brachmann, P. Batáry, H. Behling, and T. Tscharntke. 2019. Maize-dominated 508

landscapes reduce bumblebee colony growth through pollen diversity loss. Journal of Applied Ecology 56:

509

294–304.

510

Herbst, C., S. Arnold-Schwandner, T. Meiners, M. K. Peters, C. Rothenwöhrer, J. Steckel, N. Wäschke, C.

511

Westphal, et al. 2017. Direct and indirect effects of agricultural intensification on a host-parasitoid system 512

on the ribwort plantain (Plantago lanceolata L.) in a landscape context. Landscape Ecology 32: 2015–2028.

513

van Herwaarden, G., H. Baas, J. M. P. Salazar, B. Pedroli, and I. Gotzman. 2017. International Conference on 514

Landscape Observatories. In UNISCAPE En-Route. Vol. 2.

515

Holzschuh, A., I. Steffan-Dewenter, D. Kleijn, and T. Tscharntke. 2007. Diversity of flower-visiting bees in 516

cereal fields: Effects of farming system, landscape composition and regional context. Journal of Applied 517

Ecology 44: 41–49.

518

Jackson, L. E., M. M. Pulleman, L. Brussaard, K. S. Bawa, G. G. Brown, I. M. Cardoso, P. C. de Ruiter, L. García-519

Barrios, et al. 2012. Social-ecological and regional adaptation of agrobiodiversity management across a global 520

set of research regions. Global Environmental Change 22: 623–639.

521

Jonsson, M., C. S. Straub, R. K. Didham, H. L. Buckley, B. S. Case, R. J. Hale, C. Gratton, and S. D. Wratten.

522

2015. Experimental evidence that the effectiveness of conservation biological control depends on landscape 523

complexity. Journal of Applied Ecology 52: 1274–1282.

524

Karp, D. S., R. Chaplin-Kramer, T. D. Meehan, E. A. Martin, F. DeClerck, H. Grab, C. Gratton, L. Hunt, et al.

525

2018. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition.

526

Proceedings of the National Academy of Sciences 115: 7863–7870.

527

Kerselaers, E., E. Rogge, E. Vanempten, L. Lauwers, and G. Van Huylenbroeck. 2013. Changing land use in the 528

countryside: Stakeholders’ perception of the ongoing rural planning processes in Flanders. Land Use Policy 529

32: 197–206.

530

Kleijn, D. 2013. Agrarisch natuurbeheer: wat kost het, wat levert het op en hoe kan het beter? De Levende 531

Natuur Maart: 51–55.

532

Kleijn, D., and W. J. Sutherland. 2003. How effective are European agri-environment schemes in conserving 533

and promoting biodiversity? Journal of Applied Ecology 40: 947–969.

534

Kleijn, D., F. Kohler, A. Báldi, P. Batáry, E. D. Concepción, Y. Clough, M. Díaz, D. Gabriel, et al. 2009. On the 535

relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society 536

B: Biological Sciences 276: 903–909.

537

Knop, E., E. D. Concepción, D. Kleijn, E. J. P. Marshall, J. Verhulst, D. Gabriel, A. Holzschuh, Y. Clough, et al.

538

2012. Interactive effects of landscape context constrain the effectiveness of local agri-environmental 539

management. Journal of Applied Ecology 49: 695–705.

540

Lakeman-Fraser, P., L. Gosling, A. J. Moffat, S. E. West, R. Fradera, L. Davies, M. A. Ayamba, and R. Wal. 2016.

541

To have your citizen science cake and eat it? Delivering research and outreach through Open Air Laboratories 542

(OPAL). BMC Ecology 16: 57–70.

543

Landis, D. A. 2017. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and 544

Applied Ecology 18: 1–12.

545

Lastra-Bravo, X. B., C. Hubbard, G. Garrod, and A. Tolón-Becerra. 2015. What drives farmers’ participation in 546

EU agri-environmental schemes?: Results from a qualitative meta-analysis. Environmental Science and Policy 547

54: 1–9.

548

Lefebvre, M., M. Espinosa, S. Gomez y Paloma, M. L. Paracchini, A. Piorr, and I. Zasada. 2015. Agricultural 549

landscapes as multi-scale public good and the role of the Common Agricultural Policy. Journal of 550

Environmental Planning and Management 58: 2088–2112.

551

Lescourret, F., D. Magda, G. Richard, A. F. Adam-Blondon, M. Bardy, J. Baudry, I. Doussan, B. Dumont, et al.

552

2015. A social-ecological approach to managing multiple agro-ecosystem services. Current Opinion in 553

Environmental Sustainability 14: 68–75.

554

Maes, J., C. Liquete, A. Teller, M. Erhard, M. L. Paracchini, J. I. Barredo, B. Grizzetti, A. Cardoso, et al. 2016.

555

An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020.

556

Ecosystem Services 17: 14–23.

557

Marshall, E. J. ., T. M. West, and D. Kleijn. 2006. Impacts of an agri-environment field margin prescription on 558

the flora and fauna of arable farmland in different landscapes. Agriculture, Ecosystems & Environment 113:

559

36–44.

560

Martin, E. A., M. Dainese, Y. Clough, A. Báldi, R. Bommarco, V. Gagic, M. P. D. Garratt, A. Holzschuh, et al.

561

2019. The interplay of landscape composition and configuration: new pathways to manage functional 562

biodiversity and agroecosystem services across Europe. Ecology Letters 22: 1083–1094.

563

Moon, K., V. M. Adams, and B. Cooke. 2019. Shared personal reflections on the need to broaden the scope 564

of conservation social science. People and Nature 0: 1–9.

565

Newig, J., and O. Fritsch. 2009. Environmental governance: Participatory, multi-level - And effective?

566

Environmental Policy and Governance 19: 197–214.

567

Opdam, P., I. Coninx, A. Dewulf, E. Steingröver, C. Vos, and M. van der Wal. 2015. Framing ecosystem services:

568

Affecting behaviour of actors in collaborative landscape planning? Land Use Policy 46: 223–231.

569

Ostrom, E. 2009. A general framework for analyzing sustainability of social-ecological systems. Science 325:

570

419–422.

571

Pasher, J., S. W. Mitchell, D. J. King, L. Fahrig, A. C. Smith, and K. E. Lindsay. 2013. Optimizing landscape 572

selection for estimating relative effects of landscape variables on ecological responses. Landscape Ecology 573

28: 371–383.

574

Pocock, M. J. ., D. S. Chapman, L. J. Sheppard, and H. E. Roy. 2014. A strategic framework to support the 575

implementation of citizen science for environmental monitoring. Final report to SEPA. Centre for Ecology &

576

Hydrology, Oxfordshire.

577

Potschin, M. B., and R. H. Haines-Young. 2011. Ecosystem services: Exploring a geographical perspective.

578

Progress in Physical Geography 35: 575–594.

579

Prager, K. 2015. Agri-environmental collaboratives for landscape management in Europe. Current Opinion in 580

Environmental Sustainability 12: 59–66.

581

Primdahl, J., E. Andersen, S. Swaffield, and L. Kristensen. 2013. Intersecting Dynamics of Agricultural 582

Structural Change and Urbanisation within European Rural Landscapes: Change Patterns and Policy 583

Implications. Landscape Research 38: 799–817.

584

Reason, P., and H. Bradbury. 2001. Handbook of Action Research. London: Sage.

585

Reed, M. S., A. Graves, N. Dandy, H. Posthumus, K. Hubacek, J. Morris, C. Prell, C. H. Quinn, et al. 2009. Who’s 586

in and why? A typology of stakeholder analysis methods for natural resource management. Journal of 587

Environmental Management 90: 1933–1949.

588

Renn, O. 2006. Participatory processes for designing environmental policies. Land Use Policy 23: 34–43.

589

Rusch, A., R. Chaplin-Kramer, M. M. Gardiner, V. Hawro, J. Holland, D. Landis, C. Thies, T. Tscharntke, et al.

590

2016. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture, 591

Ecosystems & Environment 221: 198–204.

592

Scheper, J., A. Holzschuh, M. Kuussaari, S. G. Potts, M. Rundlöf, H. G. Smith, and D. Kleijn. 2013.

593

Environmental factors driving the effectiveness of European agri-environmental measures in mitigating 594

pollinator loss – a meta-analysis. Ecology Letters 16: 912–920.

595

Schirmel, J., M. Albrecht, P.-M. Bauer, L. Sutter, S. C. Pfister, and M. H. Entling. 2018. Landscape complexity 596

promotes hoverflies across different types of semi-natural habitats in farmland. Journal of Applied Ecology 597

55: 1–12.

598

Schulte, L. A., J. Niemi, M. J. Helmers, M. Liebman, J. G. Arbuckle, D. E. James, R. K. Kolka, M. E. O’Neal, et al.

599

2017. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean 600

croplands. Proceedings of the National Academy of Sciences 114: 11247–11252.

601

Sirami, C., N. Gross, A. B. Baillod, C. Bertrand, R. Carrié, A. Hass, L. Henckel, P. Miguet, et al. 2019. Increasing 602

crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National 603

Academy of Sciences 116: 201906419.

604

Tscharntke, T., A. M. Klein, A. Kruess, I. Steffan-Dewenter, and C. Thies. 2005. Landscape perspectives on 605

agricultural intensification and biodiversity - Ecosystem service management. Ecology Letters 8: 857–874.

606

Verhoeve, A., V. Dewaelheyns, E. Kerselaers, E. Rogge, and H. Gulinck. 2015. Virtual farmland: Grasping the 607

occupation of agricultural land by non-agricultural land uses. Land Use Policy 42: 547–556.

608

Westerink, J., R. Jongeneel, N. Polman, K. Prager, J. Franks, P. Dupraz, and E. Mettepenningen. 2017.

609

Collaborative governance arrangements to deliver spatially coordinated agri-environmental management.

610

Land Use Policy 69: 175–192.

611

Winqvist, C., J. Ahnström, and J. Bengtsson. 2012. Effects of organic farming on biodiversity and ecosystem 612

services: Taking landscape complexity into account. Annals of the New York Academy of Sciences 1249: 191–

613

203 614

Zasada, I., R. Berges, J. Hilgendorf, and A. Piorr. 2013. Horsekeeping and the peri-urban development in the 615

Berlin Metropolitan Region. Journal of Land Use Science 8: 199–214.

616

Documents relatifs