• Aucun résultat trouvé

Despite the increased scientific interest in past climate deteriorations and biotic crises, the basic causes, causalities, and impacts on the environment remain controversial. The integration of high-preci-sion and accurate U-Pb zircon geochronology with litho-, bio- and chemostratigraphic records at the

<100 ka timescale can provide valuable evidence on underlying processes and feedbacks. As the chem-ical pre-treatment of zircon prior to ID-TIMS analysis appears to have a major contribution to the accu-racy of the acquired ages, the second chapter will aim to develop improved protocols for chemical pre-treatment of zircon. In the third chapter, the U-Pb ages acquired by the improved protocol will serve as basis for Bayesian age-depth models. The age-depth models will allow the temporal quantification and distinction of triggers and feedbacks that were active during the latest Smithian. On the base of precise

temporal constraints, this approach will aim to deduce and/or exclude processes, leading to the biggest intra Triassic extinction around the Smithian Spathian boundary. The fourth chapter aims to develop a composite Bayesian age-depth model of the complete Early Triassic, that is correlated to the δ13Ccarb

isotope record. This approach allows inferring durations of δ13Ccarb isotope excursions. Additionally, hafnium isotope systematics of U-Pb dated zircon from the volcanic ash beds are used to trace their origin and deduce the evolution of the magmatic and tectonic setting during the Early Triassic in the Southeast China.

1.6.1 R

EFERENCES

Algeo, T.J., Chen, Z.Q., Bottjer, D.J., 2015. Global review of the Permian-Triassic mass extinction and subsequent recovery: Part II. Earth-Science Rev. 149, 1–4.

https://doi.org/10.1016/j.earscirev.2015.09.007

Bachan, A., Lau, K. V., Saltzman, M.R., Thomas, E., Kump, L.R., Payne, J.L., 2017. American journal of science: A model for the decrease in amplitude of carbon isotope excursions across the phanerozoic. Am. J. Sci. 317, 641–676. https://doi.org/10.2475/06.2017.01

Bai, R., Dai, X., Song, H., 2017. Conodont and ammonoid biostratigraphies around the Permian-Triassic boundary from the Jianzishan of South China. J. Earth Sci. 28, 595–613.

https://doi.org/10.1007/s12583-017-0754-4

Barboni, M., Schoene, B., Ovtcharova, M., Bussy, F.F., Schaltegger, U., Gerdes, A., 2013. Timing of incremental pluton construction and magmatic activity in a back-arc setting revealed by ID-TIMS U/Pb and Hf isotopes on complex zircon grains. Chem. Geol. 342, 76–93.

https://doi.org/10.1016/j.chemgeo.2012.12.011

Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., Schaltegger, U., 2017. Precise age for the Permian-Triassic boundary in South China from high precision U-Pb geochronology and Bayesian age-depth modelling. Solid Earth Discuss. 1–40. https://doi.org/10.5194/se-2016-145

Berner, R.A., 2005. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to

middle Triassic. Geochim. Cosmochim. Acta 69, 3211–3217.

https://doi.org/10.1016/j.gca.2005.03.021

Berner, R.A., 2002. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc. Natl. Acad. Sci. 99, 4172–4177. https://doi.org/10.1073/pnas.032095199 Blaauw, M., 2010. Methods and code for “classical” age-modelling of radiocarbon sequences. Quat.

Geochronol. 5, 512–518. https://doi.org/10.1016/j.quageo.2010.01.002

Blaauw, M., Christeny, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474. https://doi.org/10.1214/11-BA618

Bond, D.P.G., Grasby, S.E., 2017. On the causes of mass extinctions. Palaeogeogr. Palaeoclimatol.

Palaeoecol. 478, 3–29. https://doi.org/10.1016/j.palaeo.2016.11.005

Bond, D.P.G., Wignall, P.B., 2014. Large igneous provinces and mass extinctions: An update, in: Keller, G., Kerr, A.C. (Eds.), Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Geological Society of America, p. 0. https://doi.org/10.1130/2014.2505(02)

Bowring, J.F., McLean, N.M., Bowring, S.A., 2011. Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb-Redux. Geochem. Geophy. Geosy. 12.

https://doi.org/10.1029/2010GC003479

Bowring, S. a, Schoene, B., Crowley, J.L., Ramezani, J., Condon, D.J., 2006. High-Precision U-Pb Zircon Geochronology and the Stratigraphic Record: Progress and Promise. Paleontol. Soc. Pap.

11, 23–43.

Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., Galfetti, T., Guex, J., 2009. Good Genes and Good Luck : Ammonoid Mass Extinction. Science. 325, 1118–1121.

https://doi.org/10.1126/science.1174638

Bronk Ramsey, C., 1995. Radiocarbon Calibration and Analysis of Stratigraphy: The OxCal Program.

Radiocarbon 37, 425–430. https://doi.org/DOI: 10.1017/S0033822200030903

Brosse, M., Bucher, H., Goudemand, N., 2016. Quantitative biochronology of the Permian-Triassic boundary in South China based on conodont unitary associations. Earth-Science Rev. 155, 153–

171. https://doi.org/10.1016/j.earscirev.2016.02.003

Bryan, S.E., Ernst, R.E., 2008. Revised definition of Large Igneous Provinces (LIPs). Earth-Science Rev. 86, 175–202. https://doi.org/10.1016/j.earscirev.2007.08.008

Buggisch, W., Joachimski, M.M., Lehnert, O., Bergström, S.M., Repetski, J.E., Webers, G.F., 2010. Did intense volcanism trigger the fi rst Late Ordovician icehouse ? Oxygen isotopes of conodonts as proxy for sea-surface temperature 327–330. https://doi.org/10.1130/G30577.1

Burgess, S.D., Bowring, S., Shu-zhong Shen, Shen, S., Shu-zhong Shen, Shen, S., 2014. High-precision timeline for Earth’s most severe extinction. Proc. Natl. Acad. Sci. U. S. A. 111, 3733–8.

https://doi.org/10.1073/pnas.1321614111

Burgess, S.D., Bowring, S.A., 2015. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470–e1500470.

https://doi.org/10.1126/sciadv.1500470

Burgess, S.D., Muirhead, J.D., Bowring, S.A., 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 1–4. https://doi.org/10.1038/s41467-017-00083-9

Charlier, B.L.A., Wilson, C.J.N., Lowenstern, J.B., Blake, S., van Calsteren, P.W., Davidson, J.P., 2005.

Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U-Pb systematics in zircons. J. Petrol. 46, 3–32. https://doi.org/10.1093/petrology/egh060 Chen, Z.-Q., Benton, M.J., 2012. The timing and pattern of biotic recovery following the end-Permian

mass extinction. Nat. Geosci. 5, 375–383. https://doi.org/10.1038/ngeo1475

Cherniak, D.J., Watson, E.B., 2000. Pb diffusion in zircon. Chem. Geol. 172, 5–24.

https://doi.org/10.1016/S0009-2541(00)00233-3

Chiu, T.C., Fairbanks, R.G., Cao, L., Mortlock, R.A., 2007. Analysis of the atmospheric14C record spanning the past 50,000 years derived from high-precision230Th/234U/238U,231Pa/235U and14C dates on fossil corals. Quat. Sci. Rev. 26, 18–36.

https://doi.org/10.1016/j.quascirev.2006.06.015

Condon, D.J., Schoene, B., McLean, N.M., Bowring, S.A., Parrish, R.R., 2015. Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I).

Geochim. Cosmochim. Acta 164, 464–480. https://doi.org/10.1016/j.gca.2015.05.026

Courtillot, V.E., Renne, P.R., 2003. On the ages of flood basalt events. Comptes Rendus - Geosci. 335, 113–140. https://doi.org/10.1016/S1631-0713(03)00006-3

Cui, Y., Kump, L.R., 2015. Global warming and the end-Permian extinction event: Proxy and modeling perspectives. Earth-Science Rev. 149, 5–22. https://doi.org/10.1016/j.earscirev.2014.04.007 Damon, P.E., Lerman, J.C., Long, A., 1978. Temporal Fluctuations of Atmospheric 14C: Causal Factors

and Implications. Annu. Rev. Earth Planet. Sci. 6, 457–494.

https://doi.org/10.1146/annurev.ea.06.050178.002325

Davies, J.H.F.L., Marzoli, A., Bertrand, H., Youbi, N., Ernesto, M., Schaltegger, U., 2017. End-Triassic mass extinction started by intrusive CAMP activity. Nat. Commun. 8, 1–8.

https://doi.org/10.1038/ncomms15596

De Vleeschouwer, D., Parnell, A.C., 2014. Reducing time-scale uncertainty for the devonian by integrating astrochronology and bayesian statistics. Geology 42, 491–494.

https://doi.org/10.1130/G35618.1

Dessert, C., Dupré, B., François, L.M., Schott, J., Gaillardet, J., Chakrapani, G., Bajpai, S., 2001. Erosion of Deccan Traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr

ratio of seawater. Earth Planet. Sci. Lett. 188, 459–474. https://doi.org/10.1016/S0012-821X(01)00317-X

Dessert, C., Dupré, B., Gaillardet, J., François, L.M., Allègre, C.J., 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273.

https://doi.org/https://doi.org/10.1016/j.chemgeo.2002.10.001

Ernst, R.E., Youbi, N., 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr. Palaeoclimatol.

Palaeoecol. 478, 30–52. https://doi.org/10.1016/j.palaeo.2017.03.014 Erwin, D.H., 1994. The Permo-Triassic extinction. Nature 367, 231–236.

Finch, R.J., Hanchar, J.M., 2003. Structure and chemistry of zircon and zircon-group minerals. Rev.

Mineral. geochemistry 53, 1–25. https://doi.org/10.2113/0530001

Fogel, M.L., Cifuentes, L.A., 1993. Isotope Fractionation during Primary Production. In: Engel M.H., Macko S.A. (eds) Organic Geochemistry. Topics in Geobiology, vol 11. Springer, Boston, MA Galfetti, T., Bucher, H., Ovtcharova, M., Schaltegger, U., Brayard, A., Brühwiler, T., Goudemand, N.,

Weissert, H., Hochuli, P.A., Cordey, F., Guodun, K., 2007. Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth Planet.

Sci. Lett. 258, 593–604. https://doi.org/10.1016/j.epsl.2007.04.023

Gardner, A.S., Sharp, M.J., 2010. A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J. Geophys. Res. Earth Surf. 115, 1–15.

https://doi.org/10.1029/2009JF001444

Geisler, T., Pidgeon, R.T., Kurtz, R., van Bronswijk, W., Schleicher, H., 2003. Experimental hydrothermal alteration of partially metamict zircon. Am. Mineral. 88, 1496–1513.

https://doi.org/https://doi.org/10.2138/am-2003-1013

Geisler, T., Pidgeon, R.T., Van Bronswijk, W., Kurtz, R., 2002. Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chem. Geol. 191, 141–154.

https://doi.org/10.1016/S0009-2541(02)00153-5

Gerstenberger, H., Haase, G., 1997. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312. https://doi.org/10.1016/S0009-2541(96)00033-2

Gislason, S.R., Oelkers, E.H., Eiriksdottir, E.S., Kardjilov, M.I., Gisladottir, G., Sigfusson, B., Snorrason, A., Elefsen, S., Hardardottir, J., Torssander, P., Oskarsson, N., 2008. The feedback between climate and weathering. Mineral. Mag. 72, 317–320. https://doi.org/DOI:

10.1180/minmag.2008.072.1.317

Goudemand, N., 2014. Time calibarated Early Traissic 13Ccarb , 18Oapatite and SST curves from South China: An update. Albertiana On 42, 41–48.

Goudemand, N., Romano, C., Leu, M., Bucher, H., Trotter, J., Williams, I., 2019. Dynamic interplay between climate and marine biodiversity upheavals during the Early Triassic Smithian-Spathian biotic crisis. Earth Sci. Rev. https://doi.org/https://doi.org/10.1016/j.earscirev.2019.01.013 Grossman, E.L., 2012. Applying Oxygen Isotope Paleothermometry in Deep Time. Paleontol. Soc. Pap.

18, 39–68. https://doi.org/DOI: 10.1017/S1089332600002540

Guex, J., Pilet, S., Müntener, O., Bartolini, A., Spangenberg, J., Schoene, B., Sell, B., Schaltegger, U., 2016. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction. Sci. Rep.

6, 23168. https://doi.org/10.1038/srep23168

Guex, J., Schoene, B., Bartolini, A., Spangenberg, J., Schaltegger, U., O’Dogherty, L., Taylor, D.,

Bucher, H., Atudorei, V., O ’dogherty, L., Taylor, D., Bucher, H., Atudorei, V., 2012.

Geochronological constraints on post-extinction recovery of the ammonoids and carbon cycle perturbations during the Early Jurassic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 346–347, 1–11.

https://doi.org/10.1016/j.palaeo.2012.04.030

Guex, J., 2016. Retrograde Evolution During Major Extinction Crises. Springer International Publishing 10.1007/978-3-319-27917-6.

Hallam, A., Wignall, P.B., 1997. Mass Extinctions and Their Aftermath. OUP Oxford.

Haslett, J., Parnell, A., 2008. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. Ser. C Appl. Stat. 57, 399–418. https://doi.org/10.1111/j.1467-9876.2008.00623.x

Hautmann, M., Bagherpour, B., Brosse, M., Frisk, Å., Hofmann, R., Baud, A., Nützel, A., Goudemand, N., Bucher, H., 2015. Competition in slow motion: The unusual case of benthic marine communities in the wake of the end-Permian mass extinction. Palaeontology 58, 871–901.

https://doi.org/10.1111/pala.12186

Hiess, J., Condon, D.J., Mclean, N., Noble, S.R., 2012. 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science. 335, 1610–1614. https://doi.org/DOI: 10.1126/science.1215507 Hochuli, P.A., Sanson-Barrera, A., Schneebeli-Hermann, E., Bucher, H., 2016. Severest crisis

overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction. Sci. Rep. 6, 28372. https://doi.org/10.1038/srep28372

House, M.R., 1985. The ammonoid time-scale and ammonoid evolution. Geol. Soc. London, Mem. 10, 273 LP-283. https://doi.org/10.1144/GSL.MEM.1985.010.01.21

Hull, P., 2015. Life in the aftermath of mass extinctions. Curr. Biol. 25, R941–R952.

https://doi.org/10.1016/j.cub.2015.08.053

Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M., 1971. Precision measurements of half-lives and specific activities of 235U and 238U. Phys. Rev. 4, 1889–1906.

Jenkyns, H.C., 1996. Relative sea-level change and carbon isotopes: data from the Upper Jurassic (Oxfordian) of central and Southern Europe. Terra Nov. 8, 75–85. https://doi.org/10.1111/j.1365-3121.1996.tb00727.x

Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J.M., Chappellaz, J., Fischer, H., Gallet, J.C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J.P., Stenni, B., Stocker, T.F., Tison, J.L., Werner, M., Wolff, E.W., 2007. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science. 317, 793 LP-796. https://doi.org/10.1126/science.1141038

Krogh, T.E., 1973. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochim. Cosmochim. Acta 37, 485–494.

Kump, L.R., Arthur, M. a., 1999. Interpreting carbon-isotope excursions: carbonates and organic matter.

Chem. Geol. 161, 181–198. https://doi.org/10.1016/S0009-2541(99)00086-8

Lee, J.K.W., Williams, I.S., Ellis, D.J., 1997. Pb, U and Th diffusion in natural zircon. Nature 390, 159– 162. https://doi.org/10.1038/36554

Liu, Z., Dreybrodt, W., Liu, H., 2011. Atmospheric CO2 sink: Silicate weathering or carbonate weathering? Appl. Geochemistry. https://doi.org/10.1016/j.apgeochem.2011.03.085

Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., Stocker, T.F., 2008. High-resolution carbon dioxide concentration

record 650,000–800,000 years before present. Nature 453, 379.

MacLeod, K.G., 2012. Conodonts and the Paleoclimatological and Paleoecological Applications of Phosphate Δ18O Measurements. Paleontol. Soc. Pap. 18, 69–84. https://doi.org/DOI:

10.1017/S1089332600002552

Maslin, M.A., Swann, G.E.A., 2005. Isotopes in marine sediments. In: Leng, M.J. (Ed.), Isotopes in Paleoenvironmental Research. Springer, Dordrecht, Netherlands, 227-290.

Mattinson, J.M., 2010. Analysis of the relative decay constants of235U and238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol. 275, 186–198.

https://doi.org/10.1016/j.chemgeo.2010.05.007

Mattinson, J.M., 2005. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem.

Geol. 220, 47–66. https://doi.org/10.1016/j.chemgeo.2005.03.011

Matzel, J.E.P., Bowring, S.A., Miller, R.B., 2006. Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington.

GSA Bull. 118, 1412–1430. https://doi.org/10.1130/B25923.1

McLean, N.M., Condon, D.J., Schoene, B., Bowring, S.A., 2015. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Acta 164, 481–501.

https://doi.org/10.1016/j.gca.2015.02.040

Meyer, K.M., Yu, M., Lehrmann, D., Schootbrugge, B. Van De, Payne, J.L., 2013. Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records Great Bank g tze fo lat rm 361, 429–435. https://doi.org/10.1016/j.epsl.2012.10.035

Michel, J., Baumgartner, L., Putlitz, B., Schaltegger, U., Ovtcharova, M., 2008. Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology 36, 459–462.

https://doi.org/10.1130/G24546A.1

Miller, J.S., Matzel, J.E.P., Miller, C.F., Burgess, S.D., Miller, R.B., 2007. Zircon growth and recycling during the assembly of large, composite arc plutons. J. Volcanol. Geotherm. Res.

https://doi.org/10.1016/j.jvolgeores.2007.04.019

Mundil, R., Ludwig, K.R., Metcalfe, I., Renne, P.R., 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science. 305, 1760–1763.

https://doi.org/10.1126/science.1101012

Nasdala, L., Hanchar, J.M., Kronz, A., Whitehouse, M.J., 2005. Long-term stability of alpha particle

damage in natural zircon. Chem. Geol. 220, 83–103.

https://doi.org/10.1016/j.chemgeo.2005.03.012

Orchard, M.J., 2007. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93–117.

https://doi.org/10.1016/j.palaeo.2006.11.037

Ovtcharova, M., Goudemand, N., Hammer, Ø., Guodun, K., Cordey, F., Galfetti, T., Schaltegger, U., Bucher, H.., 2015. Developing a strategy for accurate definition of a geological boundary through radio-isotopic and biochronological dating: The Early-Middle Triassic boundary (South China).

Earth-Science Rev. 146, 65–76. https://doi.org/10.1016/j.earscirev.2015.03.006

Parnell, A.C., Buck, C.E., Doan, T.K., 2011. A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction. Quat. Sci. Rev. 30, 2948–

2960. https://doi.org/10.1016/j.quascirev.2011.07.024

Parnell, A.C., Haslett, J., Allen, J.R.M., Buck, C.E., Huntley, B., 2008. A flexible approach to assessing

synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat. Sci.

Rev. 27, 1872–1885. https://doi.org/10.1016/j.quascirev.2008.07.009

Payne, J.L., Kump, L.R., 2007. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet. Sci. Lett. 256, 264–277.

https://doi.org/10.1016/j.epsl.2007.01.034

Payne, J.L., Lehrmann, D.J., Wei, J., Orchard, M.J., Schrag, D.P., Knoll, A.H., Payne, J.L., Lehrmann, D.J., Wei, J., Orchard, M.J., Schrag, D.P., Knoll, A.H., 2004. Large perturbations of the carbon cycle during recovery from the end-permian extinction. Science 305, 506–9.

https://doi.org/10.1126/science.1097023

Priest, N.D., 2001. Toxicity of depleted uranium. Lancet 357, 244–246. https://doi.org/10.1016/S0140-6736(00)03605-9

Pruss, S.B., Bottjer, D.J., 2005. The reorganization of reef communities following the end-Permian mass extinction. Comptes Rendus - Palevol 4, 485–500. https://doi.org/10.1016/j.crpv.2005.04.003 Ramsey, C.B., 2008. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60.

https://doi.org/10.1016/j.quascirev.2007.01.019

Raup, D.M., Sepkoski, J.J., 1982. Mass Extinctions in the Marine Fossil Record. Science. 215, 1501 LP-1503.

Rioux, M., Hacker, B., Mattinson, J., Kelemen, P., Blusztajn, J., Gehrels, G., 2007. Magmatic development of an intra-oceanic arc: High-precision U-Pb zircon and whole-rock isotopic analyses from the accreted Talkeetna arc, south-central Alaska. Bull. Geol. Soc. Am. 119, 1168–1184.

https://doi.org/10.1130/B25964.1

Robock, A., 2000. Volcanic eruptions and climate. Rev. Geophys. 38, 191–219.

Romano, C., Goudemand, N., Vennemann, T.W., Ware, D., Schneebeli-Hermann, E., Hochuli, P. a., Brühwiler, T., Brinkmann, W., Bucher, H., 2013. Climatic and biotic upheavals following the end-Permian mass extinction. Nat. Geosci. 6, 57–60. https://doi.org/10.1038/ngeo1667

Roscher, M., Stordal, F., Svensen, H., 2011. The effect of global warming and global cooling on the distribution of the latest Permian climate zones. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 186–200. https://doi.org/10.1016/j.palaeo.2011.05.042

Saltzman, M.R., Thomas, E., 2012. Carbon Isotope Stratigraphy. Geol. Time Scale 2012 1–2, 207–232.

https://doi.org/10.1016/B978-0-444-59425-9.00011-1

Samperton, K.M., Schoene, B., Cottle, J.M., Brenhin Keller, C., Crowley, J.L., Schmitz, M.D., 2015.

Magma emplacement, differentiation and cooling in the middle crust: Integrated zircon geochronological-geochemical constraints from the Bergell Intrusion, Central Alps. Chem. Geol.

417, 322–340. https://doi.org/10.1016/j.chemgeo.2015.10.024

Saunders, A., Reichow, M., 2009. The Siberian Traps and the End-Permian mass extinction: A critical review. Chinese Sci. Bull. 54, 20–37. https://doi.org/10.1007/s11434-008-0543-7

Saunders, A.D., 2005. Large Igneous Provinces: Origin and Environmental Consequences. Elements 1, 259–263. https://doi.org/10.2113/gselements.1.5.259

Schaefer, K., Lantuit, H., Romanovsky, V.E., Schuur, E.A.G., Witt, R., 2014. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9. https://doi.org/10.1088/1748-9326/9/8/085003

Schaller, M.F., Wright, J.D., Kent, D. V, Olsen, P.E., 2012. Rapid emplacement of the Central Atlantic Magmatic Province as a net sink for CO2. Earth Planet. Sci. Lett. 323–324 (2, 27–39.

https://doi.org/10.1016/j.epsl.2011.12.028

Schaltegger, U., 2018. Heading towards the most precise , accurate and reproducible U-Pb age of least material, in: Goldschmidt Conference, 12-17. 8. 2018, Boston.

Schaltegger, U., Brack, P., Ovtcharova, M., Peytcheva, I., Schoene, B., Stracke, A., Marocchi, M., Bargossi, G.M., 2009. Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet. Sci. Lett. 286, 208–218. https://doi.org/10.1016/j.epsl.2009.06.028

Schaltegger, U., Davies, J.H.F.L., 2017. Petrochronology of Zircon and Baddeleyite in Igneous Rocks : Reconstructing Magmatic Processes at High Temporal Resolution. Rev. Mineral. Geochemistry 83, 297-328.

Schaltegger, U., Gebauer, D., Von Quadt, A., 2002. The mafic-ultramafic rock association of Loderio-Biasca (lower Pennine nappes, Ticino, Switzerland): Cambrian oceanic magmatism and its bearing on early Paleozoic paleogeography. Chem. Geol. 186, 265–279. https://doi.org/10.1016/S0009-2541(02)00005-0

Schaltegger, U., Schmitt, A.K., Horstwood, M.S.A., 2015. U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chem. Geol. 402, 89–110. https://doi.org/10.1016/j.chemgeo.2015.02.028

Schaltegger, U., Wotzlaw, J.-F., Ovtcharova, M., Chiaradia, M., Spikings, R., 2014. Mass Spectrometry in Earth Sciences: The Precise and Accurate Measurement of Time. Chim. Int. J. Chem. 68, 124–

128. https://doi.org/10.2533/chimia.2014.124

Schärer, U., 1984. The effect of initial 230Th disequilibrium on young U-Pb ages: The Makalu case, Himilaya. Earth Planet. Sci. Lett. 67, 191–204.

Scherer, E.E., Whitehouse, M.J., Munker, C., 2007. Zircon as a Monitor of Crustal Growth. Elements 3, 19–24. https://doi.org/10.2113/gselements.3.1.19

Schippers, P., Lürling, M., Scheffer, M., 2004. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol. Lett. 7, 446–451. https://doi.org/10.1111/j.1461-0248.2004.00597.x

Schmitz, M.D., Schoene, B., 2007. Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochemistry, Geophys. Geosystems 8, 1–20.

https://doi.org/10.1029/2006GC001492

Schoene, B., Latkoczy, C., Schaltegger, U., Günther, D., 2010. A new method integrating high-precision U-Pb geochronology with zircon trace element analysis (U-Pb TIMS-TEA). Geochim.

Cosmochim. Acta 74, 7144–7159. https://doi.org/10.1016/j.gca.2010.09.016

Schoene, B., 2014. U-Th-Pb Geochronology, Treatise on Geochemistry: Second Edition.

https://doi.org/10.1016/B978-0-08-095975-7.00310-7

Schoene, B., Baxter, E.F., 2017. Petrochronology and TIMS. Rev. Mineral. Geochemistry 83, 231–260.

Schoene, B., Crowley, J.L., Condon, D.J., Schmitz, M.D., Bowring, S.A., 2006. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochim. Cosmochim. Acta 70, 426–445. https://doi.org/10.1016/j.gca.2005.09.007

Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., Blackburn, T.J., 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38, 387–390.

https://doi.org/10.1130/G30683.1

Schoene, B., Schaltegger, U., Brack, P., Latkoczy, C., Stracke, A., Günther, D., 2012. Rates of magma differentiation and emplacement in a ballooning pluton recorded by U-Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet. Sci. Lett. 355–356, 162–173.

https://doi.org/10.1016/j.epsl.2012.08.019

Self, S., Thordarson, T., Widdowson, M., 2005. Gas Fluxes from Flood Basalt Eruptions. Elements 1, 283–287. https://doi.org/10.2113/gselements.1.5.283

Song, H., Wignall, P.B., Chen, Z.Q., Tong, J., Bond, D.P.G., Lai, X., Zhao, X., Jiang, H., Yan, C., Niu, Z., Chen, J., Yang, H., Wang, Y., 2011. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology 39, 739–742. https://doi.org/10.1130/G32191.1 Stanley, S.M., 2016. Estimates of the magnitudes of major marine mass extinctions in earth history.

Proc. Natl. Acad. Sci. 113, E6325–E6334. https://doi.org/10.1073/pnas.1613094113

Stanley, S.M., 2010. Relation of Phanerozoic stable isotope excursions to climate, bacterial metabolism, and major extinctions. Proc. Natl. Acad. Sci. 107, 19185–19189.

https://doi.org/10.1073/pnas.1012833107

Sun, Y.D., Joachimski, M.M., Wignall, P.B., Yan, C.B., Chen, Y.L., Jiang, H.S., Wang, L., Lai, X.L., 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science. 338, 366–370.

https://doi.org/10.1126/science.1224126

Svensen, H., Planke, S., Polozov, A.G., Schmidbauer, N., Corfu, F., Podladchikov, Y.Y., Jamtveit, B., 2009. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 490–500. https://doi.org/10.1016/j.epsl.2008.11.015

Sweet, W.C., Donoghue, P.C.J., 2001. Conodonts: Past, Present, Future. J. Paleontol. 75, 1174–1184.

Telford, R.J., Heegaard, E., Birks, H.J.B., 2004. All age-depth models are wrong: But how badly? Quat.

Sci. Rev. 23, 1–5. https://doi.org/10.1016/j.quascirev.2003.11.003

Tian, L., Tong, J., Algeo, T.J., Song, H.H., Song, H.H., Chu, D., Shi, L., Bottjer, D.J., 2014.

Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 68–79.

https://doi.org/10.1016/j.palaeo.2014.07.018

Trachsel, M., Telford, R.J., 2016. All age–depth models are wrong, but are getting better. The Holocene 27, 860–869. https://doi.org/10.1177/0959683616675939

Trotter, J.A., Eggins, S.M., 2006. Chemical systematics of conodont apatite determined by laser ablation

ICPMS. Chem. Geol. 233, 196–216.

https://doi.org/https://doi.org/10.1016/j.chemgeo.2006.03.004

Wagler, R., 2013. Incorporating the current sixth great mass extinction theme into evolution education, science education, and environmental education research and standards. Evol. Educ. Outreach 6, 1–5. https://doi.org/10.1186/1936-6434-6-9

West, A.J., Galy, A., Bickle, M., 2005. Tectonic and climatic controls on silicate weathering 235, 211– 228. https://doi.org/10.1016/j.epsl.2005.03.020

Wetherill, G.W., 1965. Discordant uranium-lead ages. Eos, Trans. Am. Geophys. Union.

White, R. V., Saunders, A.D., 2005. Volcanism, impact and mass extinctions: Incredible or credible coincidences? Lithos 79, 299–316. https://doi.org/10.1016/j.lithos.2004.09.016

White, R. V., Saunders, A.D., 2005. Volcanism, impact and mass extinctions: Incredible or credible coincidences? Lithos 79, 299–316. https://doi.org/10.1016/j.lithos.2004.09.016

Documents relatifs