• Aucun résultat trouvé

C. Matériaux étudiés

IV.4. La tenorite CuO

IV.4.a. Structure cristallographique

L’oxyde CuO ou tenorite se distingue des monoxydes de métaux de transition 3d par sa structure monoclinique. Il s’agit d’un solide ionique noir ayant comme température de fusion et d’évaporation 1064 et 1100°C respectivement. Dans cette structure, le cuivre se situe au centre de plans carrés définis par des anions oxygène (Figure I.27). La tenorite cristallise dans le groupe d’espace C2/c [129] avec des paramètres de maille définis dans le Tableau I.14.

Figure I.27. Représentation schématique de la structure cristallographique de CuO : les sphères grises représentent les ions Cu2+et les sphères rouges les ions O2-

CuO Groupe d’espace C2/c a = 4.6883 Paramètre de maille (Å) b = 3.4229 β= 99.51° c = 5.1319 Volume (Å3) 81.22

Volume molaire (cm3.mol-1) 12.21 Masse volumique (g.cm-3) 6.505

Z 4

Tableau I.14. Données cristallographiques de la tenorite [130]

IV.4.b. Propriétés électriques

L’oxyde de cuivre CuO est également un semiconducteur de type p avec un band-gap Eg compris entre 1.2 et 1.4 eV [131, 132, 133]. CuO montre généralement une faible conductivité. De grandes variations dans les valeurs de résistivité ont été reportées ainsi qu’une forte dépendance de la résistivité en fonction de la méthode d’élaboration de 1 à 107.cm [134]. Les films préparés par pulvérisation ou PECVD montrent de faibles résistivités, 10 Ω.cm [135] et 0.5-5 Ω.cm [136], respectivement, qui ont été attribuées soit à

une non-stoechiométrie, soit à une conduction aux joints de grains [135]. L’évolution de la conductivité avec la température montre cependant un comportement original pouvant être utilisé en tant que composant clé pour les verres semiconducteurs [137] ou bien encore les capteurs de gaz à base de semiconducteurs [5, 138, 139, 140, 141]. Les possibles raisons de ce comportement sont : la faible quantité d’impureté dans le composé et sa stabilité en température dans une atmosphère à faible pression partielle d’oxygène.

D. Références

[1] W.H. Brattain, J. Bardeen, “Surface properties of germanium”, Bell Telephone System Tech. Publs.

Monograph. (1953) 2086, 1-41.

[2] N. Taguchi, “Gas Detecting Device”, U.S.Patent. 3 631 (1971) 436.

[3] T. Ishihara, K. Kometani, M. Hasida, Y. Takita, “Application of mixed oxide capacitor to the selective carbon dioxide sensor”, J. Electrochem. Soc. 138 (1991) 173-176.

[4] J. Herrán, G.G. Mandayo, E. Castano, “Physical behaviour of BaTiO3–CuO thin-film under carbon dioxide atmospheres”, Sens. Actuators B 127 (2007) 370-375.

[5] B. Liao, Q. Wei, K. Wang, Y. Liu, “Study on CuO-BaTiO3semiconductor CO2sensor”, Sens. Actuators

B: Chem.80 (2001) 208-214.

[6] Z. Jiao, F. Chen, R. Su, X. Huang, W. Liu, J. Liu, “Study on the Characteristics of Ag Doped CuO- BaTiO3CO2sensors”, Sensors 2 (2002) 366-373.

[7] M.I. Baraton, L. Merhari, P. Keller, K. Zweiacker, J.U. Meyer, “Novel electronic conductance CO2 sensors based on nanocrystalline seminconductors”, Mater. Res. Soc. 536 (1999) 341-346.

[8] J. Herrán, G.G. Mandayo, I. Ayerdi, E. Castano, “Influence of silver as an additive on BaTiO3-CuO thin film for CO2monitoring”, Sens. Actuators B 129 (2008) 386-390.

[9] F. Oudrhiri-Hassani, “Couches minces d’oxydes spinelles et de nanocomposites spinelle-CuO à propriétés semiconductrices destinées à la réalisation de capteurs de gaz”, Thèse, Toulouse (2009). [10] E. Mugnier, “Elaboration et caractérisation de couches minces du système Cu-Fe-O : des nanocomposites

Cu/CuxFe3-xO4à la delafossite CuFeO2. Vers l’élaboration de conducteurs transparents de type p”, Thèse, Toulouse (2007).

[11] G. Heiland, “Influence of adsorbed oxygen on the electrical conductivity of zinc oxide crystals”, Zeit.

Phys. 138 (1954) 459–464.

[12] A. Bielanski, J. Deren, J. Haber, “Electric conductivity and catalytic activity of semiconducting oxide catalysts”, Nature 179 (1957) 668–669.

[13] T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, “New detector for gaseous components using semiconductive thin films”, Anal. Chem. 34 (1962) 1502f.

[14] Figaro, “Development and commercialization of SnO2 ceramic-type Gas Sensors”,U.S.A., http://www.figarosensor.com/.

[15] Applied Sensors, “Research and development of sensors for indoor and automotive air quality and hydrogen gas sensing”, U.S.A., Germany, Sweden, http://www.appliedsensor.com/.

[16] FIS, “Development and commercialization of SnO2-based sensors for safety, environmental and health field”, Japan, http://www.fisinc.co.jp./.

[17] New Cosmos Electric, “Development and commercialization of sensors for industrial and residential use”, Japan, http://www.new-cosmos.co.jp/en/.

[18] United Sensor Technology, “Development and commercialization of sensors for advanced vehicle emission technology”, Germany, http://www.ustsensor.com/.

[19] City Technology, “Design, manufacture and supply of high quality gas sensors”, United Kingdom, http://www.citytech.com/.

[20] Y. Li, J. Liang, Z.Tao, J. Chen, “CuO particles and plates: Synthesis and gas-sensor application”,

[21] N.D. Hoa, N.V. Quy, H. Jung, D. Kim, H. Kim, S.K. Hong, “Synthesis of porous CuO nanowires and its application to hydrogen detection”, Sens. Actuators B 146 (2010) 266–272.

[22] R. Bene, I.V. Perczel, F. Réti, F.A. Meyer, M. Fleisher, H. Meixner, “Chemical reactions in the detection of acetone and NO by a CeO2thin film”, Sens. Actuators B 71 (2000) 36-41.

[23] K. Hara, N. Nishida, “H2sensors using Fe2O3-based thin film”, Sens. Actuators B 20 (1994) 181.

[24] S. Aygün, D. Cann, “Response Kinetics of Doped CuO/ZnO Heterocontacts”, J. Phys. Chem. B 109 (2005) 7878-7882.

[25] C. Tragut. “The influence of the surface transfer reaction on the response characteristics of resistive oxygen sensors”, Sens. Actuators B 7 (1992) 742.

[26] C.R. Michel, E. Delgado, G. Santillan, A.H. Martinez, A. Chavez-Chavez, “An alternative gas sensor material: Synthesis and electrical characterization of SmCoO3”, Mater. Res. Bull. 42 (2007) 84–93. [27] X. Chu, X. Liu, G. Meng, “Preparation and gas-sensing properties of nano-CdIn2O4material”, Mater.

Res. Bull. 34 5 (1999) 693–700.

[28] Y. Liu, Z. Liu, Y. Yang, H. Yang, G. Shen, R. Yu, “Simple synthesis of MgFe2O4nanoparticles as gas sensing materials”, Sens. Actuators B 107 (2005) 600-604.

[29] N. Rezlescu, N. Iftimie, E. Rezlescu, C. Doroftei, P.D. Popa, “Semiconducting gas sensor for acetone based on the fine grained nickel ferrite”, Sens. Actuators B 114 (2006) 427-432.

[30] Z. Sun, L. Liu, D.Z. Jia, W. Pan, “Simple synthesis of CuFe2O4nanoparticles as gas-sensing materials”,

Sens. Actuators B125 (2007) 144–148.

[31] S. Tao, F. Gao, X. Liu, O.T. Sørensen, “Preparation and gas-sensing properties of CuFe2O4at reduced temperature”, Mater. Sci. Eng. B 77 (2000) 172–176.

[32] M.F. Al-Kuhaili, S.M.A. Durrani, I.A. Bakhtiari, “Carbon monoxide gas-sensing properties of CeO2– ZnO thin films”, Appl. Surf. Sci. 255 (2008) 3033–3039.

[33] G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone, P. Siciliano, “Methanol gas-sensing properties of CeO2–Fe2O3thin films”, Sens. Actuators B 114 (2006) 687–695.

[34] J.D. Choi, G.M. Choi, “Electrical and CO gas sensing properties of layered ZnO–CuO sensor”, Sens.

Actuators B69 (2000) 120–126.

[35] S.J. Jung, H. Yanagida, “The characterization of a CuO/ZnO heterocontact-type gas sensor having selectivity for CO gas”, Sens. Actuators B 37 (1996) 55-60.

[36] D.H. Yoon, J.H. Yu, G.M. Choi, “CO gas sensing properties of ZnO–CuO composite”, Sens. Actuators B 46 (1998) 15–23.

[37] J. Tamaki, T. Maekawa, N. Miura, N. Yamazoe, “CuO-SnO2element for highly sensitive and selective detection of H2S”, Sens. Actuators B 9 (1992) 197-203.

[38] R.B. Vasiliev, M.N. Rumyantseva, N.V. Yakovlev, A.M. Gaskov, “CuO/SnO2thin film heterostructures as chemical sensors to H2S”, Sens. Actuators B 50 (1998) 186–193.

[39] L.A. Patil, D.R. Patil, “Heterocontact type CuO-modified SnO2sensor for the detection of a ppm level H2S gas at room temperature”, Sens. Actuators B 120 (2006) 316–323.

[40] J.C. Xu, G.W. Hunter, D. Lukco, C.C. Liu, B.J. Ward, “Novel carbon dioxide microsensor based on tin oxide nanomaterial doped with copper oxide” IEEE Sens. J. 9 3(2009) 235-236.

[43] A. Prim, E. Pellicer, E. Rossinyol, F. Peiro, A. Cornet, J.R. Morante, “A novel mesoporous CaO-loaded In2O3material for CO2sensing”, Adv. Funct. Mater. 17 (2007) 2957-2963.

[44] G. Heiland, “Homogeneous semiconducting gas sensors”, Sens. Actuators, 2 (1982) 343-361. [45] S.R. Morrison, “Semiconductor gas sensors”, Sens. Actuators, 2 4 (1982) 329-341.

[46] J.F. McAleer, P.T. Moseley, J.O.W. Norris, D.E. Williams, “Tin Dioxide Gas Sensors”, J. Chem. Soc., 83 (1987) 1323-1346.

[47] G. Ghiotti, A. Chiorino, G. Martinelli, M.C. Carotta, “Moisture effects on pure and Pd-doped SnO2 thick films analyzed by FT-IR spectroscopy and conductance measurements”, Sens. Actuators B, 24 (1995) 520-524.

[48] J.F. Boyle, K.A. Jones, “The effects of carbon monoxide, water vapor and surface temperature on the conductivity of a tin(IV) oxide gas sensor”, J. Electron. Mater., 6 (1977) 717-733.

[49] M. Huebner, C.E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Barsan, U. Weimar, “Influence of humidity on CO sensing with p-type CuO thick film gas sensors”, Sens. Actuators B: Chem., 153 2 (2011) 347-353.

[50] D.H. Kim, J.Y. Yoon, H.C. Park, K.H. Kim, “CO2-sensing characteristics of SnO2thick film by coating lanthanum oxide”, Sens. Actuators B 62 (2000) 61-66.

[51] Organisation Mondiale de la Santé, “Santé publique et environnement”, http://www.who.int/fr/.

[52] CITEPA, “La pollution en bref : sources de pollution”, (2009) http://www.citepa.org/pollution/index.htm. [53] Loi n° 96-1236 du 30/12/96 sur l'air et l'utilisation rationnelle de l'énergie.

[54] INRS, “Fiche toxicologique du dioxyde de carbone”, (2005) http://www.inrs.fr/accueil/produits/bdd/ doc/fichetox.html?refINRS=FT%20238.

[55] L. Hirsch, “Les hétéojonctions dans les semiconducteurs – Application aux LEDs et aux cellules solaires”,

Ecole Galerne(2011).

[56] N. Jaffrezic, E. Souteyrand, C. Martelet, S. Cosnier, P. Labbe, C. Pijolat, “Les capteurs chimiques, intéractions gaz-solide”, CMC2 (1997) 28-38.

[57] C. Gatumel, H. Berthiaux, R. Calvet, A. Chamayou, J.A. Dodds, F. Espitalier, E. Rodier, A. De Ryck, “Sciences et technologies des poudres”, (2008).

[58] N. Jaffrezic, E. Souteyrand, C. Martelet, S. Cosnier, P. Labbe, C. Pijolat, “Les capteurs chimiques, transduction électrique pour la détection de gaz”, CMC2 (1997) 52-62.

[59] L.F. Reyes, A. Hoel, S. Saukko, P. Heszler, V. Lantto, C.G. Granqvist, “Gas sensor response of pure and activated WO3 nanoparticle films made by advanced reactive gas deposition”, Sens. Actuators B:

Chem.117 1 (2006) 128-134.

[60] E. Delgado, C.R. Michel, “CO2 and O2 sensing behavior of nanostructured barium-doped SmCoO3”,

Mater. Lett., 60 (2006) 1613-1616.

[61] C.R. Michel, E. Lopez Mena, A.H. Martinez Preciado, E. de Leon, “Improvement of the gas sensing behavior in nanostructured Gd0.9Sr0.1CoO3by addition of silver”, Mater. Sci. Eng. B, 141 (2007) 1-7. [62] M. Casas-Cabanas, A.V. Chadwick, M.R. Palacin, C.R. Michel, “Carbon dioxide sensing properties of

bismuth cobaltite”, Sens. Actuators B: Chem 157 2 (2011) 380-387.

[63] C.R. Michel, A.H. Martinez, F. Huerta-Villalpando, J.P. Moran-Lazaro, “Carbon dioxide gas sensing behavior of nanostructured GdCoO3prepared by a solution-polymerization method”, J. Alloys Compd., 484 (2009) 605-611.

[65] M.Y. Kim, Y.N. Choi, J.M. Bae, T.S. Oh, “Carbon dioxide sensitivity of La-doped thick film tin oxide gas sensor”, Ceram. Inter., in press (2011).

[66] Q. Wei, W. D. Luo, B. Liao, Y. Liu and G. Wang, "Giant capacitance effect and physical model of nano crystalline CuO–BaTiO3semiconductor as a CO2gas sensor", J. Appl. Phys., 88 (2000) 4818.

[67] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, “ZnO transparent thin films for gas sensor applications”, Thin Solid Films, 515 (2006) 551-554.

[68] J. Herrán, G.G. Mandayo, E. Castano, “Solid state gas sensor for fast carbon dioxide detection”, Sens.

Actuators B129 (2008) 705-709.

[69] J. Herrán, O. Fernandez-Gonzalez, I Castro-Hurtado, T. Romero, G.G. Mandayo, E. Castano, “Photoactivated solid-state gas sensor for carbon dioxide detection at room temperature”, Sens. Actuators

B149 (2010) 368-372.

[70] M.I. Baraton, L. Merhari, “Determination of the gas sensing potentiality of nanosized powders by FTIR spectrometry, Scripta Mater. 44 (2001) 1643-1648.

[71] Y.F. Gu, H.M. Ji, B. Zhang, T.X. Xu, “Preparation and CO2 gas sensitive properties of CuO-SrTiO3- based semiconducteur thin films”, Key Eng. Mater. 280-283 (2007) 311-314.

[72] G. Zhang, M. Liu, “Effect of particle size and dopant on properties of SnO2-based gas sensors”, Sens.

Actuators B69 (2000) 144-152.

[73] A. Chapelle, F. Oudrhiri-Hassani, L. Presmanes, A. Barnabé, Ph. Tailhades, “CO2sensing properties of semiconducting copper oxide and spinel ferrite nanocomposite thin film”, Appl. Surf. Sci., 256 (2010) 4715-4719.

[74] S.E. Jo, B.G. Kang, S. Heo, S. Song, Y.J. Kim, “Gas sensing properties of WO3doped rutile TiO2thick film at high operating temperature”, Curr. Appl. Phys., 9 (2009) 235-238.

[75] J. Herrán, G.G. Mandayo, E. Castano, “Semiconducting BaTiO3-CuO mixed oxide thin film for CO2 detection”, Thin Solid Films 517 (2009) 6192-6197.

[76] A.E. Katkov, A.A. Lykasov,“Spinel phase relations in the Fe3O4-CuFe2O4system”, Inorg. Mater., 39 2

(2003) 171-174.

[77] W. Soller, A.J. Thomson, “The crystal structure of cuprous ferrite”, Phys. Rev. 47 (1935) 644.

[78] R.D. Shannon, D.B. Rogers, C.T. Prewitt, “Chemistry of noble metal oxides. I. Syntheses and properties of ABO2delafossite compounds”, Inorg. Chem. 10 (1971) 713.

[79] E. Mugnier, A. Barnabé, P. Tailhades, “Synthesis and characterization of CuFeO2+δ delafossite powders”, Solid State Ionics 177 (2006) 607.

[80] E.W. Klockow, Mineral. Petrogr. Inst. (1988) correspondant à la fiche #pdf 00-039-0246.

[81] H. Effenberger, Acta Crystallogr., Sec. C, 47 (1991) 2644-2652 correspondant à la fiche #pdf 01-079- 1546.

[82] B.U. Köhler, M. Jansen, Z. Anorg, “Darstellung und strukturdaten von "delafossiten" CuMO2(M = Al, Ga, Sc, Y) ”, Allg. Chem. 543 (1986) 73.

[83] B.V. Beznosikov, K.S. Aleksandrov, “Predictions of compounds in the family of delafossites”, J. Struct.

Chem. 50 (2009) 102-107.

[84] W. Von Stählin, R.H. Oswald, Z. Anorg, “Polytypie bei doppeloxiden: AgCoO2, AgFeO2, AgCrO2”,

[86] D.B. Rogers, R.D. Shannon, C.T. Prewitt, J.L. Gillson, “Chemistry of metal oxides. III. Electrical Transport Properties and Crystal Chemistry of ABO2 Compounds with Delafossite Structure”, Inorg.

Chem., 10 (1971) 723-727.

[87] K.E. Sickafus, J.M. Wills, N.W. Grimes, “Structure of spinel”, J. Am. Ceram. Soc., 82 12 (1999) 3279- 3292.

[88] V. Montoro, “Miscibility of the saline oxides of iron and of manganese”, Gazz. Chim. Ital., 68 (1938) 728-733 correspondant à la fiche #pdf 01-075-0033.

[89] G.A. Ferguson, M. Hass, “Magnetic structure and vacancy distribution in γ-Fe2O3 by neutron diffraction”, Phys. Rev., 112 (1958) 1130-1131.

[90] G.W. Van Oosterhout, C.J.M. Roojmans, “A new superstructure inγ-ferric oxide”, Nature, 181 (1958) 44.

[91] H. Takei, S. Chiba, “Vacancy ordering in epitaxially-grown single crystals of γ-Fe2O3”, J. Phys. Soc.

Jpn., 21 (1966) 1255-1263.

[92] T. Takei, T. Yasuda, S. Isihara, “High-temperature magnetization of ferrites”, J. Inst. Elect. Eng. Jpn 59 (1939) 568-571.

[93] K. Stierstadt, “Permeability of copper ferrite in rapidly changing fields; peculiarities in the Curie region,

Z. Phys. 146 (1956) 169-186.

[94] T. Inoue, S. Iida, “Specific heat of copper ferrite”, J. Phys. Soc. Jpn. 13 (1958) 656-660.

[95] M. Estrella, L. Barrio, G. Zhou, X. Wang, Q. Wang, W. Wen, J.C. Hanson, A.I. Frenkel, J.A. Rodriguez, “In Situ Characterization of CuFe2O4 and Cu/Fe3O4 Water-Gas Shift Catalysts”, J. Phys.

Chem. C,113 (2009) 14411–14417.

[96] C. Baubet, Ph. Tailhades, C. Bonningue, A. Rousset, Z. Simsa, “Influence of tetragonal distortion on magnetic and magneto-optical properties of copper ferrite films”, J. Phys. Chem. Solids, 61 (2000) 863- 867.

[97] N.V. Kasper, A.N. Chobot, I.O. Troyanchuk, “Elastic properties of copper ferrite in Jahn-Teller phase transition”, Phys. Solid State, 38 9 (1996) 1537-1539.

[98] H. Ohnishi, T. Teranishi, “Crystal distortion in copper ferrite-chromite series”, J. Phys. Soc. Jpn., 16 (1961) 35-45.

[99] V.A. Brabers, J. Klerk, “Dilatometric investigation of the phase transition in copper ferrite”,

Thermochim. Acta, 18 3 (1977) 287-294.

[100] K.S.R.C. Murthy, S. Mahanty, J. Chose, “Phase transition studies on copper ferrite”, Mater. Res.

Bull. Soc.,22 12 (1987) 1666-1675.

[101] C. Villette, “Elaboration et caractérisation de fines particules de ferrites spinelles substitués (cuivre, cobalt, manganèse) : relations structures-propriétés magnétiques”, Thèse, Toulouse (1995).

[102] C. Villette, Ph. Tailhades, A. Rousset, “Thermal behavior and magnetic properties of acicular copper-ferrite particles”, J. Solid State Chem., 117 1 (1995) 64-72.

[103] E. Kester, B. Gillot, P. Perriat, Ph. Dufour, C. Villette, Ph. Tailhades, A. Rousset, “Thermal behavior and cation distribution of submicron copper ferrite spinels CuxFe3-xO4(0 ≤ x ≤ 0.5) studied by DTG, FTIR, and XPS”, J. Solid State Chem. 126 1(1996) 7-14.

[104] E.J.W. Verwey, E.L. Heilmann, “Physical properties and cation arrangement of oxides with spinel structures. I. Cation arrangement in spinels”, J. Chem. Phys., 15 (1947) 174-180 correspondant à la fiche #pdf 01-077-0010.

[105] L. Weil, F. Bertaut, L. Bochirol, “The magnetic properties and structure of the quadratic phase of copper ferrite”, J. Phys. Radium, 11 (1950) 208-212 correspondant à la fiche #pdf 00-034-0425.

[106] T. Tanaka, M .Chiba, H. Okimura, Y. Koizumi, “Jahn-Teller effect of Cu-ferrite films by solid reaction”, J. Phys. IV, 7 (1997) 501-502.

[107] R.P. Mahajan, K.K. Patankar, M.B. Kothale, S.A. Patil, “Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite–barium titanate composites”, Bull. Mater. Sci., 23 4 (2000) 273- 279.

[108] T.E. Whall, M.0. Rigo, M.R.B. Jones, A.J. Pointon,“The magnetite problem: the anomalous Seebeck coefficient of Fe3O4-x,Fx”, J. Phys., 38 (1977) C1 229-C1 232.

[109] E.W. Groter, “Saturation magnetization and crystal chemistry of ferrimagnetic oxides. I. II. Theory of ferrimagnetism”, Philips Res. Rept., 9 (1954) 295-443.

[110] W.O. Milligan, Y. Tamai, “Magnetic properties of the dual oxide system CuO-Fe2O3”, J. Appl. Phys., 34 7 (1963) 2093-2096.

[111] C.F. Jefferson, “The Constitution of CuFe508”, J. Appl. Phys. 36 3 (1965) 1165-1166.

[112] A.N. Patil, M.G. Patil, K.K Patankar, V.L. Mathe, R.P. Mahajan, S.A. Patil, “Dielectric behavior and a.c. conductivity in CuxFe3-xO4ferrite”, Bull. Mater. Sci., 23 (2000) 447-452.

[113] Ph. Tailhades, C. Villette, A. Rousset, “Cation migration and coercivity in mixed copper-cobalt spinel ferrite powders”, J. Solid State Chem., 141 1 (1998) 56-63.

[114] R.K. Selvan, V. Krishnan, C.O. Augustin, H. Bertagnolli, C.S. Kim, A. Gedanken, “Investigations on the structural, morphological, electrical, and magnetic properties of CuFe2O4– NiO nanocomposites”,

Chem. Mater.20 (2008) 429-439.

[115] H.E. Swanson, E. Tatge, “Standard x-ray diffraction powder patterns”, Natl. Bur. Stand. (US), 539 1 (1953) 15 correspondant à la fiche #pdf 00-004-0836.

[116] A. Thobor, J.F. Pierson, “Properties and air annealing of paramelaconite thin films”, Mater. Lett., 57 22-23 (2003) 3676-3680.

[117] M. O'Keeffe, F.S. Stone, “The Magnetochemistry and Stoichiometry of the Copper-Oxygen System”,

The Royal Society, (1962) 501-517.

[118] J. Li, J.W. Mayer, “Oxidation and protection in copper and copper alloy thin films”, J. Appl. Phys., 70 5 (1991) 2820-2827.

[119] Y.S. Gong, C. Lee, C.K. Yang, “Atomic force microscopy and Raman spectroscopy studies on the oxidation of Cu thin films”, J. Appl. Phys., 77 10 (1995) 5422-5425.

[120] K. Hauffe, “Mechanism of metal oxidation at high temperatures”, Werkst. Korros., 16 9 (1965) 791- 798.

[121] J. Rocchi, “Couplage entre modélisations et expérimentations pour étudier le rôle de l'oxydation et des sollicitations mécaniques sur la rhéologie et les débits de troisième corps solide : cas de l'usure de contacts de géométrie conforme”, Thèse, INSA Lyon (2005).

[122] H.E. Swanson, R.K. Fuyat, “Standard x-ray diffraction powder patterns”, Natl. Bur. Stand. (US), 539 2 (1953) 23 correspondant à la fiche #pdf 00-005-0667.

[123] A.E. Rakhshani, “The role of space-charge-limited-current conduction in evaluation of the electrical properties of thin copper oxide (Cu2O) films”, J. Appl. Phys. 69 (1990) 2365-2369.

[124] M.T.S. Nair, L. Guerrero, O.L. Arenas, P.K. Nair, “Chemically deposited copper oxide thin films: structural, optical and electrical characteristics”, Appl. Surf. Sci. 150 (1999) 143-151.

[126] O. Porat, I. Riess, “Defect chemistry of Cu2-yO at elevated temperatures. Part II. Electrical conductivity, thermoelectric power and charged point defects”, Solid State Ionics 81 (1995) 29-38.

[127] E.N. Selivanov, R.I. Gulyaeva, L.Y. Udoeva, A.D. Verchinin, “The Effect of the Microstructure on Oxidation of Sulfide-Metal Alloys of Copper and Nickel”, Defect and Diffusion Forum 312 315 (2011) 306-311.

[128] Z.Y. Li, Y.C. Zhai, M. Pang, “Effect of particle size on oxidation reaction kinetics parameter of Cu2O powders”, Adv. Mater., 284 286 (2011) 726-729.

[129] G.T. Tunnel, E. Posnjak, C.J. Ksanda, “Crystal structure of tenorite”, J. Washington Acad. Sci. 23 (1933) 195-198.

[130] J.I. Langford, D. Louer, “High-resolution powder diffraction studies of copper(II) oxide”, J. Appl.

Crystallogr., 24 (1991) 149-155 correspondant à la fiche #pdf 00-048-1548.

[131] F. Marabelli, G.B. Parravicini, F. Salghetti-Drioli, “Optical gap of CuO”, Phys. Rev. B 52 (1995) 1433–1436.

[132] J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, “Electronic structure of Cu2O and CuO”, Phys. Rev. B 38 (1988) 11322–11330.

[133] F.P. Koffyberg, F.A. Benko, “A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO”, J. Appl. Phys. 53 (1982) 1173–1177.

[134] H. Holzschuh and H. Suhr,“Deposition of copper oxide (Cu2O, CuO) thin films at high temperatures by plasma-enhanced CVD”, Appl. Phys. A, 51 (1990) 486-490.

[135] V.F. Drobny, D.L. Pulfrey, “Properties of reactively-sputtered copper oxide thin films”, Thin Solid

Films61 1 (1979) 89-98.

[136] H. Suhr, C. Oehr, H. Holzschuh, F. Schmaderer, G. Wahl, T. Kruck, A. Kinnen, “Thermal and plasma enhanced CVD of HT-superconductors”, Physica C: Superconductivity and Its Applications 784 (1988) 153-155.

[137] A. Ghosh, D. Chakravorty, “Electrical conductivity in semiconducting cupric oxide-bismuth oxide- phosphorus pentoxide glasses”, J. Phys. Condens. Matter 2 4 (1990) 931-938.

[138] A. Cruccolini, R. Narducci, R. Palombari, “Gas adsorption effects on surface conductivity of nonstoichiometric CuO”, Sens. Actuators B 98 (2004) 227–232.

[139] J. Chen, K. Wang, L. Hartman, W. Zhou, “H2S detection by vertically aligned CuO nanowire array sensors”, J. Phys. Chem. 112 41 (2008) 16017–16021.

[140] L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q.L. Bao, T. Wu, C.M. Li, Z.X. Shen, J.X. Zhang, H. Gong, J.C. Li, T. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors”, Nanotechnology 20 8 (2009) 085203.

[141] N.D. Hoa, S.Y. An, N.Q. Dung, N.V. Quy, D. Kim, “Synthesis of p-type semiconducting cupric oxide thin films and their application to hydrogen detection”, Sens. Actuators B: Chem. 146 1 (2010) 239–244.

Chapitre II

Techniques

expérimentales

Documents relatifs