• Aucun résultat trouvé

Supplementary Table S1 597

Polymorphic markers used for mapping of RAA7.

598 599

Supplementary Table S2 600

Oligonucleotides used in this work.

601 602

Supplementary Figure S1 603

Sequence of Raa7 wild-type and mutants 604

605

Supplementary Figure S2.

606

Complementation of raa7 mutant with Raa7-HA 607

608

Supplementary Figure S3.

609

Expression of the RAA7-TAP construct 610

611

References 612

Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (1998) 613 Current Protocols in Molecular Biology New York, NY: John Wiley & sons.

614 Balczun, C., Bunse, A., Hahn, D., Bennoun, P., Nickelsen, J. and Kück, U. (2005) Two adjacent nuclear 615 genes are required for functional complementation of a chloroplast trans-splicing mutant 616 from Chlamydomonas reinhardtii. Plant J, 43, 636-648.

617 Balczun, C., Bunse, A., Schwarz, C., Piotrowski, M. and Kück, U. (2006) Chloroplast heat shock 618 protein Cpn60 from Chlamydomonas reinhardtii exhibits a novel function as a group II intron-619 specific RNA-binding protein. FEBS Lett, 580, 4527-4532.

620 Barkan, A. (2011) Expression of plastid genes: organelle-specific elaborations on a prokaryotic 621 scaffold. Plant Physiol, 155, 1520-1532.

622

Barkan, A., Klipcan, L., Ostersetzer, O., Kawamura, T., Asakura, Y. and Watkins, K.P. (2007) The 623 CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

624 RNA, 13, 55-64.

625 Beick, S., Schmitz-Linneweber, C., Williams-Carrier, R., Jensen, B. and Barkan, A. (2008) The 626 pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize 627 chloroplasts. Mol Cell Biol, 28, 5337-5347.

628 Boulouis, A., Drapier, D., Razafimanantsoa, H., Wostrikoff, K., Tourasse, N.J., Pascal, K., Girard-629 Bascou, J., Vallon, O., Wollman, F.A. and Choquet, Y. (2015) Spontaneous Dominant 630 Mutations in Chlamydomonas Highlight Ongoing Evolution by Gene Diversification. Plant Cell.

631 Boulouis, A., Raynaud, C., Bujaldon, S., Aznar, A., Wollman, F.A. and Choquet, Y. (2011) The 632 nucleus-encoded trans-acting factor MCA1 plays a critical role in the regulation of 633 cytochrome f synthesis in Chlamydomonas chloroplasts. Plant Cell, 23, 333-349.

634 Brown, G.G., des Francs-Small, C.C. and Ostersetzer-Biran, O. (2014) Group II intron splicing factors 635 in plant mitochondria. Frontiers in Plant Science, 5.35, 1-13.

636 Cao, M., Fu, Y., Guo, Y. and Pan, J. (2009) Chlamydomonas (Chlorophyceae) colony PCR.

637 Protoplasma, 235, 107-110.

638 Cardol, P., Matagne, R.F. and Remacle, C. (2002) Impact of mutations affecting ND mitochondria-639 encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication 640 for the structural organization of the enzyme. J Mol Biol, 319, 1211-1221.

641 Chateigner-Boutin, A.L., des Francs-Small, C.C., Delannoy, E., Kahlau, S., Tanz, S.K., de Longevialle, 642 A.F., Fujii, S. and Small, I. (2011) OTP70 is a pentatricopeptide repeat protein of the E 643 subgroup involved in splicing of the plastid transcript rpoC1. Plant J, 65, 532-542.

644 Choquet, Y., Goldschmidt-Clermont, M., Girard-Bascou, J., Kück, U., Bennoun, P. and Rochaix, J.D.

645 (1988) Mutant phenotypes support a trans-splicing mechanism for the expression of the 646 tripartite psaA gene in the C. reinhardtii chloroplast. Cell, 52, 903-913.

647 Coletta, A., Pinney, J.W., Solis, D.Y., Marsh, J., Pettifer, S.R. and Attwood, T.K. (2010) Low-648 complexity regions within protein sequences have position-dependent roles. BMC systems 649 biology, 4, 43.

650 Covello, P.S. and Gray, M.W. (1993) On the evolution of RNA editing. Trends Genet, 9, 265-268.

651 de Longevialle, A.F., Hendrickson, L., Taylor, N.L., Delannoy, E., Lurin, C., Badger, M., Millar, A.H.

652 and Small, I. (2008) The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is 653 required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana. Plant J, 56,

157-654 168.

655 de Longevialle, A.F., Small, I.D. and Lurin, C. (2010a) Nuclearly encoded splicing factors implicated in 656 RNA splicing in higher plant organelles. Molecular plant, 3, 691-705.

657 de Longevialle, A.F., Small, I.D. and Lurin, C. (2010b) Nuclearly encoded splicing factors implicated in 658 RNA splicing in higher plant organelles. Mol Plant, 3, 691-705.

659 Depege, N., Bellafiore, S. and Rochaix, J.D. (2003) Role of chloroplast protein kinase Stt7 in LHCII 660 phosphorylation and state transition in Chlamydomonas. Science, 299, 1572-1575.

661

Emanuelsson, O., Brunak, S., von Heijne, G. and Nielsen, H. (2007) Locating proteins in the cell using 662 TargetP, SignalP and related tools. Nat Protoc, 2, 953-971.

663 Emanuelsson, O., Nielsen, H. and Von Heijne, G. (1999) ChloroP, a neural network-based method for 664 predicting chloroplast transit peptides and their cleavage sites. Protein Science, 8, 978-984.

665 Germain, A., Hotto, A.M., Barkan, A. and Stern, D.B. (2013) RNA processing and decay in plastids.

666 Wiley interdisciplinary reviews. RNA, 4, 295-316.

667

Girard, J., Chua, N.H., Bennoun, P., Schmidt, G. and Delosme, M. (1980) Studies on mutants 668 deficient in the photosystem I reaction centers in Chlamydomonas reinhardtii. Curr Genet, 2,

669 215-221.

670 Glanz, S., Bunse, A., Wimbert, A., Balczun, C. and Kück, U. (2006) A nucleosome assembly protein-671 like polypeptide binds to chloroplast group II intron RNA in Chlamydomonas reinhardtii.

672 Nucleic Acids Res, 34, 5337-5351.

673 Glanz, S., Jacobs, J., Kock, V., Mishra, A. and Kück, U. (2012) Raa4 is a trans-splicing factor that 674 specifically binds chloroplast tscA intron RNA. Plant J, 69, 421-431.

675 Glanz, S. and Kück, U. (2009) Trans-splicing of organelle introns - a detour to continuous RNAs.

676 Bioessays, 31, 921-934.

677 Goldschmidt-Clermont, M. (1991) Transgenic expression of aminoglycoside adenine transferase in 678 the chloroplast: a selectable marker of site-directed transformation of chlamydomonas.

679 Nucleic Acids Res, 19, 4083-4089.

680 Goldschmidt-Clermont, M., Choquet, Y., Girard-Bascou, J., Michel, F., Schirmer-Rahire, M. and 681 Rochaix, J.D. (1991) A small chloroplast RNA may be required for trans-splicing in 682 Chlamydomonas reinhardtii. Cell, 65, 135-143.

683 Goldschmidt-Clermont, M., Girard-Bascou, J., Choquet, Y. and Rochaix, J.D. (1990) Trans-splicing 684 mutants of Chlamydomonas reinhardtii. Mol Gen Genet, 223, 417-425.

685 Harris, E.H. (2009) The genus Chlamydomonas. In The Chlamydomonas sourcebook. Introduction to 686 Chlamydomonas and its laboratory use.

687

. Oxford, UK.: Academic Press, pp. 1-18.

688 Herrin, D.L. and Schmidt, G.W. (1988) trans-splicing of transcripts for the chloroplast psaA1 gene. In 689 vivo requirement for nuclear gene products. J Biol Chem, 263, 14601-14604.

690 Jacobs, J. and Kück, U. (2011) Function of chloroplast RNA-binding proteins. Cellular and molecular 691 life sciences : CMLS, 68, 735-748.

692 Jacobs, J., Marx, C., Kock, V., Reifschneider, O., Franzel, B., Krisp, C., Wolters, D. and Kück, U. (2013) 693 Identification of a chloroplast ribonucleoprotein complex containing trans-splicing factors, 694 intron RNA, and novel components. Molecular & cellular proteomics : MCP, 12, 1912-1925.

695 Jenkins, B.D. and Barkan, A. (2001) Recruitment of a peptidyl-tRNA hydrolase as a facilitator of group 696 II intron splicing in chloroplasts. EMBO J, 20, 872-879.

697 Kindle, K.L. (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl 698 Acad Sci U S A, 87, 1228-1232.

699 Kück, U., Choquet, Y., Schneider, M., Dron, M. and Bennoun, P. (1987) Structural and transcription 700 analysis of the two homolgous genes for the P700 chlorophyll a-apoprotein in 701 Chlamydomonas reinhardtii: evidence for in vivo trans-splicing. EMBO J, 6, 2185-2195.

702 Lefebvre-Legendre, L., Choquet, Y., Kuras, R., Loubery, S., Douchi, D. and Goldschmidt-Clermont, 703 M. (2015) A nucleus-encoded helical-repeat protein which is regulated by iron availability 704 controls chloroplast psaA mRNA expression in Chlamydomonas. Plant Physiol, 167,

1527-705 1540.

706 Lefebvre-Legendre, L., Merendino, L., Rivier, C. and Goldschmidt-Clermont, M. (2014) On the 707 Complexity of Chloroplast RNA Metabolism: psaA Trans-splicing Can be Bypassed in 708 Chlamydomonas. Mol Biol Evol, 31, 2697-2707.

709 Lefebvre, P.A. and Silflow, C.D. (1999) Chlamydomonas: the cell and its genomes. Genetics, 151,

9-710 14.

711

Lukes, J., Archibald, J.M., Keeling, P.J., Doolittle, W.F. and Gray, M.W. (2011) How a neutral 712 evolutionary ratchet can build cellular complexity. IUBMB Life, 63, 528-537.

713 Lynch, M. (2007) The origins of genome architecture Sunderland, Mass., USA: Sinauer Associates,

714 Inc.

715 Lynch, M., Bobay, L.M., Catania, F., Gout, J.F. and Rho, M. (2011) The repatterning of eukaryotic 716 genomes by random genetic drift. Annual review of genomics and human genetics, 12, 347-717

366.

718 Marx, C., Wunsch, C. and Kück, U. (2015) The Octatricopeptide Repeat Protein Raa8 Is Required for 719 Chloroplast trans Splicing. Eukaryot Cell, 14, 998-1005.

720 Meierhoff, K., Felder, S., Nakamura, T., Bechtold, N. and Schuster, G. (2003) HCF152, an Arabidopsis 721 RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-722 psbT-psbH-petB-petD RNAs. Plant Cell, 15, 1480-1495.

723 Merendino, L., Perron, K., Rahire, M., Howald, I., Rochaix, J.D. and Goldschmidt-Clermont, M.

724

(2006) A novel multifunctional factor involved in trans-splicing of chloroplast introns in 725 Chlamydomonas. Nucleic Acids Res, 34, 262-274.

726 Olsen, J.V., de Godoy, L.M., Li, G., Macek, B., Mortensen, P., Pesch, R., Makarov, A., Lange, O., 727 Horning, S. and Mann, M. (2005) Parts per million mass accuracy on an Orbitrap mass 728 spectrometer via lock mass injection into a C-trap. Molecular & cellular proteomics : MCP, 4,

729 2010-2021.

730 Perron, K., Goldschmidt-Clermont, M. and Rochaix, J.D. (1999) A factor related to pseudouridine 731 synthases is required for chloroplast group II intron trans-splicing in Chlamydomonas 732 reinhardtii. EMBO J, 18, 6481-6490.

733 Perron, K., Goldschmidt-Clermont, M. and Rochaix, J.D. (2004) A multiprotein complex involved in 734 chloroplast group II intron splicing. RNA, 10, 704-710.

735 Purton, S. and Rochaix, J.D. (1994) Complementation of a Chlamydomonas reinhardtii mutant using 736 a genomic cosmid library. Plant Mol Biol, 24, 533-537.

737 Rahire, M., Laroche, F., Cerutti, L. and Rochaix, J.D. (2012) Identification of an OPR protein involved 738 in the translation initiation of the PsaB subunit of photosystem I. Plant J, 72, 652-661.

739 Ramundo, S., Rahire, M., Schaad, O. and Rochaix, J.D. (2013) Repression of essential chloroplast 740 genes reveals new signaling pathways and regulatory feedback loops in chlamydomonas.

741 Plant Cell, 25, 167-186.

742 Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Seraphin, B. (1999) A generic protein 743 purification method for protein complex characterization and proteome exploration. Nature 744 biotechnology, 17, 1030-1032.

745 Rivier, C., Goldschmidt-Clermont, M. and Rochaix, J.D. (2001) Identification of an RNA-protein 746

complex involved in chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii.

747 EMBO J, 20, 1765-1773.

748 Rymarquis, L.A., Handley, J.M., Thomas, M. and Stern, D.B. (2005) Beyond complementation. Map-749 based cloning in Chlamydomonas reinhardtii. Plant Physiol, 137, 557-566.

750 Schmitz-Linneweber, C., Williams-Carrier, R.E., Williams-Voelker, P.M., Kroeger, T.S., Vichas, A. and 751 Barkan, A. (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the 752 maize chloroplast rps12 pre-mRNA. Plant Cell, 18, 2650-2663.

753 Sharp, P.A. (1991) "Five easy pieces". Science, 254, 663.

754 Stern, D.B., Goldschmidt-Clermont, M. and Hanson, M.R. (2010) Chloroplast RNA metabolism.

755 Annual review of plant biology, 61, 125-155.

756 Tardif, M., Atteia, A., Specht, M., Cogne, G., Rolland, N., Brugiere, S., Hippler, M., Ferro, M., Bruley, 757 C., Peltier, G., Vallon, O. and Cournac, L. (2012) PredAlgo: a new subcellular localization 758 prediction tool dedicated to green algae. Mol Biol Evol, 29, 3625-3639.

759 Till, B., Schmitz-Linneweber, C., Williams-Carrier, R. and Barkan, A. (2001) CRS1 is a novel group II 760 intron splicing factor that was derived from a domain of ancient origin. RNA, 7, 1227-1238.

761

Watkins, K.P., Kroeger, T.S., Cooke, A.M., Williams-Carrier, R.E., Friso, G., Belcher, S.E., van Wijk, 762 K.J. and Barkan, A. (2007) A ribonuclease III domain protein functions in group II intron 763 splicing in maize chloroplasts. Plant Cell, 19, 2606-2623.

764 765 766

Table 1 767

TAP purification of Raa7 and mass spectrometry analysis of trans-splicing factors copurified with Raa7 768

Three independent TAP experiments were performed using Raa7 as bait (P1-P3). Non-specific interactors were identified by control 769

purifications using three RST-1 cultures and one non-tagged wild type culture for TAP experiments (C1-C4). Proteins were analyzed with the 770

tools PredAlgo (PA), TargetP (TP), and ChloroP (CP) for the prediction of subcellular localization. Proteins which were found with at least two 771

peptides in all three Raa7-TAP experiments and exhibit a putative mitochondrial/chloroplast transit peptide were considered as specific (32 772

proteins). Amongst 32 proteins (Table S3), the trans-splicing factors Raa1, Raa2, and Raa7 were detected (Columns “Accession” and 773

“Protein”). The number of unique peptides is given in column “Σ ≠ peptides”. Column “kDa” represents the predicted molecular mass of 774

corresponding proteins in kDa.

775

Raa7-TAP Σ ≠ peptides

Accession Protein kDa PA TP CP P1 P2 P3

Trans-splicing factors

Cre03.g201103 Raa7 (bait) 130 M M C 8 12 14

Cre16.g665750 Raa2, pseudouridine synthase 45 M M - 4 4 4

Cre09.g394150 Raa1 130 M C C 17 19 22

Plastid ribosomal proteins

Cre12.g494750 Plastid ribosomal protein S20 18 C C M 5 3 3

Cre02.g118950 Plastid ribosomal protein S17 12 C C M 3 5 3

Cre12.g494450 Plastid ribosomal protein S16 14 C C M 3 3 2

Not annotated

Cre17.g728850 no functional annotations 58 C M C 8 7 7

Cre17.g698750 no functional annotations 92 C M M 7 10 11

Cre10.g426450 no functional annotations 67 C C C 6 6 5

Cre03.g179000 no functional annotations 52 C M M 4 5 5

Cre02.g086100 no functional annotations 16 C C M 2 3 4

Photosynthesis

DAA00964.1 PsbD 39

plastid

3 2 2

DAA00966.1 PsbC 51 5 4 4

DAA00933.1 PsbB 56 4 3 2

DAA00911.1 PetB 24 2 3 3

DAA00955.1 AtpF 20 2 2 2

Cre11.g481450 CF0 ATP synthase subunit II precursor 22 C C M 2 2 3

Cre01.g045902 ParA/MinD ATPase like, putative PSI stabilizing protein 58 C C M 3 3 4 Others

Cre11.g467723 3-ketoacyl-CoA-synthase 49 - C M 3 3 2

Cre08.g382800 Ca2+/calmodulin-dependent protein kinase 76 C C M 6 2 2

Cre08.g373100 Cytochrome P450 63 C C C 8 7 3

Cre07.g343700 Dihydrolipoamide succinyltransferase 48 C M M 9 6 6

Cre06.g271200 NADH oxidase-related 63 - C M 2 6 6

Cre06.g257601 2-cys peroxiredoxin 26 C C C 3 2 3

Cre04.g217942 Acyl-CoA desaturase 64 C O C 2 2 2

Cre03.g199800 Iron hydrogenase, HyDA1 53 C C C 4 4 3

Cre03.g182150 TPM domain (TLP18.3, Psb32 and MOLO-1) 28 C C C 4 5 6

Cre03.g161400 Tryptophan synthase beta subunit 49 C C C 2 2 5

Cre02.g079700 Aspartate carbamoyltransferase 41 C C M 4 2 2

Cre02.g073200 Threonine dehydratase 67 C C M 14 8 12

Cre12.g546050 1-deoxy-D-xylulose 5-phosphate reductoisomerase 50 C C C 7 8 7

Cre12.g497300 Rhodanese-like Ca-sensing receptor 39 C C M 8 2 2

FIGURE LEGENDS 776

Figure 1. RNA and protein analysis of raa7 777

A. RNA-blot analysis of psaA transcripts in raa7 778

Total RNA extracts were subjected to denaturing agarose gel electrophoresis, blotted to 779

Nylon membranes and hybridized with radiolabelled probes for exon 3 of psaA, exon 1 of 780

psaA or psbD as a control.

781

B. Immunoblot analysis of photosynthetic complexes in raa7 782

Total protein extracts were subjected to SDS-PAGE and immunoblotting with anti-sera 783

against the PsaA, PsaD, PsaF subunits of photosystem I, the RbcL subunit of Rubisco, the 784

Cytf subunit of the b6f complex, the D1 subunit of photosystem II, the cF1 fraction of 785

ATPsynthase, subunit p17.2 of the LHCI antenna and CP29 of the LHCII antenna. The algae 786

were grown in medium containing acetate (TAP) in the dark.

787 788

Figure 2. Chloroplast transformation with intron-less psaA rescues raa7 789

A. Growth tests 790

Chlamydomonas cultures were spotted on minimal medium (HSM) or on medium containing 791

acetate (TAP) under normal light (60 μE m-2 s-1, NL) or dim light (6 μE m-2 s-1, DL).

792

B. Immunoblot analysis of PsaA 793

Total protein extracts were subjected to SDS-PAGE and immunoblotting with anti-sera 794

against PsaA, or the D1 protein of photosystem II as a loading control. The algae were grown 795

in medium containing acetate (TAP) in the dark.

796 797

Figure 3. Identification of the RAA7 gene 798

A. Mapping of the RAA7 gene 799

The upper line represents a segment of chromosome III with the different markers that were 800

used for genetic mapping. The numbers below each marker indicate the percentage of co-801

segregation with the raa7 mutation in the progeny of the cross to C. grossii. The second line 802

is a magnification of the region of chromosome III comprised between the markers CAPS1 803

and CAPS2. The different BAC clones (24N15, 30D16, 39C20, 27B18, 20E5, 15I14, 32B4, 804

3K11, and 2F17) covering the region are represented as segments below. In the lower part 805

of the panel, a magnification of BAC 3K11 is represented. Each subfragment of 3K11 served 806

was used to transform the raa7 mutant. Complementation is reported on the right of each 807

subfragment as the number of colonies obtained in duplicate transformation (colonies / 808

plate).

809

B. Map of the RAA7 gene 810

The first line is a schematic representation of the predicted structure of the RAA7 gene as 811

annotated on the Phytozome server (Cr03.g201103), with black bars representing the coding 812

sequence of the exons and white bars the 5’ and 3’ untranslated regions. The second line 813

represents the structure of the RAA7 gene as determined by RT-PCR. The third line (raa7) 814

shows the location of the frameshift mutation in raa7, with a hatched bar denoting the 815

aberrant polypeptide sequence beyond the position of the mutation. The fourth line (raa7-rev) 816

shows the position of the intragenic suppressor mutation that restores the reading frame. The 817

fifth line (RAA7-HA) represents the structure of the midigene construct. The 5’ part of the 818

genomic DNA is fused to the 3’part of the cDNA as shown with lines. The flag represents the 819

position of the triple HA epitope tag.

820 821

Figure 4. Raa7 localizes to the chloroplast 822

A. Chloroplasts 823

Chloroplasts were prepared from the strain raa7;cw15;Raa7-HA. The lanes contain total cell 824

extract (total) and the chloroplast fraction (chloroplast). Equal amounts of protein were 825

loaded. Immunoblots were performed with antibodies against the HA epitope, PRK (a stromal 826

chloroplast protein), PsaA (an integral membrane protein of Photosystem I) and the cytosolic 827

ribosomal protein Rpl37.

828

B. Mitochondria 829

Mitochondria were prepared from the strain raa7;cw15;Raa7-HA. Equal amounts of protein 830

were loaded. For the immunoblotting, antibodies against the HA epitope, PsaA and the 831

mitochondrial alternative oxidase (mAOX1) were used.

832

C. Membrane association 833

Whole-cell extracts (total) of raa7;cw15;Raa7-HA were separated into a membrane fraction 834

(Mb) and a soluble fraction (S). Equal amounts of protein were loaded. Immunoblots were 835

performed with the same antibodies as in panel A.

836 837

Figure 5. Raa7 interacts with Raa1 and Raa2 838

A. Raa7 is part of a large complex 839

Total soluble proteins from the raa7;cw15;Raa7-HA strain were fractionated by 840

sedimentation in sucrose density gradients. A total of 11 fractions were collected through the 841

bottom of each tube. Fractions 2 to 10 were analyzed by SDS-PAGE and immunoblotting 842

with anti-HA and anti-Raa2 sera. The position of Raa2 is indicated with an asterisk, as 843

validated in panel B. Total proteins from raa1/RAA1-HA were analyzed similarly with anti-HA 844

monoclonal antibody, the position of Raa1-HA is indicated with a triangle, as identified in 845

panel B. For calibration, a parallel gradient was loaded with protein markers. The migration of 846

the markers is indicated with the corresponding molecular masses at the bottom of the panel.

847

B. Identification of Raa2 and Raa1.

848

Because the polyclonal Raa2 anti-serum is not mono-specific, fraction 4 from panel A was 849

run alongside the wild type and the raa2 mutant to identify the Raa2 band (asterisk).

850

Likewise the Raa1-HA band in fraction 4 (triangle) was identified by comparison with the 851

raa1/RAA1-HA and the raa1 strains.

852

C Yeast two-hybrid interactions 853

Diploid strains carrying combinations of Raa1, Raa2 or Raa7 fused to the GAL4 activation 854

(AD) and DNA-binding domain (BD) were obtained by mating. Serial dilutions of the diploids 855

were spotted on minimal medium (CSM) lacking leucine and tryptophan to allow growth of all 856

diploids (left panels) and onto medium lacking leucine, tryptophan, adenine and histidine 857

where growth reveals an interaction between the two fusion proteins (right panels). All yeast 858

strains were mated against control strains carrying the empty plasmids (-) as controls for the 859

lack of activation in the absence of an interacting partner.

860

Figure 6. The psaA trans-splicing complexes in Chlamydomonas 861

Maturation of the psaA-mRNA in the chloroplast of C. reinhardtii comprises splicing of two 862

discontinuous group II introns, psaA-i1 and psaA-i2. This process is dependent on nucleus-863

encoded factors, which are categorized according to splicing deficiencies in corresponding 864

mutants into three classes. Class B factors (Raa1, yellow) are required for both splicing 865

reactions, class A factors (Raa2, Raa7, orange) for psaA-i2 splicing and class C factors 866

(Rat2, Raa3, Raa4, Raa8) for splicing of psaA-i1. TAP-MS analysis with trans-splicing factor 867

Raa7 as bait confirmed the formation of a protein complex necessary for psaA-i2 splicing and 868

consisting of at least Raa1, Raa2, and Raa7. Previous TAP-MS analyses with Raa4 as bait 869

uncovered the composition of a further protein ribonucleoprotein complex comprising the 870

known splicing factors Raa1, Raa3, Raa4, Raa8, Rat2, as well as 18 uncharacterized 871

proteins (Jacobs, et al. 2013). Uncharacterized proteins identified in TAP-MS analysis are 872

indicated in grey.

873

exons 1-2-3 pre-exon 3 pre-exon 1

psaA exon3 psaA exon1 psbD

Figure 1

A

B

WT raa7

100%

PsaA

PsaF

PsaD

RbcL

Cytf

cF1

D1

LHCI (p17.2)

LHCII (CP29)

10%

25%

50%

raa7 WT

75%

100%

A

B Figure 2

TAP DL TAP NL HSM NL

WT

PsaA D1

WT raa7 raa7/

psaA-Δi raa7

raa7/psaA-Δi

24N15

A B C Figure 4

Raa7-HA PRK

PsaA RPL37

total chloroplast total mitochondria total Sn Mb

Raa7-HA PsaA mAOX1

Raa7-HA PsaA PRK

A

2

B

C

CSM -LEU -TRP

BD-Raa7/- AD-Raa7/-BD-Raa7/AD-Raa7 BD-Raa7/- AD-Raa1/-BD-Raa7/AD-Raa1 BD-Raa1/- AD-Raa7/-BD-Raa1/AD-Raa7 BD-Raa2/- AD-Raa7/-BD-Raa2/AD-Raa7

CSM -LEU -TRP -ADE -HIS

Raa2

Raa7-HA

Figure 5

3 4 5 6 7 8 9 10

bottom top

Raa1-HA kDa

Raa2 fraction 4WT raa2

Raa1-HA fraction 4raa1/RAA1-HAraa1

670 550 158 75 44

Figure 6

Figure S1

WT MEAACGTHLRGLGPLPRVQGGGLSGPSGLFLTFWLPSAARSRSSPSPAVVRAPNESWDCRAGGVPPAHRPGASGPAYGTFKPLRATAGAAPATTAMWPASPLEGASGRHRASICRGSDSG 120 raa7-rev MEAACGTHLRGLGPLPRVQGGGLSGPSGLFLTFWLPSAARSRSSPSPAVVRAPNESWDCRAGGVPPAHRPGASGPAYGTFKPLRATAGAAPATTAMWPASPLEGASGRHRASICRGSDSG 120 raa7 MEAACGTHLRGLGPLPRVQGGGLSGPSGLFLTFWLPSAARSRSSPSPAVVRAPNESWDCRAGGVPPAHRPGASGPAYGTFKPLRATAGAAPATTAMWPASPLEGASGRHRASICRGSDSG 120 WT VVWAAAAAPPTASARAVAAAAASSRGATGGGGGSSTSSSSSSRARHLGSPPPSPGADKESTNTAQGGGGAVAQGAPLQRVAAAAPASRAALLRPGWSPALRAATGRGRGRGRGPGRGRGR 240 raa7-rev VVWAAAAAPPTASARAVAAAAASSRGATGGGGGSSTSSSSSSRARHLGSPPPSPGADKESTNTAQGGGGAVAQGAPLQRVAAAAPASRAALLRPGWSPALRAATGRGRGRGRGPGRGRGR 240 raa7 VVWAAAAAPPTASARAVAAAAASSRGATGGGGGSSTSSSSSSRARHLGSPPPSPGADKESTNTAQGGGGAVAQGAPLQRVAAAAPASRAALLRPGWSPALRAATGRGRGRGRGPGRGRGR 240 WT GEGSGVVEAQWGARGQPQGSRGAAAGLPLPLALLPTDPWRSQPQPQPPVRPSPAADGPAQEEDWDWAGDGEGADEQAGGQEWGSNWEEHVDAGQQAAHGSSAATSSSSGGGTAESPWAVA 360 raa7-rev GEGSGVVEAQWGARGQPQGSRGAAAGLPLPLALLPTDPWRSQPQPQPPVRPSPAADGPAQEEDWDWAGDGEGADEQAGGQEWGSNWEEHVDAGQQAAHGSSAATSSSSGGGTAESPWAVA 360 raa7 GEGSGVVEAQWGARGQPQGSRGAAAGLPLPLALLPTDPWRSQPQPQPPVRPSPAADGPAQEEDWDWAGDGEGADEQAGGQEWGSNWEEHVDAGQQAAHGSSAATSSSSGGGTAESPWAVA 360 WT DSGWLAQQRPLRPLRALPQRPPTAPGLEQAALQRLQQQWARGAGGGGSSRGLQAGGGAEAEREEQQLLQQVVAAASPEEVVACLSPALPPLPAASAPPSRLCSARLLLVAAERLAALQQS 480 raa7-rev DSGWLAQQRPLRPLRALPQRPPTAPGLEQAALQRLQQQWARGAGGGGSSRGLQAGGGAEAEREEQQLLQQVVAAASPEEVVACLSPALPPLPAASAPPSRLCSARLLLVAAERLAALQQS 480 raa7 DSGWLAQQRPLRPLRALPQRPPTAPGLEQAALQRLQQQWARGAGGGGSSRGLQAGGGAEAEREEQQLLQQVVAAASPEEVVACLSPALPPLPAASAPPSRLCSARLLLVAAERLAALQQS 480 WT GQQAQVARPAWSEPPPALAALCDAILRSAAAGGFSWPQLEWQQLEWQQQQQWEWPAREGGSSLGPSAPHAGDGGNGGVGAGQAYGRLAALLWRGAELQLQLGPGAGSSGGAAAGAGVVAA 600 raa7-rev GQQAQVARPAWSEPPPALAALCDAILRSAAAGGFSWPQLEWQQLEWQQQQQWEWPAREGGSSLGPSAPHAGDGGNGGVGAGQAYGRLAALLWRGAELQLQLGPGAGSSGGAAAGAGVVAA 600 raa7 GQQAQVARPAWSEPPPALAALCDAILRSAAAGGFSWPQLEWQQLEWQQQQQWEWPAREGGSSLGPSAPHAGDGGNGGVGAGQAYGRLAALLWRGAELQLQLGPGAGSSGGAAAGAGVVAA 600 WT APPPGVPRTAAAIAAAAAAPGDPGWRQQRRCGGLLAPWRRSSTAAAFWPQLLTCAVRQAGASLQPAELADLLEATAAAAAACHEQDEEDEDEREEDVGSRQRDGGGGGGGSSGLNPRGGS 720 raa7-rev APPPGVPRTAAAIAAAAAAPGDPGWRQQRRCGGLLAPWRRSSTAAAFWPQLLTCAVRQAGASLQPAELADLLEATAAAAAACHEQDEEDEDEREEDVGSRQRDGGGGGGGSSGLNPRGGS 720 raa7 APPPGVPRTAAAIAAAAAAPGDPGWRQQRRCGGLLAPWRRSSTAAAFWPQLLTCAVRQAGASLQPAELADLLEATAAAAAACHEQDEEDEDEREEDVGSRQRDGGGGGGGSSGLNPRGGS 720 WT SPLPLPLPPGALVAAEERLLAVGVHGIAPSDAVRLLAALAALRHPPRAATTRLLTAAAGAGFRGWRWRPPAELQQRLVLTRPQGAAVGATGSDAAVAAAAAEAEQAAAEPVAEAMQLGER 840 raa7-rev SPLPLPLPPGALVAAEERLLAVGVHGIAPSDAVRLLAALAALRHPPRAATTRLLTAAAGAGFRGWRWRPPAELQQRLVLTRPQGAAVGATGSDAAVAAAAAEAEQAAAEPVAEAMQLGER 840 raa7 SPLPLPLPPGALVAAEERLLAVGVHGIAPSDAVRLLAALAALRHPPRAATTRLLTAAAGAGFRGWRWRPPAELQQRLVLTRPQGAAVGATGSDAAVAAAAAEAEQAAAEPVAEAMQLGER 840 WT ELRSLLRSVCRLDGAYAAAGAEAWLADWAAAYWAHLHPRPLHCEAHTQHTGPHAHTHTEAEAEAEVGELTAGAGAGAAAEVLYLLATLQFVPPWEAWEAAALAAVQPRLMPWRRLLAAAR 960 raa7-rev ELRSLLRSVCRLDGAYAAAGAEAWLADWAAAYWAHLHPRPLHCEAHTQHTGPHAHTHTEAEAEAEVGELTAGAGAGAAAEVLYLLATLQFVPPWEAWEAAALAAVQPRLMPWRR----PG 957 raa7 ELRSLLRSVCRLDGAYAAAGAEAWLADWAAAYWAHLHPRPLHCEAHTQHTGPHAHTHTEAEAEAEVGELTAGAGAGAAAEVLYLLATLQFVPPWEAWEAAALAAVQPRLMPWRRPGPVGG 957 WT PGRRQQQWRQQRGRQDRAPATPAIPATAVEAQATLDCWLSHSPSPVPPQPRSEQHTHQPPHPQSSQPPPQSPPPLPKPLPPLALVQLAWAVGAHAAACPVPHPPILPPAAPAIESSDGGS 1080 raa7-rev PVGGSSSGGSSGGGKTGRLPPLPSLLLLWRRRRHWTAGCRTRPARCRPSHGASSTTHQPPHPQSSQPPPQSPPPLPKPLPPLALVQLAWAVGAHAAACPVPHPPILPPAAPAIESSDGGS 1076 raa7 SSSGGSSGGGKTGRLPPLPSLLLLWRRRRHWTAGCRTRPARCRPSHGASSTHTSRHIHSRRSRRRSHPRHCPSRCPPWPWCSWPGQWAHTPPPAPCRTRQSCRLPHLRLSQAMAAAVAAA 1080 WT SGGGGVSPVHAAGLAPGDGHGPAAAGRLTPRQQLRLSAHRHRLRVFGAALAALAAWAEAGSAEGAVAAAAATAAAAGSGGAPGAAGTAARQGAPGMARGRSGSGGGGHTIGMPPVSSAGG 1200 raa7-rev SGGGGVSPVHAAGLAPGDGHGPAAAGRLTPRQQLRLSAHRHRLRVFGAALAALAAWAEAGSAEGAVAAAAATAAAAGSGGAPGAAGTAARQGAPGMARGRSGSGGGGHTIGMPPVSSAGG 1196 raa7 ASPRSMRRAWRPETATAPPPPAA 1103

WT VAGAGRGPVDAQAAAWAACVRDVAWGAAAAGLDAGWVWPAAAGARLQLQAHLGPGGGGDGGSGGGEDRHGAGGLVECMLETAAARGWLL 1289 raa7-rev VAGAGRGPVDAQAAAWAACVRDVAWGAAAAGLDAGWVWPAAAGARLQLQAHLGPGGGGDGGSGGGEDRHGAGGLVECMLETAAARGWLL 1285

A

B Figure S2

TAP DL HSM NL cw15

PsaA cF1 Raa7-HA

cw15 raa7-cw15raa7-cw15RAA7-HA raa7-cw15

raa7-cw15/

RAA7-HA

Figure S3

RAA7_Ex1 (595 bp)

junction RAA7-TAP-tag

(590 bp)

TAP-tag (525 bp)

Cal-BP PsaA RbcL

pL52 T7.2 +RT T7.2 -RT pL52 T7.2 +RT T7.2 -RT

WT raa7 T7.2

pL52 T7.2 +RT T7.2 -RT

A

B

Supplementary Table S1.

Polymorphic markers used for mapping or RAA7

For mapping of RAA7, segregation of polymorphic markers was monitored in the progeny of a cross between the raa7 mutant in the C. reinhardtii background with the C. grossii strain S1D2.

The table lists the oligonucleotides used for PCR amplification with their respective sequence, and the size (bp: base pairs) of the amplicons in the two parental strains (C.r.: C. reinhardtii;

S1D2: C. grossii srain S1D2). For Cleaved Amplified Polymorphic Sequence markers (CAPS), the restriction enzyme used for cleavage is indicated.

Supplementary Table S2.

Oligonucleotides used in this work

The table lists the names and respective sequences of the oligonucleotides used for PCR amplification (other than for mapping of RAA7, see Table S1) as described in Experimental Procedures.

Supplementary Table S1

Polymorphic markers used for mapping or RAA7.

Name Sequence C.r product size /

S1D2 product size (bp)

Restriction enzyme for CAPS

CAPS1.1 AACTAAATGCTTAGGGTTGGTGTGAAG 301 EcoRV

CAPS1.2 CCTCGTTCCGAGCAACGTGAAA

STS14.A CATCTATCCACCACTATATGCCCC 115 / 150

STS14.B AAAATCTCAGAGCAAACCAGCAGA

STS14.C TACATATACCCGAACCAGGGGTGA

CAPS2 For CATCACCACTGCAAAACCACCAC 301 XhoI

CAPS2 Rev GCCTGGATCGCATACCTCACTGT

STS20.A TTCCTCATTGAGCTCCTTGCTCTT 199 / 148

STS20.B CTACATCGTTCGTGCTTTCTCGGG

STS20.C ATTGCTAATTGCGTTGGGCAGATA

STS15.A ATAGCCGCAGCCGTGTGAACCGTA 171 / 131

STS15.B CCACACACCAGTATAGCAACACAC

STS15.C GCGTGGGGTCATGTACTGTTGAC

STS10.1 TTGCATACACCGCCATGGGCCACG 298 / 195

STS10.2 AAGGCCAAGTAGTAAGAAGCCCAA

STS10.3 GTGGCAACCATTTTGATTGTGTGT

STS8.1 TACTGATAACCATGATCCTGTCCG 170 / 105

STS8.2 GGATTTACGTCCCAACAATGTGCA

STS8.3 ACAGCGGTGTCTGCATCTGATGTT

STS6.1 GGGTTGCAGCTAGTTTGCAACACT 376 / 194

STS6.2 TAGCAACGAGCTGGTGTTCGGACG

STS6.3 GTCCTGCTTGTTGCTATTACGGCT

KINESINA.1 CACGCGGCAAGACTACGGCGAC 417 / 187

KINESINA.2 TCTGCTATCGCCTCCGCGGATAGAG KINESINA.3 TGCAGGGCATAGCAGCAAGAGGGAC

Supplementary Table S2

Oligonucleotides used in this work.

Name Sequence

13For2 GCACTTTCAAGCCGCTGCG

13Rev2 GACCCCAAATGACGTGCTCG

13For3 GTCGCCAGCTGCTGACGG

13Rev3 CCACCACTTGCTGCAACAGC

ACC Rev8 GTGCCGTCTCCCTACGGCAT

ACC For4 CGGAAGTGCTTTACCTGCTGGC

ACC Rev9 AGGCGGGGCTGCACTG

ACC For6 TGAGGAGGATGGAGATGAGCGTGAG

ACC Rev5 GCCAGCAGGTAAAGCACTTCCG

ACC For8 CGGGAGGAGCAGCAGCTGT

ACC 13ATG bis For ATGGAAGCAGCTTGTGGCACG

ACC BAC3 Rev CGTCACACAGCGCTGCCA

TAP tag For CTCGAGAGCAGATCTAAGCGCCG

TAP tag Rev CTCGAGTACAAACCCGGGAGATCTCTTG

ACC DH1 For GAATTCAGATCCAGCCCCAGCCCTG

ACC DH1 Rev GGATCCCCACCACTTGCTGCAACAG

Documents relatifs