• Aucun résultat trouvé

TA-AA synthesis

TA-AA synthesis protocol and TA-Arg and TA-Lys structural characterization by proton and carbon nuclear magnetic resonance (NMR) and mass spectrometric (HRMS) analysis were previously reported [21].

TA-Ala, TA-Asn, TA-Gln, TA-Gly, TA-His, TA-Ile, TA-Met and TA-Val carbon and hydrogen NMR analysis as well as HRMS are listed below:

TA-Ala : 1H NMR (300 MHz, DMSO-d6) δ 8.37 (s, 3H), 7.30 (d, J = 9 Hz, 1H), 6.24 (d, J= 9 Hz, 1H), 6.02 (s, 1H), 5.56 (d, J = 6 Hz, 1H), 5.31 (d, J = 18 Hz, 1H), 4,94 (d, J = 18 Hz, 1H), 4.88, (d, J= 6 Hz, 1H), 4.30 (q, J= 3, 1H), 4.20 (bs, 2H), 2.63 (m, 1H), 2.35 (m, 2H), 2.04-1.54 (m, 6H), 1.50 (t, J= 3, 3H), 1.49 (s, 3H), 1.36 (s, 3H), 1.32 (m, 1H), 1.16 (s, 3H), 0.84 (s, 3H); 13C NMR (300 MHz, DMSO-d6) δ 203.55, 185.85, 170.56, 167.24, 153.09, 129.75, 124.95, 111.71, 102.85-100.52, 97.70, 81.90, 71.03-70.55, 69.06, 48.55-48.25, 48.34, 45.98, 43.52, 36.70, 33.71, 33.19-32.94, 30.76, 28.19, 26.96, 25.99, 23.53, 16.71, 16.75; HRMS (ESI) calculated for C27H37FNO7 [M+H]+: 506.2549, found: 506.2549.

TA-Asn Yield: 92 %; 1H NMR (600MHz, DMSO-d6) δ 8.39 (s, 3H), 7.71 (s, 1H), 7.30 (d, J= 12 Hz, 1H), 7.28 (s, 1H), 6.24 (d, J= 12Hz, 1H), 6.02 (s,1H), 5.51 (d, J= 6Hz, 1H), 5.32 (d, J= 18Hz, 1H), 4.88 (d, J=

6Hz, 1H), 4.87 (d, J= 18Hz, 1H), 4.46 (bs, 1H), 4.21 (bs, 1H), 2.82 (m,2H) 2.62-2.35 (m, 3H), 2.06-1.55 (m, 6H), 1.49 (s,3H), 1.36 (s,3H), 1.34 (m,1H), 1.17 (s,3H), 0.84 (s,3H); 13C NMR (600 MHz, DMSO-d6) δ 203.61, 186.08, 170.91, 169.63, 167.44, 153.32, 129.99, 125.21, 111.98, 102.48-101.31, 97.95, 82.12, 71.21-70.97, 65.84, 49.41, 48.72-48.57, 46.17, 43.77, 36.89, 35.36, 33.95, 33.40-33.27, 31.00, 28.42, 27.22, 26.30, 23.71, 17.03; MS (ESI) calculated for C28H38FN2O8 [M+H]+: 549.3, found: 549.2.

TA-Gln Yield: 91%; 1H NMR (600MHz, DMSO-d6) δ 8.47 (s, 3H), 7.43 (s, 1H), 7.30 (d, J= 12Hz, 1H), 6.98 (s, 1H), 6.25 (d, J= 12Hz, 1H), 6.03 (s, 1H), 5.53 (d, J= 5Hz, 1H), 5.34 (d, J= 18Hz, 1H), 4.90 (d, J=

18Hz, 1H), 4.88 (d, J= 5Hz, 1H), 4.28 (bs, 1H), 4.19 (bs, 1H), 2.60 (m,1H), 2.37 (m, 4H), 2.11-1.55 (m,

8H), 1.49 (s, 3H), 1.36 (s,3H), 1.34 (m, 1H), 1.17 (s, 3H), 0.84 (s, 3H); 13C NMR (600 MHz, DMSO-d6) δ 203.79, 186.08, 174.01, 170.12, 167.45, 153.30, 130.00, 125.20, 111.99, 102.50-101.34, 98.00, 82.17, 70.47- 69.43, 65.85, 52.34, 48.72-48.57, 46.23, 43.76, 36.97, 33.96, 33.39-33.26, 31.00, 30.86, 28.38, 27.23, 26.90, 26.33, 23.76-23.72, 17.02; MS (ESI) calculated for C29H40FN2O8 [M+H]+: 563.3, found:

563.2.

TA-Gly: 1H NMR (300 MHz, DMSO-d6) δ 8.33 (s, 3H), 7.30 (d, J = 9 Hz, 1H), 6.24 (d, J= 9 Hz, 1H), 6.02 (s, 1H), 5.55 (d, J = 6 Hz, 1H), 5.35 (d, J = 18 Hz, 1H), 4,90 (d, J = 18 Hz, 1H), 4.87, (d, J= 6 Hz, 1H) 4.21 (bs, 1H), 4.03 (s, 2H), 2.64 (m, 1H), 2.34 (m, 2H), 2.08-1.57 (m, 6H), 1.49 (s, 3H), 1.36 (s, 3H), 1.32 (m, 1H), 1.16 (s, 3H), 0.82 (s, 3H); 13C NMR (300 MHz, DMSO-d6) δ 203.53, 185.86, 168.10, 167.25, 153.14, 129.76, 124.96, 111.71, 102.84-100.51, 97.71, 81.90, 71.04-70.58, 69.02, 48.55-48.25, 45.94, 43.53, 40.56, 36.67, 33.69, 33.21-32.95, 30.76, 28.17, 26.96, 25.99, 23.45, 16.83; HRMS (ESI) calculated for C26H35FNO7 [M+H]+: 492.2393, found: 492.2392.

TA-His Yield: 42%; 1H NMR (600MHz, DMSO-d6) δ 14.17 (bs, 1H), 8.56 (bs, 3H), 7.40 (s, 1H), 7.39 (s, 1H), 7.31 (d, J= 12Hz, 1H), 6.25 (d, J= 12Hz, 1H), 6.03 (s, 1H), 5.55 (d, J= 6Hz, 1H), 5.35 (d, J= 18, 1H), 4.93 (d, J= 18, 1H), 4.88 (d, J= 6H, 1H), 4.55 (bs, 1H), 4.22 (bs, 1H), 3.23 (m, 2H), 2.61 (m, 1H), 2.34 (m 2H) 2.07-1.56 (m, 6H), 1.49 (s, 3H), 1.36 (s, 3H), 1.35 (m, 1H), 1.14 (s, 3H), 0.83 (s, 3H); 13C NMR (600 MHz, DMSO-d6) δ 203.70, 186.08, 169.13, 167.40, 158.70, 153.28, 135.75, 134.96, 130.00, 125.22, 112.00, 102.49-101.32, 97.93, 82.15, 71.14-70.90, 65.84, 55.63, 48.71, 46.20, 43.77, 36.95, 33.94, 33.38-33.25, 31.29, 28.42, 27.20, 26.23, 24.64, 23.71, 17.03; MS (ESI) calculated for C30H39FN3O7 [M+H]+: 572.3, found: 572.2.

TA-Ile: 1H NMR (300 MHz, DMSO-d6) δ 8.38 (s, 3H), 7.31 (d, J = 12 Hz, 1H), 6.25 (d, J= 12 Hz, 1H), 6.03 (s, 1H), 5.52 (d, J = 6 Hz, 1H), 5.32 (d, J = 18 Hz, 1H), 4,93 (d, J = 18 Hz, 1H), 4.88, (d, J= 6 Hz, 1H) 4.20 (bs, 2H), 2.59 (m, 1H), 2.36(m, 2H), 2.08-1.53 (m, 8H), 1.49 (s, 3H), 1.36 (s, 3H), 1.32 (m, 2H), 1.16 (s, 3H), 1,01 (d, J = 6 Hz, 3H), 0.92 (t, J = 9 Hz, 3H), 0.82 (s, 3H); 13C NMR (300 MHz, DMSO-d6) δ

203.63, 185.84, 169.78, 167.24, 153.09, 129.73, 124.95, 111.70, 102.86-100.53, 97.79, 81.88, 71.02-70.53, 69.00, 56.94, 48.56-48.26, 45.92, 43.49, 37.16, 36.68, 33.71, 33.20-32.94, 30.76, 28.21, 26.98, 26.05, 25.47, 23.46, 16.69, 14.71, 12.36; HRMS (ESI) calculated for C30H42FNO7 [M+H]+: 548.3018, found:

548.3017.

TA-Met Yield: 52%; 1H NMR (600MHz, DMSO-d6) δ 8.47 (s, 3H), 7.30 (d, J= 12Hz, 1H), 6.24 (d, J=

12Hz, 1H), 6.02 (s, 1H), 5.54 (d, J= 6Hz, 1H), 5.34 (d, J= 18Hz, 1H), 4.95 (d, J= 18Hz, 1H), 4.89 (d, J=

6Hz, 1H), 4.33 (bs, 1H), 4.21 (bs, 1H), 2.67 (m,2H), 2.62 (m,1H), 2.45 (m, 1H), 2.35 (m,1H), 2.14 (m, 2H), 2.07 (s, 3H), 2.05-1.54 (m, 6H), 1.49 (s, 3H), 1.36 (s, 3H), 1.34 (m, 1H), 1.16 (s, 3H), 0.84 (s, 3H); 13C NMR (600 MHz, DMSO-d6) δ 203.98, 186.08, 169.99, 167.45, 153.31, 129.99, 125.20, 111.99, 102.50-101.34, 97.99, 82.16, 71.15-70.91, 69.47, 51.72, 48.72-48.57, 46.22, 43.77, 36.94, 33.95, 33.39-33.26, 31.01, 30.77, 29.02, 28.43, 27.22, 26.26, 23.76-23.72, 16.97, 15.16; MS (ESI) calculated for C29H41FNO7S [M+H]+: 566.3, found: 566.2.

TA-Val Yield: 81 %; 1H NMR (300 MHz, DMSO-d6) δ 8.39 (s, 3H), 7.30 (d, J = 9 Hz, 1H), 6.24 (d, J= 9 Hz, 1H), 6.02 (s, 1H), 5.54 (d, J= 6 Hz, 1H), 5.33 (d, J= 18 Hz, 1H), 4,94 (d, J= 18 Hz, 1H), 4.88, (d, J= 6 Hz, 1H) 4.20 (bs, 2H), 2.63 (m, 1H), 2.34 (m, 3H), 2.08-1.57 (m, 6H), 1.49 (s, 3H), 1.36 (s, 3H), 1.32 (m, 1H), 1.16 (s, 3H), 1.06 (t, 6H), 0.82 (s, 3H); 13C NMR (300 MHz, DMSO-d6) δ 203.63, 185.85, 169.40, 167.24, 153.09, 129.74, 124.96, 111.70, 102.87-100.54, 97.75, 81.89, 71.00-70.51, 69.15, 57.65, 48.55-48.25, 45.93, 43.51, 36.68, 33.70, 33.19-32.93, 30.76, 30.25, 28.20, 26.97, 26.00, 23.46, 18.47, 18.09, 16.69; HRMS (ESI) calculated for C29H41FNO7 [M+H]+: 534.3, found: 534.3.

Validation of HPLC-UV method for the quantification of TA and TA-AA

Specificity, linearity, LOD and LOQ

The method specificity and linearity were established in a six point calibration curve in a concentration range from 1.41 to 230.15 nmol/ml; R2 was found consistently in between 0.98-1. The limit of detection (LOD) and quantification (LOQ) were established according to ICH Q2 (R1) guidelines [33].

Table S1. Retention time and calculated LOQ and LOD for TA and TA-AA prodrugs Retention solutions. Results of accuracy and precision are listed in Table S2 and were found to be included within the acceptance limits.

Table S2. Intra-and inter-day precision and accuracy for TA and TA-AA quantification method

Intra-day Inter-day

TA-Val

230.15 231.84 ± 1.30 0.56 100.7 228.59 ± 7.66 3.23 99.3

46.03 46.01 ± 0.26 0.56 100 45.62 ± 1.48 3.58 99.1

11.51 11.71 ±0.13 1.11 101.7 11.09 ± 0.40 4.03 96.3

a) RSD= (SD/mean) *100

b) Accuracy = (obtained concentration/theoretical concentration) *100

Acknowledgments

We would like to thank very warmly our colleagues, Prof. S. Rudaz, Dr. J. Schappler and J. Jacquat of the School of Pharmaceutical Sciences (University of Geneva) for the help with performing the capillary zone electrophoresis studies. V. Santer would like to thank F. Tessaro for the constructive exchange and help with the in silico modelling software. We are extremely grateful to SOOFT Italia S.p.A. company and in specific Dr. D. Rusciano for providing us with their iontophoretic device (power supply (I-ON CXL) and corneal application system (Iontofor CXL)).

References

[1] Mastropasqua L. Collagen cross-linking: when and how? A review of the state of the art of the technique and new perspectives. Eye Vis (Lond).2015;2:19.

[2] Randleman JB, Khandelwal SS, Hafezi F. Corneal cross-linking. Surv Ophthalmol.2015;60:509-23.

[3] Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol.2003;135:620-7.

[4] Baiocchi S, Mazzotta C, Cerretani D, et al. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg.2009;35:893-9.

[5] Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev.2006;58:1131-35.

[6] Evangelista CB, Hatch KM. Corneal collagen cross-linking complications. Semin Ophthalmol.2017;1-7.

[7] Mastropasqua L, Nubile M, Calienno R, et al. Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol.2014;157:623-30.

[8] Buzzonetti L, Petrocelli G, Valente P, et al. Iontophoretic transepithelial corneal cross-linking to halt keratoconus in pediatric cases: 15-month follow-up. Cornea.2015;34:512-15.

[9] Vinciguerra P, Romano V, Rosetta P, et al. Transepithelial iontophoresis versus standard corneal collagen cross-linking: 1-year results of a prospective clinical study. J Refract Surg.2016;32:672-78.

[10] Rootman DS, Jantzen JA, Gonzalez JR, et al. Pharmacokinetics and safety of transcorneal iontophoresis of tobramycin in the rabbit. Invest Ophthalmol Vis Sci.1988;29:1397-01.

[11] Hobden JA, Rootman DS, O'Callaghan RJ, et al. Iontophoretic application of tobramycin to uninfected and pseudomonas aeruginosa-infected rabbit corneas. Antimicrob Agents Chemother.1988;32:978-81.

[12] Eljarrat-Binstock E, Raiskup F, Stepensky D, et al. Delivery of gentamicin to the rabbit eye by drug-loaded hydrogel iontophoresis. Invest Ophthalmol Vis Sci.2004;45:2543-48.

[13] Frucht-Pery J, Mechoulam H, Siganos CS, et al. Iontophoresis-gentamicin delivery into the rabbit cornea, using a hydrogel delivery probe. Exp Eye Res.2004;78:745-49.

[14] Sherif Z, Pleyer U. Corticosteroids in ophthalmology: past – present – future.

Ophthalmologica.2002;216:305-15.

[15] Haft P, Kymionis G, Goldman DA. Corneal transplant rejection. Expert Rev Ophthalmol.2008;3:293-97.

[16] Banerjee S, Dick AD. Recent developments in the pharmacological treatment and prevention of corneal graft rejection. Expert Opin Investig Drugs.2003;12:29-37.

[17] Kalia YN, Naik A, Garrison J, et al. Iontophoretic drug delivery. Adv Drug Deliv Rev.2004;56:619-58.

[18] Gratieri T, Kalia YN. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier. Adv Drug Deliv Rev.2013;65:315-29.

[19] Wiedersberg S, Leopold CS, Guy RH. Bioavailability and bioequivalence of topical glucocorticoids.

Eur J Pharm Biopharm.2008;68:453-66.

[20] Patel A, Cholkar K, Agrahari V, et al. Ocular drug delivery systems: an overview. World J Pharmacol.2013;2:47-64.

[21] Santer V, del Río Sancho S, Lapteva M, et al. Targeted intracorneal delivery—biodistribution of triamcinolone acetonide following topical iontophoresis of cationic amino acid ester prodrugs. Int J Pharm.2017;525:43-53.

[22] Chen Y, Alberti I, Kalia YN. Topical iontophoretic delivery of ionizable, biolabile aciclovir prodrugs:

a rational approach to improve cutaneous bioavailability. Eur J Pharm Biopharm.2016;99:103-13.

[23] Chen Y, Zahui T, Alberti I, et al. Cutaneous biodistribution of ionizable, biolabile aciclovir prodrugs after short duration topical iontophoresis: targeted intraepidermal drug delivery. Eur J Pharm Biopharm.2016;99:94-102.

[24] Chen Y, Kalia YN. Short-duration ocular iontophoresis of ionizable aciclovir prodrugs: a new approach to treat herpes simplex infections in the anterior and posterior segments of the eye Int J Pharm.

[25] Abla N, Naik A, Guy RH, et al. Effect of charge and molecular weight on transdermal peptide delivery by iontophoresis. Pharm Res.2005;22:2069-78.

[26] Green PG, Hinz RS, Cullander C, et al. Iontophoretic delivery of amino acids and amino acid derivatives across the skin in vitro. Pharm Res.1991;8:1113-20.

[27] Del Terzo S, Behl CR, Nash RA. Iontophoretic transport of a homologous series of ionized and nonionized model compounds: influence of hydrophobicity and mechanistic interpretation. Pharm Res.1989;6:85-90.

[28] Schuetz YB, Carrupt P-A, Naik A, et al. Structure–permeation relationships for the non-invasive transdermal delivery of cationic peptides by iontophoresis. Eur J Pharm Sci.2006;29:53-59.

[29] Krishnan G, Roberts MS, Grice J, et al. Iontophoretic skin permeation of peptides: an investigation into the influence of molecular properties, iontophoretic conditions and formulation parameters. Drug Deliv Transl Res.2014;4:222-32.

[30] Dubey S, Kalia YN. Understanding the poor iontophoretic transport of lysozyme across the skin: when high charge and high electrophoretic mobility are not enough. J Control Release.2014;183:35-42.

[31] Kivell TL, Doyle SK, Madden RH, et al. An interactive method for teaching anatomy of the human eye for medical students in ophthalmology clinical rotations. Anat Sci Educ.2009;2:173-78.

[32] Pescina S, Govoni P, Potenza A, et al. Development of a convenient ex vivo model for the study of the transcorneal permeation of drugs: histological and permeability evaluation. J Pharm Sci.2015;104:63-71.

[33] Validation of Analytical Procedures: Text and Methodology Topic Q2 (R1), in: International Conference on Harmonisation of Technical Requirements for registration of Pharmaceuitcals for Human Use. 2005.

[34] Mora P, Eperon S, Felt-Baeyens O, et al. Trans-scleral diffusion of triamcinolone acetonide. Curr Eye Res.2005;30:355-61.

[35] Abla N, Geiser L, Mirgaldi M, et al. Capillary zone electrophoresis for the estimation of transdermal iontophoretic mobility. J Pharm Sci.2005;94:2667-75.

[36] Cazares-Delgadillo J, Naik A, Ganem-Rondero A, et al. Transdermal delivery of cytochrome C--A 12.4 kDa protein--across intact skin by constant-current iontophoresis. Pharm Res.2007;24:1360-8.

[37] Cazares-Delgadillo J, Ganem-Rondero A, Merino V, et al. Controlled transdermal iontophoresis for poly-pharmacotherapy: simultaneous delivery of granisetron, metoclopramide and dexamethasone sodium phosphate in vitro and in vivo. Eur J Pharm Sci.2016;31-38.

[38] Green PG, Hinz RS, Kim A, et al. Iontophoretic delivery of a series of tripeptides across the skin in vitro. Pharm Res.1991;8:1121-7.

[39] Yoshida NH, Roberts MS. Solute molecular size and transdermal iontophoresis across excised human skin. J Control Release.1993;25:177-95.

[40] Turner NG, Ferry L, Price M, et al. Iontophoresis of poly-L-lysines: the role of molecular weight?

Pharm Res.1997;14:1322-31.

[41] Mudry B, Carrupt P-A, Guy RH, et al. Quantitative structure-permeation relationship for iontophoretic transport across the skin. J Control Release 2007;122:165-72.

[42] Dubey S, Kalia YN. Non-invasive iontophoretic delivery of enzymatically active ribonuclease A (13.6 kDa) across intact porcine and human skins. J Control Release.2010;145:203-09.

[43] Marro D, Kalia YN, Delgado-Charro MB, et al. Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm Res.2001;18:1701-8.

[44] Kalaria DR, Patel P, Patravale V, et al. Comparison of the cutaneous iontophoretic delivery of rasagiline and selegiline across porcine and human skin in vitro. Int J Pharm.2012;438:202-8.

[45] Pawar KR, Smith F, Kolli CS, et al. Effect of lipophilicity on microneedle-mediated iontophoretic transdermal delivery across human skin in vitro. J Pharm Sci.2013;102:3784-91.

[46] Bonanno JA, Polse KA. Measurement of in vivo human corneal stromal pH: open and closed eyes.

Invest Ophthalmol Vis Sci.1987;28:522-30.

[47] DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg.2011;37:588-98.

[48] Nehme A, Lobenhofer E, Stamer WD, et al. Glucocorticoids with different chemical structures but similar glucocorticoid receptor potency regulate subsets of common and unique genes in human trabecular meshwork cells. BMC Med Genomics.2009;2:58.

[49] Cechin SR, Buchwald P. Effects of representative glucocorticoids on TNFα- and CD40L-induced NF-κB activation in sensor cells. Steroids.2014;85:36-43.

CHAPTER IV

- Characterization of triamcinolone acetonide amino acid prodrugs