• Aucun résultat trouvé

Summary and conclusion

Current evidence from animal and human studies suggests that diets rich in soy and phytoestrogens have beneficial effects on many aspects of diabetes and obesity. In animal studies, soy and phy-toestrogens are effective at reducing adipose tissue and improving glucose uptake. However, available data from human studies do not offer clear support, and further research is required before a firm conclusion can be made about the benefits of soy and

phytoestro-Table 10

Animal studies performed using dietary supplementation with soy proteins (isoflavone-free)

Species Duration

(days)

Dose (%) Number of

animals

Weight Fat mass Glycemia Circulating

insulin

Reference

ICR 28 23.7 (␤-conglycinin) 10 (10) Decreased No effect Decreased Decreased Moriyama et al. (2004)

ICR 28 21.9 (glycinin) 10 (10) Decreased No effect No effect No effect Moriyama et al. (2004)

yellow KK-Ay 28 23.7 (␤-conglycinin) 10 (10) Decreased No effect No effect Decreased Moriyama et al. (2004)

yellow KK-Ay 28 21.9 (glycinin) 10 (10) Decreased No effect No effect No effect Moriyama et al. (2004)

Obese C57BL/6 91 Black soy protein 9 (9) Decreased No effect ND ND Jang et al. (2008)

For clarity sakes, data on serum lipid profiles are not presented. Food intake was not measured in these studies. In the following studies, serum glucose and insulin were not analyzed. For control groups, the number of individuals (n) is shown in parentheses.

Author's personal copy

40 C.R. Cederroth, S. Nef / Molecular and Cellular Endocrinology 304 (2009) 30–42

gens in the context of adiposity control and glucose metabolism.

The specific soy protein components that may lead to metabolic improvements have yet to be determined. Phytoestrogens appear to have beneficial actions both on glucose and lipid metabolism but additional micronutriments such as saponins, phytosterols, trypsin inhibitors, as well as amino acid and protein composi-tion, may have additive or synergistic effects. Additional studies both in humans and animals will be required to identify precisely which components and constituents have beneficial roles. Unfortu-nately, comparisons between different animal or clinical studies are hampered by the lack of standardization of soy nomenclature, the different formulations, doses, routes of exposure, time and duration of exposure as well as by major differences in the subsequent analy-ses performed to evaluate the effects and elucidate the mechanisms by which phytoestrogens and soy potentially improve glucose and lipid metabolism. All of these variables make it difficult to compare and evaluate the putative beneficial effects of soy and phytoestro-gens on metabolism. Clearly more standardized studies, involving both basic research and clinical trials, are needed. Given the rapidly increasing prevalence and societal impact of metabolic disorders, such studies should have high priority.

Acknowledgments

We thank Prof. J.-D. Vassalli for critical comments on the manuscript. Authors were funded by grants from the Swiss National Science Foundation, Foundation Gertrude von Meissner, Fondation Ernst & Lucie Schmidheiny, the Sir Jules Thorn Charitable Over-seas Trust Reg., Schaan and the Cloëtta foundation. Serge Nef is a founder of Amazentis S.A. and a member of its scientific advisory board.

References

Adachi, T., Yasuda, K., Mori, C., Yashinaga, M., Aoki, N., Tsujimoto, G., Tsuda, K., 2005. Promoting insulin secretion in pancreatic islets by means of bisphenol-A and nonylphenol via intracellular estrogen-receptors. Food Chem. Toxicol. 43, 713–719.

Adlercreutz, H., Fotsis, T., Lampe, J., Wahala, K., Makela, T., Brunow, G., Hase, T., 1993a.

Quantitative determination of lignans and isoflavonoids in plasma of omniv-orous and vegetarian women by isotope dilution gas chromatography–mass spectrometry. Scand. J. Clin. Lab. Invest. 215 (Suppl.), 5–18.

Adlercreutz, H., Markkanen, H., Watanabe, S., 1993b. Plasma concentrations of phyto-oestrogens in Japanese men. Lancet 342, 1209–1210.

Ae Park, S., Choi, M.S., Cho, S.Y., Seo, J.S., Jung, U.J., Kim, M.J., Sung, M.K., Park, Y.B., Lee, M.K., 2006. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci. 79, 1207–1213.

Ahmed-Sorour, H., Bailey, C.J., 1980. Role of ovarian hormones in the long-term con-trol of glucose homeostasis. Interaction with insulin, glucagon and epinephrine.

Horm. Res. 13, 396–403.

Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., Fukami, Y., 1987. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262, 5592–5595.

Ali, A.A., Velasquez, M.T., Hansen, C.T., Mohamed, A.I., Bhathena, S.J., 2005. Modula-tion of carbohydrate metabolism and peptide hormones by soybean isoflavones and probiotics in obesity and diabetes. J. Nutr. Biochem. 16, 693–699.

Allison, D.B., Gadbury, G., Schwartz, L.G., Murugesan, R., Kraker, J.L., Heshka, S., Fontaine, K.R., Heymsfield, S.B., 2003. A novel soy-based meal replacement for-mula for weight loss among obese individuals: a randomized controlled clinical trial. Eur. J. Clin. Nutr. 57, 514–522.

Alonso-Magdalena, P., Morimoto, S., Ripoll, C., Fuentes, E., Nadal, A., 2006. The estro-genic effect of bisphenol A disrupts pancreatic beta-cell functionin vivoand induces insulin resistance. Environ. Health Perspect. 114, 106–112.

Alonso-Magdalena, P., Ropero, A.B., Carrera, M.P., Cederroth, C.R., Baquie, M., Gau-thier, B.R., Nef, S., Stefani, E., Nadal, A., 2008. Pancreatic insulin content regulation by the estrogen receptor ER alpha. PLoS ONE 3, e2069.

Anderson, J.W., Johnstone, B.M., Cook-Newell, M.E., 1995. Meta-analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 333, 276–282.

Anderson, J.W., Hoie, L.H., 2005. Weight loss and lipid changes with low-energy diets: comparator study of milk-based versus soy-based liquid meal replacement interventions. J. Am. Coll. Nutr. 24, 210–216.

Anderson, J.W., Fuller, J., Patterson, K., Blair, R., Tabor, A., 2007. Soy compared to casein meal replacement shakes with energy-restricted diets for obese women:

randomized controlled trial. Metabolism 56, 280–288.

Aoyama, T., Fukui, K., Nakamori, T., Hashimoto, Y., Yamamoto, T., Takamatsu, K., Sugano, M., 2000a. Effect of soy and milk whey protein isolates and their

hydrolysates on weight reduction in genetically obese mice. Biosci. Biotechnol.

Biochem. 64, 2594–2600.

Aoyama, T., Fukui, K., Takamatsu, K., Hashimoto, Y., Yamamoto, T., 2000b. Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK). Nutrition 16, 349–354.

Atkinson, C., Frankenfeld, C.L., Lampe, J.W., 2005. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp. Biol. Med.

(Maywood) 230, 155–170.

Bailey, C.J., Matty, A.J., 1972. Glucose tolerance and plasma insulin of the rat in relation to the oestrous cycle and sex hormones. Horm. Metab. Res. 4, 266–270.

Bailey, C.J., Ahmed-Sorour, H., 1980. Role of ovarian hormones in the long-term control of glucose homeostasis. Effects of insulin secretion. Diabetologia 19, 475–481.

Barros, R.P., Machado, U.F., Warner, M., Gustafsson, J.A., 2006. Muscle GLUT4 regula-tion by estrogen receptors ERbeta and ERalpha. Proc. Natl. Acad. Sci. U.S.A. 103, 1605–1608.

Bates, S.H., Myers Jr., M.G., 2003. The role of leptin receptor signaling in feeding and neuroendocrine function. Trends Endocrinol. Metab. 14, 447–452.

Bennetts, H.W., Underwood, E.J., Shier, F.L., 1946. A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Austr. Vet. J. 22, 2–12.

Bhathena, S.J., Velasquez, M.T., 2002. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr. 76, 1191–1201.

Bu, L., Setchell, K.D., Lephart, E.D., 2005. Influences of dietary soy isoflavones on metabolism but not nociception and stress hormone responses in ovariec-tomized female rats. Reprod. Biol. Endocrinol. 3, 58.

Bu, L.H., Lephart, E.D., 2005. Effects of dietary phytoestrogens on core body temper-ature during the estrous cycle and pregnancy. Brain Res. Bull. 65, 219–223.

Caldwell, C.R., Britz, S.J., Mirecki, R.M., 2005. Effect of temperature, elevated car-bon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max(L.) Merrill] grown in controlled environments. J.

Agric. Food Chem. 53, 1125–1129.

Carani, C., Qin, K., Simoni, M., Faustini-Fustini, M., Serpente, S., Boyd, J., Korach, K.S., Simpson, E.R., 1997. Effect of testosterone and estradiol in a man with aromatase deficiency. N. Engl. J. Med. 337, 91–95.

Case, A.M., Reid, R.L., 2001. Menstrual cycle effects on common medical conditions.

Compr. Ther. 27, 65–71.

Cederroth, C.R., Vinciguerra, M., Kuhne, F., Madani, R., Doerge, D.R., Visser, T.J., Foti, M., Rohner-Jeanrenaud, F., Vassalli, J.D., Nef, S., 2007. A phytoestrogen-rich diet increases energy expenditure and decreases adiposity in mice. Environ. Health Perspect. 115, 1467–1473.

Cederroth, C.R., Vinciguerra, M., Gjinovci, A., Kuhne, F., Klein, M., Cederroth, M., Caille, D., Suter, M., Neumann, D., James, R.W., Doerge, D.R., Wallimann, T., Meda, P., Foti, M., Rohner-Jeanrenaud, F., Vassalli, J.D., Nef, S., 2008. Dietary phytoestrogens activate AMP-activated protein kinase with improvement in lipid and glucose metabolism. Diabetes 57, 1176–1185.

Chen, A.C., Donovan, S.M., 2004. Genistein at a concentration present in soy infant formula inhibits Caco-2BBe cell proliferation by causing G2/M cell cycle arrest.

J. Nutr. 134, 1303–1308.

Cheng, S.Y., Shaw, N.S., Tsai, K.S., Chen, C.Y., 2004. The hypoglycemic effects of soy isoflavones on postmenopausal women. J. Women Health (Larchmt) 13, 1080–1086.

Choi, M.S., Jung, U.J., Yeo, J., Kim, M.J., Lee, M.K., 2008. Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice. Diabetes Metab.

Res. Rev. 24, 74–81.

Cooke, P.S., Heine, P.A., Taylor, J.A., Lubahn, D.B., 2001. The role of estrogen and estrogen receptor-alpha in male adipose tissue. Mol. Cell. Endocrinol. 178, 147–

154.

Cooke, P.S., Naaz, A., 2004. Role of estrogens in adipocyte development and function.

Exp. Biol. Med. (Maywood) 229, 1127–1135.

Coward, L., Kirk, M., Albin, N., Barnes, S., 1996. Analysis of plasma isoflavones by reversed-phase HPLC-multiple reaction ion monitoring-mass spectrometry.

Clin. Chim. Acta 247, 121–142.

Crouse 3rd, J.R., Morgan, T., Terry, J.G., Ellis, J., Vitolins, M., Burke, G.L., 1999. A ran-domized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipopro-teins. Arch. Intern. Med. 159, 2070–2076.

Dalais, F.S., Ebeling, P.R., Kotsopoulos, D., McGrath, B.P., Teede, H.J., 2003. The effects of soy protein containing isoflavones on lipids and indices of bone resorption in postmenopausal women. Clin. Endocrinol. (Oxf.) 58, 704–709.

Davis, J., Iqbal, M.J., Steinle, J., Oitker, J., Higginbotham, D.A., Peterson, R.G., Banz, W.J., 2005. Soy protein influences the development of the metabolic syndrome in male obese ZDFxSHHF rats. Horm. Metab. Res. 37, 316–325.

de Kleijn, M.J., van der Schouw, Y.T., Wilson, P.W., Grobbee, D.E., Jacques, P.F., 2002.

Dietary intake of phytoestrogens is associated with a favorable metabolic car-diovascular risk profile in postmenopausal U.S. women: the Framingham study.

J. Nutr. 132, 276–282.

Dixon, R.A., 2004. Phytoestrogens. Annu. Rev. Plant Biol. 55, 225–261.

Dolinoy, D.C., Weidman, J.R., Waterland, R.A., Jirtle, R.L., 2006. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 114, 567–572.

Duffy, C., Perez, K., Partridge, A., 2007. Implications of phytoestrogen intake for breast cancer. CA Cancer J. Clin. 57, 260–277.

Engelgau, M.M., Geiss, L.S., Saaddine, J.B., Boyle, J.P., Benjamin, S.M., Gregg, E.W., Tierney, E.F., Rios-Burrows, N., Mokdad, A.H., Ford, E.S., Imperatore, G., Narayan,

Author's personal copy

C.R. Cederroth, S. Nef / Molecular and Cellular Endocrinology 304 (2009) 30–42 41

K.M., 2004. The evolving diabetes burden in the United States. Ann. Intern. Med.

140, 945–950.

Foryst-Ludwig, A., Clemenz, M., Hohmann, S., Hartge, M., Sprang, C., Frost, N., Krikov, M., Bhanot, S., Barros, R., Morani, A., Gustafsson, J.A., Unger, T., Kintscher, U., 2008.

Metabolic actions of estrogen receptor beta (ERbeta) are mediated by a negative cross-talk with PPARgamma. PLoS Genet. 4, e1000108.

Fujimoto, W.Y., Leonetti, D.L., Kinyoun, J.L., Newell-Morris, L., Shuman, W.P., Stolov, W.C., Wahl, P.W., 1987. Prevalence of diabetes mellitus and impaired glu-cose tolerance among second-generation Japanese-American men. Diabetes 36, 721–729.

Fujimoto, W.Y., Leonetti, D.L., Bergstrom, R.W., Kinyoun, J.L., Stolov, W.C., Wahl, P.W., 1991. Glucose intolerance and diabetic complications among Japanese-American women. Diabetes Res. Clin. Pract. 13, 119–129.

Gambacciani, M., Ciaponi, M., Cappagli, B., Piaggesi, L., De Simone, L., Orlandi, R., Genazzani, A.R., 1997. Body weight, body fat distribution, and hormonal replace-ment therapy in early postmenopausal women. J. Clin. Endocrinol. Metab. 82, 414–417.

Gao, Q., Mezei, G., Nie, Y., Rao, Y., Choi, C.S., Bechmann, I., Leranth, C., Toran-Allerand, D., Priest, C.A., Roberts, J.L., Gao, X.B., Mobbs, C., Shulman, G.I., Diano, S., Hor-vath, T.L., 2007. Anorectic estrogen mimics leptin’s effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat. Med. 13, 89–94.

Garcia, M.C., Torre, M., Marina, M.L., Laborda, F., 1997. Composition and characteri-zation of soyabean and related products. Crit. Rev. Food Sci. Nutr. 37, 361–391.

Gardner, C.D., Newell, K.A., Cherin, R., Haskell, W.L., 2001. The effect of soy pro-tein with or without isoflavones relative to milk propro-tein on plasma lipids in hypercholesterolemic postmenopausal women. Am. J. Clin. Nutr. 73, 728–

735.

Godsland, I.F., 2005. Oestrogens and insulin secretion. Diabetologia 48, 2213–2220.

Goodman-Gruen, D., Kritz-Silverstein, D., 2001. Usual dietary isoflavone intake is associated with cardiovascular disease risk factors in postmenopausal women.

J. Nutr. 131, 1202–1206.

Goodman-Gruen, D., Kritz-Silverstein, D., 2003. Usual dietary isoflavone intake and body composition in postmenopausal women. Menopause 10, 427–432.

Greany, K.A., Nettleton, J.A., Wangen, K.E., Thomas, W., Kurzer, M.S., 2004. Probi-otic consumption does not enhance the cholesterol-lowering effect of soy in postmenopausal women. J. Nutr. 134, 3277–3283.

Grieshop, C.M., Fahey Jr., G.C., 2001. Comparison of quality characteristics of soybeans from Brazil, China, and the United States. J. Agric. Food Chem. 49, 2669–2673.

Grieshop, C.M., Kadzere, C.T., Clapper, G.M., Flickinger, E.A., Bauer, L.L., Frazier, R.L., Fahey Jr., G.C., 2003. Chemical and nutritional characteristics of United States soybeans and soybean meals. J. Agric. Food Chem. 51, 7684–7691.

Guthrie, J.R., Ball, M., Murkies, A., Dennerstein, L., 2000. Dietary phytoestrogen intake in mid-life Australian-born women: relationship to health variables. Climacteric 3, 254–261.

Hall, W.L., Vafeiadou, K., Hallund, J., Bugel, S., Reimann, M., Koebnick, C., Zunft, H.J., Ferrari, M., Branca, F., Dadd, T., Talbot, D., Powell, J., Minihane, A.M., Cas-sidy, A., Nilsson, M., Dahlman-Wright, K., Gustafsson, J.A., Williams, C.M., 2006.

Soy-isoflavone-enriched foods and markers of lipid and glucose metabolism in postmenopausal women: interactions with genotype and equol production. Am.

J. Clin. Nutr. 83, 592–600.

Heine, P.A., Taylor, J.A., Iwamoto, G.A., Lubahn, D.B., Cooke, P.S., 2000. Increased adi-pose tissue in male and female estrogen receptor-alpha knockout mice. Proc.

Natl. Acad. Sci. U.S.A. 97, 12729–12734.

Howitz, K.T., Sinclair, D.A., 2008. Xenohormesis: sensing the chemical cues of other species. Cell 133, 387–391.

Hurley, C., Richard, D., Deshaies, Y., Jacques, H., 1998. Soy protein isolate in the pres-ence of cornstarch reduces body fat gain in rats. Can. J. Physiol. Pharmacol. 76, 1000–1007.

Hwang, C.S., Kwak, H.S., Lim, H.J., Lee, S.H., Kang, Y.S., Choe, T.B., Hur, H.G., Han, K.O., 2006. Isoflavone metabolites and their in vitro dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J.

Steroid Biochem. Mol. Biol. 101, 246–253.

Hwang, J.T., Park, I.J., Shin, J.I., Lee, Y.K., Lee, S.K., Baik, H.W., Ha, J., Park, O.J., 2005.

Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via acti-vating AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 338, 694–699.

Ikeda, Y., Iki, M., Morita, A., Kajita, E., Kagamimori, S., Kagawa, Y., Yoneshima, H., 2006.

Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women: Japanese Population-Based Osteoporosis (JPOS) Study.

J. Nutr. 136, 1323–1328.

Jang, E.H., Moon, J.S., Ko, J.H., Ahn, C.W., Lee, H.H., Shin, J.K., Park, C.S., Kang, J.H., 2008. Novel black soy peptides with antiobesity effects: activation of leptin-like signaling and AMP-activated protein kinase. Int. J. Obes. (Lond.) 32, 1161–1170.

Jayagopal, V., Albertazzi, P., Kilpatrick, E.S., Howarth, E.M., Jennings, P.E., Hepburn, D.A., Atkin, S.L., 2002. Beneficial effects of soy phytoestrogen intake in post-menopausal women with type 2 diabetes. Diabetes Care 25, 1709–1714.

Jefferson, W.N., Padilla-Banks, E., Newbold, R.R., 2005. Adverse effects on female development and reproduction in CD-1 mice following neonatal exposure to the phytoestrogen genistein at environmentally relevant doses. Biol. Reprod. 73, 798–806.

Jefferson, W.N., Padilla-Banks, E., Newbold, R.R., 2007. Disruption of the female repro-ductive system by the phytoestrogen genistein. Reprod. Toxicol. 23, 308–316.

Jones, M.E., Thorburn, A.W., Britt, K.L., Hewitt, K.N., Wreford, N.G., Proietto, J., Oz, O.K., Leury, B.J., Robertson, K.M., Yao, S., Simpson, E.R., 2000. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc. Natl. Acad. Sci. U.S.A.

97, 12735–12740.

Ju, Y.H., Doerge, D.R., Allred, K.F., Allred, C.D., Helferich, W.G., 2002. Dietary genis-tein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res. 62, 2474–2477.

Kim, E.K., Kwon, K.B., Song, M.Y., Seo, S.W., Park, S.J., Ka, S.O., Na, L., Kim, K.A., Ryu, D.G., So, H.S., Park, R., Park, J.W., Park, B.H., 2007. Genistein protects pancreatic beta cells against cytokine-mediated toxicity. Mol. Cell. Endocrinol. 278, 18–28.

King, R.A., Bursill, D.B., 1998. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am. J. Clin. Nutr. 67, 867–872.

Kirk, E.A., Sutherland, P., Wang, S.A., Chait, A., LeBoeuf, R.C., 1998. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice. J. Nutr. 128, 954–959.

Kohno, M., Hirotsuka, M., Kito, M., Matsuzawa, Y., 2006. Decreases in serum tri-acylglycerol and visceral fat mediated by dietary soybean beta-conglycinin. J.

Atheroscler. Thromb. 13, 247–255.

Kok, L., Kreijkamp-Kaspers, S., Grobbee, D.E., Lampe, J.W., van der Schouw, Y.T., 2005.

Soy isoflavones, body composition, and physical performance. Maturitas 52, 102–110.

Kuiper, G.G., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S., Gustafs-son, J.A., 1997. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138, 863–

870.

Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., van der Saag, P.T., van der Burg, B., Gustafsson, J.A., 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139, 4252–4263.

Lavigne, C., Marette, A., Jacques, H., 2000. Cod and soy proteins compared with casein improve glucose tolerance and insulin sensitivity in rats. Am. J. Physiol.

Endocrinol. Metab. 278, E491–500.

Le May, C., Chu, K., Hu, M., Ortega, C.S., Simpson, E.R., Korach, K.S., Tsai, M.J., Mauvais-Jarvis, F., 2006. Estrogens protect pancreatic beta-cells from apopto-sis and prevent insulin-deficient diabetes mellitus in mice. Proc. Natl. Acad. Sci.

U.S.A. 103, 9232–9237.

Lee, J.S., 2006. Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci. 79, 1578–1584.

Leopold, A.S., Erwin, M., Oh, J., Browning, B., 1976. Phytoestrogens: adverse effects on reproduction in California quail. Science 191, 98–100.

Lephart, E.D., Rhees, R.W., Setchell, K.D., Bu, L.H., Lund, T.D., 2003. Estrogens and phytoestrogens: brain plasticity of sexually dimorphic brain volumes. J. Steroid Biochem. Mol. Biol. 85, 299–309.

Lephart, E.D., Porter, J.P., Lund, T.D., Bu, L., Setchell, K.D., Ramoz, G., Crowley, W.R., 2004a. Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats. Nutr. Metab. (Lond.) 1, 16.

Lephart, E.D., Setchell, K.D., Handa, R.J., Lund, T.D., 2004b. Behavioral effects of endocrine-disrupting substances: phytoestrogens. Ilar. J. 45, 443–454.

Li, Z., Hong, K., Saltsman, P., DeShields, S., Bellman, M., Thames, G., Liu, Y., Wang, H.J., Elashoff, R., Heber, D., 2005. Long-term efficacy of soy-based meal replacements vs an individualized diet plan in obese type II DM patients: relative effects on weight loss, metabolic parameters, and C-reactive protein. Eur. J. Clin. Nutr. 59, 411–418.

Liang, Y.Q., Akishita, M., Kim, S., Ako, J., Hashimoto, M., Iijima, K., Ohike, Y., Watanabe, T., Sudoh, N., Toba, K., Yoshizumi, M., Ouchi, Y., 2002. Estrogen receptor beta is involved in the anorectic action of estrogen. Int. J. Obes. Relat. Metab. Disord. 26, 1103–1109.

Lin, J., Handschin, C., Spiegelman, B.M., 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell. Metab. 1, 361–370.

Liu, B., Edgerton, S., Yang, X., Kim, A., Ordonez-Ercan, D., Mason, T., Alvarez, K., McKimmey, C., Liu, N., Thor, A., 2005. Low-dose dietary phytoestrogen abrogates tamoxifen-associated mammary tumor prevention. Cancer Res. 65, 879–886.

Liu, D., Zhen, W., Yang, Z., Carter, J.D., Si, H., Reynolds, K.A., 2006. Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a cAMP-dependent protein kinase pathway. Diabetes 55, 1043–1050.

Louet, J.F., LeMay, C., Mauvais-Jarvis, F., 2004. Antidiabetic actions of estrogen: insight from human and genetic mouse models. Curr. Atheroscler. Rep. 6, 180–185.

Lukaczer, D., Liska, D.J., Lerman, R.H., Darland, G., Schiltz, B., Tripp, M., Bland, J.S., 2006. Effect of a low glycemic index diet with soy protein and phytosterols on CVD risk factors in postmenopausal women. Nutrition 22, 104–113.

Makela, S., Davis, V.L., Tally, W.C., Korkman, J., Salo, L., Vihko, R., Santti, R., Korach, K.S., 1994. Dietary estrogens act through estrogen receptor-mediated processes and show no antiestrogenicity in cultured breast cancer cells. Environ. Health Perspect. 102, 572–578.

Makela, S., Santti, R., Salo, L., McLachlan, J.A., 1995. Phytoestrogens are partial estro-gen agonists in the adult male mouse. Environ. Health Perspect. 103 (Suppl 7), 123–127.

Makimura, H., Mizuno, T.M., Mastaitis, J.W., Agami, R., Mobbs, C.V., 2002. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci. 3, 18.

Martensson, U.E.A., Salehi, A.S., Windahl, S., Gomez, M.F., Swärd, K., Daszkiewicz-Nilsson, J., Wendt, A., Andersson, N., Hellstrand, P., Grände, P.-O., Owman, C., Rosen, C.J., Adamo, M.L., Lundquist, I., Rorsman, P., Nilsson, B.-O., Ohlsson, C., Olde, B., Leeb-Lundberg, L.M.F., 2008. Deletion of the G protein-coupled recep-tor GRP30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice.

Endocrinology, 2008–2623, 10. 1210/en.

Meli, R., Pacilio, M., Raso, G.M., Esposito, E., Coppola, A., Nasti, A., Di Carlo, C., Nappi, C., Di Carlo, R., 2004. Estrogen and raloxifene modulate leptin and its receptor in

Author's personal copy

42 C.R. Cederroth, S. Nef / Molecular and Cellular Endocrinology 304 (2009) 30–42

hypothalamus and adipose tissue from ovariectomized rats. Endocrinology 145, 3115–3121.

Moriyama, T., Kishimoto, K., Nagai, K., Urade, R., Ogawa, T., Utsumi, S., Maruyama, N., Maebuchi, M., 2004. Soybean beta-conglycinin diet suppresses serum triglyc-eride levels in normal and genetically obese mice by induction of beta-oxidation, downregulation of fatty acid synthase, and inhibition of triglyceride absorption.

Biosci. Biotechnol. Biochem. 68, 352–359.

Morton, M.S., Wilcox, G., Wahlqvist, M.L., Griffiths, K., 1994. Determination of lignans and isoflavonoids in human female plasma following dietary supplementation.

J. Endocrinol. 142, 251–259.

Musatov, S., Chen, W., Pfaff, D.W., Mobbs, C.V., Yang, X.J., Clegg, D.J., Kaplitt, M.G., Ogawa, S., 2007. Silencing of estrogen receptor alpha in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc. Natl. Acad. Sci. U.S.A. 104, 2501–2506.

Nadal, A., Rovira, J.M., Laribi, O., Leon-Quinto, T., Andreu, E., Ripoll, C., Soria, B., 1998.

Rapid insulinotropic effect of 17beta-estradiol via a plasma membrane receptor.

FASEB J. 12, 1341–1348.

Naaz, A., Yellayi, S., Zakroczymski, M.A., Bunick, D., Doerge, D.R., Lubahn, D.B., Helferich, W.G., Cooke, P.S., 2003. The soy isoflavone genistein decreases adipose deposition in mice. Endocrinology 144, 3315–3320.

Nagasawa, A., Fukui, K., Kojima, M., Kishida, K., Maeda, N., Nagaretani, H., Hibuse, T., Nishizawa, H., Kihara, S., Waki, M., Takamatsu, K., Funahashi, T., Matsuzawa, Y., 2003. Divergent effects of soy protein diet on the expression of adipocytokines.

Biochem. Biophys. Res. Commun. 311, 909–914.

Nemoto, Y., Toda, K., Ono, M., Fujikawa-Adachi, K., Saibara, T., Onishi, S., Enzan, H., Okada, T., Shizuta, Y., 2000. Altered expression of fatty acid-metabolizing enzymes in aromatase-deficient mice. J. Clin. Invest. 105, 1819–1825.

Newbold, R.R., Banks, E.P., Bullock, B., Jefferson, W.N., 2001. Uterine adenocarcinoma in mice treated neonatally with genistein. Cancer Res. 61, 4325–4328.

Nordentoft, I., Jeppesen, P.B., Hong, J., Abudula, R., Hermansen, K., 2008. Increased insulin sensitivity and changes in the expression profile of key insulin regulatory genes and beta cell transcription factors in diabetic KKAy-mice after feeding with a soy bean protein rich diet high in isoflavone content. J. Agric. Food Chem. 56, 4377–4385.

Oakenfull, D., 2001. Soy protein, saponins and plasma cholesterol. J. Nutr. 131, 2971–2972.

Ogawa, S., Chan, J., Gustafsson, J.A., Korach, K.S., Pfaff, D.W., 2003. Estrogen increases locomotor activity in mice through estrogen receptor alpha: specificity for the type of activity. Endocrinology 144, 230–239.

Ohlsson, C., Hellberg, N., Parini, P., Vidal, O., Bohlooly, Y.M., Rudling, M., Lindberg, M.K., Warner, M., Angelin, B., Gustafsson, J.A., 2000. Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice. Biochem.

Biophys. Res. Commun. 278, 640–645.

Olshansky, S.J., Passaro, D.J., Hershow, R.C., Layden, J., Carnes, B.A., Brody, J., Hayflick, L., Butler, R.N., Allison, D.B., Ludwig, D.S., 2005. A potential decline in life expectancy in the United States in the 21st century. N. Engl. J. Med. 352, 1138–1145.

Penza, M., Montani, C., Romani, A., Vignolini, P., Pampaloni, B., Tanini, A., Brandi, M.L., Alonso-Magdalena, P., Nadal, A., Ottobrini, L., Parolini, O., Bignotti, E., Calza, S.,

Penza, M., Montani, C., Romani, A., Vignolini, P., Pampaloni, B., Tanini, A., Brandi, M.L., Alonso-Magdalena, P., Nadal, A., Ottobrini, L., Parolini, O., Bignotti, E., Calza, S.,