• Aucun résultat trouvé

Le manuscrit est organisé en 7 chapitres, dont l’introduction génerale (Chapitre1).

Les chapitres3,4,5 et6sont écrits en anglais. Les chapitres4, 5et6 sont présentés sous la forme d’articles prochainement soumis à la publication, au sein desquels sont décrites en détail les méthodes expérimentales utilisées.

Le chapitre 2 présente les matériaux minéraux, dispositifs expérimentaux et techniques analytiques utilisés dans les chapitres3à6.

Le chapitre3présente la constitution d’une base de données thermodynamiques pertinente pour le calcul de la spéciation chimique des solutions expérimentales, qui sera utilisée dans la suite du travail. En effet, les bases de données usuelles de PHREEQC, le code de calcul géo- chimique avec lequel seront effectués les calculs de spéciation chimique (Parkhurst et Appelo,

1.3 Structure du manuscrit

1999), ne comportent pas l’ensemble des données pertinentes au système étudié, notamment en présence des ligands organiques en conditions hydrothermales. Ce chapitre présente donc une revue des données pertinentes de la littérature et explique leur extrapolation en tempéra- ture, en vue de construire une base de données thermodynamiques aussi exhaustive et juste que possible.

On y présentera par ailleurs les résultats d’une expérience de mesure de la solubilité de la magnésite en présence de citrate effectuée afin de préciser la valeur de la constante de complexation entre les espèces du citrate et Mg2+à haute température.

Les chapitres4et5 présentent l’étude de l’influence de l’oxalate, du citrate et de l’EDTA sur le processus et la cinétique de croissance cristalline de la magnésite en conditions hydro- thermales, selon deux approches complémentaires.

Le chapitre4présente les résultats des expériences effectuées en réacteur à circulation et vise à quantifier et à modéliser l’influence de l’oxalate, du citrate et de l’EDTA sur la cinétique de précipitation de la magnésite, entre 100 et 146°C. Les résultats obtenus sont la base d’une modélisation cinétique simple de l’influence de l’oxalate sur la carbonatation de la forstérite, présentée en discussion de l’article.

Dans le chapitre5, on présentera les résultats de l’étude effectuée à l’échelle surfacique sur le même système par le biais de la microscopie à force atomique. Ces résultats expérimentaux permettent de confirmer et de préciser certaines hypothèses émises dans le chapitre4quant au mode d’interaction des ligands organiques avec le processus de croissance cristalline de la magnésite.

Le chapitre 6 présente les résultats de l’étude menée sur la solubilité et la cinétique de précipitation de l’hydromagnésite entre 25 et 75°C. Ces données originales seront comparées aux données analogues acquises pour la magnésite, dans le but de tirer des enseignements fondamentaux sur le rôle de l’hydratation des cations Mg2+dans la formation des carbonates de magnésium et afin de déterminer le rôle potentiel joué par l’hydromagnésite dans l’optimisation de la séquestration minérale du CO2.

Un chapitre de Conclusions et Perspectives (chapitre7) viendra, classiquement, clore ce manuscrit, en en rappelant les résultats principaux et leurs conséquences scientifiques et sociétales.

Enfin, une annexe contient un article dont je suis coauteur, publié en 2012 dans la revue Geochimica et Cosmochimica Acta (Saldi et al.,2012). L’article présente une étude détaillée de la cinétique de précipitation de la magnésite en fonction de la chimie des solutions, interprétée grâce à un modèle de complexation de surface. Ces résultats établissent pour la première fois le fait que la précipitation de la magnésite est potentiellement limitante dans le cadre du processus de carbonatation de la forstérite et constituent de ce fait l’une des motivations du travail effectué avec les ligands organiques. En outre, ils constituent une référence pour la cinétique de précipitation de la magnésite en conditions inorganiques et seront à ce titre fréquemment cités et discutés, notamment dans le cadre du Chapitre4.

Bibliographie

Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. et Hoegh-Guldberg, O. (2008). Ocean aci- dification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences, 105(45), 17442–17446.

Arts, R., Chadwick, A., Eiken, O., Thibeau, S. et Nooner, S. (2008). Ten years’ experience of monitoring CO2injection in the Utsira Sand at Sleipner, offshore Norway. First Break, 26, 65–72.

Bachu, S. (2008). CO2 storage in geological media : Role, means, status and barriers to deployment.

Progress in Energy and Combustion Science, 34(2), 254–273.

Bachu, S., Gunter, W. et Perkins, E. (1994). Aquifer disposal of CO2 : Hydrodynamic and mineral

trapping. Energy Conversion and Management, 35(4), 269–279.

Balashov, V. N., Guthrie, G. D., Hakala, J. A., Lopano, C. L., Rimstidt, J. D. et Brantley, S. L. (2013). Pre- dictive modeling of CO2sequestration in deep saline sandstone reservoirs : Impacts of geochemical

kinetics. Applied Geochemistry, (30), 41–56.

Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. et White, J. W. C. (2012). Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488(7409), 70–72. Béarat, H., McKelvy, M. J., Chizmeshya, A. V. G., Gormley, D., Nunez, R., Carpenter, R. W., Squires,

K. et Wolf, G. H. (2006). Carbon sequestration via aqueous olivine mineral carbonation : Role of passivating layer formation. Environ. Sci. Technol., 40(15), 4802–4808.

Bea, S. A., Wilson, S. A., Mayer, K. U., Dipple, G. M., Power, I. M. et Gamazo, P. (2012). Reactive transport modeling of natural carbon sequestration in ultramafic mine tailings. Vadose Zone Journal, 11(2).

Beaufort, L., Probert, I., Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M. et Vargas, C. d. (2011). Sensitivity of coccoli- thophores to carbonate chemistry and ocean acidification. Nature, 476(7358), 80–83.

Bleuzen, A., Pittet, P. A., Helm, L. et Merbach, A. E. (1997). Water exchange on Magnesium(II) in aqueous solution : a variable temperature and pressure 17O NMR study. Magnetic Resonance in

Chemistry, 35, 765–773.

Bénézeth, P., Saldi, G. D., Dandurand, J. L. et Schott, J. (2011). Experimental determination of the solubility product of magnesite at 50 to 200°C. Chemical Geology, 286, 21–31.

BP (2012). BP statistical review of World Energy June 2012. Rapport technique.

Cao, L. et Caldeira, K. (2008). Atmospheric CO2 stabilization and ocean acidification. Geophysical

Research Letters, 35(19).

Coumou, D. et Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change.

Daval, D., Martinez, I., Corvisier, J., Findling, N., Goffé, B. et Guyot, F. (2009). Carbonation of ca- bearing silicates, the case of wollastonite : Experimental investigations and kinetic modeling. Che- mical Geology, 265(1), 63–78.

Daval, D., Sissmann, O., Menguy, N., Saldi, G. D., Guyot, F., Martinez, I., Corvisier, J., Garcia, B., Machouk, I., Knauss, K. G. et Hellmann, R. (2011). Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 °C and elevated pCO2. Chemical Geology, 284(1-2), 193–209.

Davies, P. J. et Bubela, B. (1973). The transformation of nesquehonite into hydromagnesite. Chemical Geology, 12, 289–300.

BIBLIOGRAPHIE

Declercq, J. et Oelkers, E. (2012). Thermodynamic and kinetic constraints on the carbonation of forste- rite and serpentine. Submitted to Environmental Science & Technology.

Deelman, J. C. (1988). Some phenomenological aspects of carbonate geochemistry. The control effect of transition metals - Discussion. Geologische Rundschau, 77(2), 609–611.

Deelman, J. C. (2011). Low-temperature formation of magnesite and dolomite. Geology Series. Compact Disc Publications, Eindhoven, The Netherlands, 2.3 édition. E-book first published online in May 2003. Version 2.3 updated in 2011.www.jcdeelman.demon.nl/dolomite/bookprospectus.html. Devidal, J.-L., Schott, J. et Dandurand, J.-L. (1997). An experimental study of kaolinite dissolution and

precipitation kinetics as a function of chemical affinity and solution composition at 150°C, 40 bars, and pH 2, 6.8, and 7.8. Geochimica et Cosmochimica Acta, 61(24), 5165–5186.

Di Tommaso, D. et de Leeuw, N. H. (2010). First principles simulations of the structural and dynamical properties of hydrated metal ions Me2+and solvated metal carbonates (Me = Ca, Mg, and Sr). Crystal Growth & Design, 10(10), 4292–4302.

Doney, S. C., Fabry, V. J., Feely, R. A. et Kleypas, J. A. (2009). Ocean acidification : The other CO2

problem. Annual Review of Marine Science, 1(1), 169–192.

Dufaud, F. (2006). Etude expérimentale des réactions de carbonatation minérale du CO2dans les roches ba-

siques et ultrabasiques. Thèse de doctorat, Institut de Physique du Globe, Paris, France.

Fabry, V. J., Seibel, B. A., Feely, R. A. et Orr, J. C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science, 65(3), 414–432.

Fritz, B. et Noguera, C. (2009). Mineral precipitation kinetics. Reviews in Mineralogy and Geochemistry, 70(1), 371–410.

Ganor, J., Reznik, I. et Rosenberg, Y. (2009). Organics in water-rock interactions. Reviews in Mineralogy and Geochemistry, 70(1), 259.

Garcia, B., Beaumont, V., Perfetti, E., Rouchon, V., Blanchet, D., Oger, P., Dromart, G., Huc, A.-Y. et Haeseler, F. (2010). Experiments and geochemical modelling of CO2sequestration by olivine : Po-

tential, quantification. Applied Geochemistry, 25(9), 1383–1396.

Gerdemann, S. J., O’Connor, W. K., Dahlin, D. C., Penner, L. R. et Rush, H. (2007). Ex situ aqueous mineral carbonation. Environ. Sci. Technol., 41(7), 2587–2593.

Giammar, D. E., Bruant, R. G. et Peters, C. A. (2005). Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chemical Geology, 217(3-4), 257–276.

Gilfillan, S. M. V., Lollar, B. S., Holland, G., Blagburn, D., Stevens, S., Schoell, M., Cassidy, M., Ding, Z., Zhou, Z., Lacrampe-Couloume, G. et Ballentine, C. J. (2009). Solubility trapping in formation water as dominant CO2sink in natural gas fields. Nature, 458(7238), 614–618.

Gislason, S. R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E. H., Gunnlaugsson, E., Sigurdardottir, H., Sigfusson, B., Broecker, W. S., Matter, J. M., Stute, M. et al. (2010). Mineral sequestration of carbon dioxide in basalt : A pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas Control, 4(3), 537–545.

Global Carbon Project (2011). Carbon budget and trends 2010. Rapport technique. www. globalcarbonproject.org.

Goldberg, D. S., Takahashi, T. et Slagle, A. L. (2008). Carbon dioxide sequestration in deep-sea basalt. Proceedings of the National Academy of Sciences.

Gunter, W. D., Bachu, S. et Benson, S. (2004). The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geological Society, London, Special Publications, 233(1), 129–145.

Gysi, A. P. et Stefánsson, A. (2012a). CO2-water-basalt interaction. Low temperature experiments and

implications for CO2sequestration into basalts. Geochimica et Cosmochimica Acta, 81(0), 129–152.

Gysi, A. P. et Stefánsson, A. (2012b). Mineralogical aspects of CO2 sequestration during hydrothermal basalt alteration - An experimental study at 75 to 250°C and elevated pCO2. Chemical Geology, 306- 307, 146–159.

Hamm, L. M., Wallace, A. F. et Dove, P. M. (2010). Molecular dynamics of ion hydration in the presence of small carboxylated molecules and implications for calcification. The Journal of Physical Chemistry B, 114, 10488–10495.

Hansen, J., Sato, M. et Ruedy, R. (2012). Perception of climate change. Proceedings of the National Academy of Sciences, 109(37), E2415–E2423.

Haug, T. A., Kleiv, R. A. et Munz, I. A. (2010). Investigating dissolution of mechanically activated olivine for carbonation purposes. Applied Geochemistry, 25(10), 1547–1563.

Hitchon, B. (1996). Aquifer disposal of carbon dioxide : hydrodynamic and mineral trapping : proof of concept. Geoscience Pub., Alberta Research Council édition.

Hänchen, M., Prigiobbe, V., Storti, G., Seward, T. et Mazzotti, M. (2006). Dissolution kinetics of foste- ritic olivine at 90 - 150°C including effects of the presence of CO2. Geochimica et Cosmochimica Acta,

70(17), 4403–4416.

Hopkinson, L., Kristova, P., Rutt, K. et Cressey, G. (2012). Phase transitions in the system MgO-CO2-

H2O during CO2degassing of Mg-bearing solutions. Geochimica et Cosmochimica Acta, 76, 1–13.

Hostetler, P. B. (1964). The degree of saturation of magnesium and calcium carbonate minerals in natural waters. Intern. Assoc. Sci. Hydrol., Comm. Subterranean Waters, Publ, 64, 34–49.

Huijgen, W. J. J., Witkamp, G.-J. et Comans, R. N. (2005). Mineral CO2 sequestration by steel slag

carbonation. Environmental Science & Technology, 39(24), 9676–9682.

IEA (2010). IEA/CSLF Report to the Muskoka 2010 G8 Summit - Carbon Capture and Storage. Rapport technique, International Energy Agency.

IPCC (2005). Carbon Dioxide Capture and Storage : Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

IPCC (2007). Climate Change 2007 - The Physical Science Basis : Working Group I. Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press.

Jenkins, C. R., Cook, P. J., Ennis-King, J., Undershultz, J., Boreham, C., Dance, T., de Caritat, P., Ethe- ridge, D. M., Freifeld, B. M., Hortle, A. et al. (2012). Safe storage and effective monitoring of CO2in

depleted gas fields. Proceedings of the National Academy of Sciences, 109(2), E35–E41.

Jo, H. Y., Kim, J. H., Lee, Y. J., Lee, M. et Choh, S.-J. (2012). Evaluation of factors affecting mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient conditions. Chemical

BIBLIOGRAPHIE

Kelemen, P. B. et Matter, J. (2008). In situ carbonation of peridotite for CO2storage. Proceedings of the

National Academy of Sciences, 105(45), 17295–17300.

Kelemen, P. B., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B. et Blusztajn, J. (2011). Rates and mechanisms of mineral carbonation in peridotite : Natural processes and recipes for enhanced, in situ CO2capture and storage. Annual Review of Earth and Planetary Sciences, 39(1), 545–576.

Kinnard, C., Zdanowicz, C. M., Fisher, D. A., Isaksson, E., Vernal, A. et Thompson, L. G. (2011). Re- constructed changes in arctic sea ice over the past 1450 years. Nature, 479(7374), 509–512.

Königsberger, E., Königsberger, L. et Gamsjäger, H. (1999). Low-temperature thermodynamic model for the system Na2CO3-MgCO3-CaCO3-H2O. Geochimica et Cosmochimica Acta, 63(19-20), 3105–3119.

Korbøl, R. et Kaddour, A. (1995). Sleipner vest CO2disposal - injection of removed CO2into the Utsira

formation. Energy Conversion and Management, 36(6), 509–512.

Kowacz, M., Putnis, C. et Putnis, A. (2007). The effect of cation :anion ratio in solution on the mecha- nism of barite growth at constant supersaturation : Role of the desolvation process on the growth kinetics. Geochimica et Cosmochimica Acta, 71(21), 5168–5179.

Krevor, S. C. et Lackner, K. S. (2011). Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. International Journal of Greenhouse Gas Control, 5(4), 1073–1080.

Lackner, K. (2009). Capture of carbon dioxide from ambient air. The European Physical Journal - Special Topics, 176(1), 93–106.

Lackner, K. S. (2003). A guide to CO2sequestration. Science, 300(5626), 1677–1678.

Lackner, K. S., Grimes, P. et Ziock, H. J. (2001). Capturing carbon dioxide from air. In Proceedings of the First National Conference on Carbon Sequestration.

Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce Jr., E. L. et Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20(11), 1153–1170.

Larentzos, J. P. et Criscenti, L. J. (2008). A molecular dynamics study of alkaline earth metal-chloride complexation in aqueous solution. The Journal of Physical Chemistry B, 112(45), 14243–14250.

Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G. et et al (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2(12), 831–836.

Lincoln, S. F. et Merbach, A. E. (1995). Substitution reactions of solvated metal ions. Advances in inorganic chemistry, 42, 1–88.

Lippmann, F. (1973). Sedimentary carbonate minerals. Springer-Verlag Berlin.

Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K. et Stocker, T. F. (2008). High-resolution carbon dioxide concentration record 650.000 - 800.000 years before present. Nature, 453(7193), 379–382.

Marini, L. (2007). Geological sequestration of carbon dioxide : thermodynamics, kinetics, and reaction path modeling, volume 11. Elsevier Science Limited.

Matter, J. M., Broecker, W., Stute, M., Gislason, S., Oelkers, E., Stefánsson, A., Wolff-Boenisch, D., Gunnlaugsson, E., Axelsson, G. et Björnsson, G. (2009). Permanent carbon dioxide storage into basalt : The CarbFix pilot project, iceland. Energy Procedia, 1(1), 3641–3646.

McGrail, B. P., Schaef, H. T., Ho, A. M., Chien, Y. J., Dooley, J. J. et Davidson, C. L. (2006). Potential for carbon dioxide sequestration in flood basalts. Journal of Geophysical Research, 111, B12201.

McKelvy, M. J., Chizmeshya, A. V. G., Diefenbacher, J., Béarat, H. et Wolf, G. (2004). Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions. Environ. Sci. Technol., 38(24), 6897–6903.

McNeil, B. I. et Matear, R. J. (2008). Southern ocean acidification : A tipping point at 450-ppm atmos- pheric CO2. Proceedings of the National Academy of Sciences, 105(48), 18860–18864.

Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J. et Allen, M. R. (2009). Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458(7242), 1158–1162.

Mirsal, I. A. et Zankl, H. (1985). Some phenomenological aspects of carbonate geochemistry. the control effect of transition metals. Geologische Rundschau, 74(2), 367–377.

Montes-Hernandez, G., Pérez-López, R., Renard, F., Nieto, J. et Charlet, L. (2009). Mineral seques- tration of CO2 by aqueous carbonation of coal combustion fly-ash. Journal of Hazardous Materials,

161(2-3), 1347–1354.

Munz, I., Brandvoll, O., Haug, T., Iden, K., Smeets, R., Kihle, J. et Johansen, H. (2011). Mechanisms and rates of plagioclase carbonation reactions. Geochimica et Cosmochimica Acta.

O’connor, W. K., Dahlin, D. C., Rush, G. E., Dahlin, C. L. et Collins, W. K. (2001). Carbon dioxide sequestration by direct mineral carbonation : process mineralogy of feed and products. Minerals & metallurgical processing, 19(2), 95–101.

Oelkers, E. H., Gislason, S. R. et Matter, J. (2008). Mineral carbonation of CO2. Elements, 4(5), 333–337.

Oliver, J., Janssens-Maenhout, G. et Peters, J. (2012). Trends in global CO2 emissions ; 2012 report.

Rapport technique, The Hague : PBL Netherlands Environmental Assessment Agency ; Ispra : Joint Research Centre.

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y. et Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), 681–686. Pacala, S. et Socolow, R. (2004). Stabilization wedges : Solving the climate problem for the next 50

years with current technologies. Science, 305(5686), 968–972.

Park, A. H. A., Jadhav, R. et Fan, L. S. (2003). CO2 mineral sequestration : chemically enhanced

aqueous carbonation of serpentine. The Canadian Journal of Chemical Engineering, 81(3-4), 885–890. Parkhurst, D. et Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2) : a computer program

for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigations Report, 99(4259), 312.

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.

Peters, G. P., Marland, G., Quéré, C. L., Boden, T., Canadell, J. G. et Raupach, M. R. (2012). Rapid growth in CO2emissions after the 2008-2009 global financial crisis. Nature Climate Change, 2(1), 2–4.

Phillips, B. L., Casey, W. H. et Crawford, S. N. (1997a). Solvent exchange in AlFx(H2O) 3–x

6-x (aq) com-

plexes : Ligand-directed labilization of water as an analogue for ligand-induced dissolution of oxide minerals. Geochimica et cosmochimica acta, 61(15), 3041–3049.

BIBLIOGRAPHIE

Phillips, B. L., Crawford, S. N. et Casey, W. H. (1997b). Rate of water exchange between Al(C2O4)(H2O)

+

4 (aq)complexes and aqueous solutions determined by17O-NMR spectroscopy. Geo-

chimica et cosmochimica acta, 61(23), 4965–4973.

Pokrovsky, O., Golubev, S., Schott, J. et Castillo, A. (2009). Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO2 : new constraints on CO2sequestration in sedimentary basins. Chemical Geology, 265(1-2), 20–32.

Pokrovsky, O. et Schott, J. (1999). Processes at the magnesium-bearing carbonates/solution interface. II. kinetics and mechanism of magnesite dissolution. Geochimica et cosmochimica acta, 63(6), 881–897. Pokrovsky, O. S. et Schott, J. (2002). Surface chemistry and dissolution kinetics of divalent metal

carbonates. Environmental science & technology, 36(3), 426–432.

Power, I., Wilson, S., Thom, J., Dipple, G. et Southam, G. (2007). Biologically induced mineraliza- tion of dypingite by cyanobacteria from an alkaline wetland near atlin, british columbia, canada. Geochemical transactions, 8, 13.

Prigiobbe, V., Costa, G., Baciocchi, R., Hänchen, M. et Mazzotti, M. (2009). The effect of and salinity on olivine dissolution kinetics at salinity at 120°C. Chemical Engineering Science, 64(15), 3510–3515. Prigiobbe, V. et Mazzotti, M. (2011). Dissolution of olivine in the presence of oxalate, citrate, and CO2

at 90°C and 120°C. Chemical Engineering Science, 66(24), 6544–6554.

Pronost, J., Beaudoin, G., Tremblay, J., Larachi, F., Duchesne, J., Hébert, R. et Constantin, M. (2011). Carbon sequestration kinetic and storage capacity of ultramafic mining waste. Environmental Science & Technology, 45(21), 9413–9420.

Rackley, S. (2009). Carbon Capture and Storage. Gulf Professional Publishing.

Ranganathan, P., van Hemert, P., Rudolph, E. S. J. et Zitha, P. Z. (2011). Numerical modeling of CO2

mineralisation during storage in deep saline aquifers. Energy Procedia, 4(0), 4538–4545.

Renforth, P., Washbourne, C.-L., Taylder, J. et Manning, D. A. C. (2011). Silicate production and avai- lability for mineral carbonation. Environmental Science & Technology, 45(6), 2035–2041.

Ries, J. B., Cohen, A. L. et McCorkle, D. C. (2009). Marine calcifiers exhibit mixed responses to CO2-

induced ocean acidification. Geology, 37(12), 1131–1134.

Rosenbauer, R. J., Thomas, B., Bischoff, J. L. et Palandri, J. (2012). Carbon sequestration via reaction with basaltic rocks : Geochemical modeling and experimental results. Geochimica et Cosmochimica Acta, 89(0), 116–133.

Sabine, C. L. et Tanhua, T. (2010). Estimation of anthropogenic CO2 inventories in the ocean. Annual

Review of Marine Science, 2(1), 175–198.

Saldi, G. D., Jordan, G., Schott, J. et Oelkers, E. H. (2009). Magnesite growth rates as a function of temperature and saturation state. Geochimica et Cosmochimica Acta, 73(19), 5646–5657.

Saldi, G. D., Schott, J., Pokrovsky, O. S., Gautier, Q. et Oelkers, E. H. (2012). An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100-200°C as a function of pH, aqueous solution composition and chemical affinity. Geochimica et Cosmochimica Acta, 83, 93–109. Saldi, G. D., Schott, J., Pokrovsky, O. S. et Oelkers, E. H. (2010). An experimental study of magnesite

dissolution rates at neutral to alkaline conditions and 150 and 200°C as a function of pH, total dissolved carbonate concentration, and chemical affinity. Geochimica et Cosmochimica Acta, 74, 6344– 6356.

Sayles, F. et Fyfe, W. (1973). The crystallization of magnesite from aqueous solution. Geochimica et Cosmochimica Acta, 37(1), 87–99.

Schaef, H., McGrail, B. et Owen, A. (2009). Basalt-CO2-H2O interactions and variability in carbonate

mineralization rates. Energy Procedia, 1(1), 4899–4906.

Schaef, H., Windisch, C., McGrail, B., Martin, P. et Rosso, K. (2011). Brucite [Mg(OH2)] carbonation in wet supercritical CO2: An in situ high pressure x-ray diffraction study. Geochimica et Cosmochimica

Acta, 75(23), 7458–7471.

Schott, J., Pokrovsky, O. et Oelkers, E. (2009). The link between mineral dissolution/precipitation kinetics and solution chemistry. Reviews in Mineralogy and Geochemistry, 70(1), 207–258.

Seifritz, W. (1990). CO2disposal by means of silicates. Nature, 345(6275), 486–486.

Shiraki, R. et Brantley, S. (1995). Kinetics of near-equilibrium calcite precipitation at 100°C : an eva- luation of elementary reaction-based and affinity-based rate laws. Geochimica et Cosmochimica Acta, 59(8), 1457–1471.

Shirokova, L. S., Mavromatis, V., Bundeleva, I. A., Pokrovsky, O. S., Bénézeth, P., Gérard, E., Pearce, C. R. et Oelkers, E. H. (2012). Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes. Aquatic Geochemistry.

Sullivan, D. J., Nordin, J. P., Phillips, B. L. et Casey, W. H. (1999). The rates of water exchange in Al(III)- salicylate and Al(III)-sulfosalicylate complexes. Geochimica et cosmochimica acta, 63(10), 1471–1480. Teir, S., Eloneva, S., Fogelholm, C. et Zevenhoven, R. (2009). Fixation of carbon dioxide by producing

hydromagnesite from serpentinite. Applied Energy, 86(2), 214–218.

Teir, S., Kuusik, R., Fogelholm, C. et Zevenhoven, R. (2007). Production of magnesium carbonates from serpentinite for long-term storage of CO2. International Journal of Mineral Processing, 85(1-3),

1–15.

Teng, H. et Wang, J. (2011). Solvent effect on the precipitation of Mg-carbonate. Mineralogical Magazine, 75(3), 1997.

Thompson, J. B. et Ferris, F. G. (1990). Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18(10), 995–998.

Van Vuuren, D. et Riahi, K. (2011). The relationship between short-term emissions and long-term concentration targets. Climatic Change, 104(3), 793–801.

Wilson, S. A., Dipple, G. M., Power, I. M., Thom, J. M., Anderson, R. G., Raudsepp, M., Gabites, J. E. et Southam, G. (2009). Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits : Examples from the Clinton Creek and Cassiar chrysotile deposits, Canada. Economic Geology, 104(1), 95–112.

Wilson, S. A., Raudsepp, M. et Dipple, G. M. (2006). Verifying and quantifying carbon fixation in mi- nerals from serpentine-rich mine tailings using the Rietveld method with X-ray powder diffraction data. American Mineralogist, 91(8-9), 1331–1341.

Xu, T., Apps, J. A. et Pruess, K. (2004). Numerical simulation of CO2disposal by mineral trapping in

deep aquifers. Applied Geochemistry, 19(6), 917–936.

Xu, T., Apps, J. A. et Pruess, K. (2005). Mineral sequestration of carbon dioxide in a sandstone-shale system. Chemical Geology, 217(3-4), 295–318.

BIBLIOGRAPHIE

Zevenhoven, R., Fagerlund, J. et Songok, J. K. (2011). CO2 mineral sequestration : developments to-

ward large scale application. Greenhouse Gases : Science and Technology, 1(1), 48–57.

Documents relatifs