• Aucun résultat trouvé

Specificity of commercial anti-spectrin antibody in the study of fungal and

19

Oomycete spectrin: cross-reaction with proteins other than spectrin. Fungal Genet. Biol. In press.

Critchley, D.R., Flood, G., 1999. Alpha-actinins. In: Kreis, T., Vale, R. (Eds.), Guidebook to the Cytoskeletal and Motor Proteins, 2nd ed., Oxford University Press, Oxford, pp. 24–27.

Dandapani, S.V., Sugimoto, H., Matthews, B.D., Kolb, R.J., Sinha, S., Gerszten, R.E., Zhou, J., Ingber, D.E., Kalluri, R., Pollak, M.R., 2007. Alpha-actinin-4 is required for normal podocyte adhesion. J. Biol. Chem. 282, 467-477.

Davis, R.H., De Serres, F.J., 1970. Genetic and microbial research techniques for

Neurospora crassa. Methods Enzymol. 17, 79-143.

Diernfellner, A.C.R., Schafmeier, T., Merrow, M.W., Brunner, M., 2005. Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa.

Genes Dev. 19, 1968-1973.

Dixson, J.D., Forstner, M.J., Garcia, D.M., 2003. The alpha-actinin gene family: a revised classification. J. Mol. Evol. 56, 1-10.

Djinovic-Carugo, K., Young, P., Gautel, M., Saraste, M., 1999. Structure of the α-actinin rod: Molecular basis for cross-linking of actin filaments. Cell 98, 537-546.

Dunah, A.W., Wyszynski, M., Martin, D.M., Sheng, M., Standaert, D.G., 2000.

Alpha-actinin-2 in rat striatum: localization and interaction with NMDA glutamate receptor subunits. Brain Res. Mol. Brain Res. 79, 77-87.

Freitag, M., Hickey, P.C., Raju, N.B., Selker, E.U., Read, N.D., 2004. GFP as a tool

to analyze the organization, dynamics and function of nuclei and microtubules in

Neurospora crassa. Fungal Genet. Biol. 41, 897–910.

20

Fyrberg, E., Kelly, M., Ball, E., Fyrberg, C., Reedy, M.C., 1990. Molecular genetics of

Drosophila alpha-actinin: mutant alleles disrupt Z disc integrity and muscle

insertions. J. Cell Biol. 110, 1999-2011.

Garceau, N., Liu, Y., Loros, J.L., Dunlap, J.C., 1997. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein frequency. Cell 89, 469-476.

Geissenhöner, A., Sievers, N., Brock, M., Fischer, R., 2001. Aspergillus nidulans DigA, a potential homolog of Saccharomyces cerevisiae Pep3 (Vps18), is required for nuclear migration, mitochondrial morphology and polarized growth.

Mol. Genet. Genomics 266, 672-685.

Han, K-H., Prade, R.A., 2002. Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol. Microbiol. 43, 1065-1078.

Hampton, C.M, Taylor, D.W., Taylor, K.A., 2007. Novel structures for α-actinin:F-actin interactions and their implications for α-actinin:F-actin–membrane attachment and tension sensing in the cytoskeleton. J. Mol. Biol. 368, 92-104.

Heath, I.B., Gupta, G., Bai, S., 2000. Plasma membrane-adjacent actin filaments, but not microtubules, are essential for both polarization and hyphal tip morphogenesis in Saprolegnia ferax and Neurospora crassa. Fungal Genet. Biol.

30, 45-62.

Hoch, H.C., Staples, R.C., 1983. Ultrastructural organization of the non-differentiated uredospore germling of Uromyces phaseoli variety typica.

Mycologia, 75, 795-824.

Ikonen, E., Fiedler, K., Parton, R.G., Simons, K., 1995. Prohibitin, an

antiproliferative protein, is localized to mitochondria. FEBS Lett. 358, 273-277.

21

Kaminskyj, S.G.W., Heath, I.B., 1996. Studies on Saprolegnia ferax suggest the general importance of the cytoplasm in determining hyphal morphology.

Mycologia. 88, 20-37.

Kim, J.M., Lu, L., Shao, R., Chin, J., Liu, B., 2006. Isolation of mutations that bypass the requirement of the septation initiation network for septum formation and conidiation in Aspergillus nidulans. Genetics 173, 685-696.

Knudsen, K.A., Soler, A.P., Johnson, K.R., Wheelock, M.J., 1995. Interaction of actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J. Cell Biol. 130, 67-77.

Margolin, B.S., Freitag, M., Selker, E.U., 1997. Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation. Fungal Genet. Newslett. 44, 34-36.

Maruyama, K., Mikawa, T., Ebashi, S.J., 1984. Detection of calcium binding protein by

45

Ca autoradiography on nitrocellulose membranes after SDS electrophoresis.

J. Biochem. 95, 511–519.

Mills, M., Yang, N., Weinberger, R., Vander Woude, D.L., Beggs, A.H., Easteal, S., North, K., 2001. Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Hum. Mol. Genet. 10, 1335-1346.

Momany, M., Hamer, J.E., 1997. Septation in Aspergillus nidulans. Cell Motil.

Cytoskel. 38, 373-384.

O’Farrell, P.H., 1975. High resolution two-dimensional electrophoresis of proteins. J.

Biol. Chem. 250, 4007-4021.

22

Otey, C.A., Pavalko, F.M., Burridge, K., 1990. An interaction between alpha-actinin and the beta 1 integrin subunit in vitro. J. Cell Biol. 111, 721-729.

Otey, C.A., Carpen, O., 2004. Alpha-actinin revisited: a fresh look at an old player.

Cell Motil. Cytoskel. 58, 104-111.

Pesole, G., Gissia, C., Grillob, G., Licciullib, F., Liunic, S., Saccone, C., 2000.

Analysis of oligonucleotide AUG start codon context in eukariotic mRNAs. Gene 261, 85-91.

Pham, M., Chalovich, J.M., 2006. Smooth muscle alpha-actinin binds tightly to fesselin and attenuates its activity toward actin polymerization. J. Muscle Res.

Cell Motil. 27, 45-51.

Podlubnaya, Z.A., Tskhovrebova, L.A., Zaalishtsbvili, M.M., Stefanenko, G.A., 1975. Electron microscopic study of alpha-actinin. J. Mol. Biol. 92, 357-359.

Polymenis, M., Schmidt, E.V., 1997. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev. 11, 2522-2531.

Rajfur, Z., Roy, P., Otey, C., Romer, L., Jacobson, K., 2002. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins.

Nat. Cell Biol. 4, 286-293.

Rasmussen, C.G., Glass, N.L., 2005. A Rho-type GTPase, rho-4, is required for septation in Neurospora crassa. Eukaryot. Cell 4, 1913-1925.

Rasmussen, C.G., Glass, N.L., 2007 Localization of RHO-4 indicates differential regulation of conidial versus vegetative septation in the filamentous fungus

Neurospora crassa. Eukaryot. Cell 6, 1097-1107.

Riquelme, M., Reynaga-Pena, C.G., Gierz, G., Bartnicki-Garcia, S., 1998. What

determines growth direction in fungal hyphae? Fungal Genet. Biol. 24, 101-109.

23

Rivero, F., Furukawa, R., Fechheimer, M., Noegel, A.A., 1999. Three actin cross-linking proteins, the 34 kDa actin-bundling protein, α-actinin and gelation factor (ABP-120), have both unique and redundant roles in the growth and development of Dictyostelium. J. Cell Sci. 112, 2737-2751.

Sharpless, K.E., Harris, S.D., 2002. Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol. Biol. Cell 13, 469-479.

Schneider, N., Schwartz, J-M., Köhler, J., Becker, M., Schwarz, H., Gerisch, G., 2000. Golvesin-GFP fusions as distinct markers for Golgi and post-Golgi vesicles in Dictyostelium cells. Biol. Cell 92, 495-511.

Tang, J., Taylor, D.W., Taylor, K.A., 2001. The three-dimensional structure of alpha-actinin obtained by cryoelectron microscopy suggests a model for Ca(2+)-dependent actin binding. J. Mol. Biol. 310, 845-858.

Taylor, K.A., Taylor, D.W., 1993. Projection image of smooth muscle alpha-actinin from two-dimensional crystals formed on positively charged lipid layers. J. Mol.

Biol. 230, 196-205.

Torralba, S., Heath, I.B., 2001. Cytoskeletal and Ca

+2

regulation of hyphal tip growth and initiation. Curr. Top. Dev. Biol. 51, 135-187.

Vilela, C., McCarthy, E.G., 2003. Regulation of fungal gene expression via short open reading frames in the mRNA 5’ untranslated region. Mol. Microbiol. 49, 859-867.

Virag, A., Griffiths, A.J., 2004. A mutation in the Neurospora crassa actin gene

results in multiple defects in tip growth and branching. Fungal Genet. Biol. 41,

213-225.

24

Virel, A., Backman, L., 2004. Molecular evolution and structure of α-actinin. Mol.

Biol. Evol. 21, 1024-1031.

Virel, A., Backman, L., 2006. Characterization of Entamoeba histolytica alpha-actinin. Mol. Biochem. Parasitol. 145, 11-17.

Virel, A., Backman, L., 2007. A comparative and phylogenetic analysis of the α-actinin rod domain. Mol. Biol. Evol. 10, 2254-2265.

Virel, A., Addario, B., Backman, L., 2007. Characterization of Entamoeba

histolytica alpha-actinin2. Mol. Biochem. Parasitol. 154, 82-89.

Vogel, H.J., 1956. A convenient growth medium for Neurospora (medium N).

Microb. Genet. Bull. 13, 42-43.

Walther, A., Wendland, J., 2003. Septation and cytokinesis in fungi. Fungal Genet.

Biol. 40, 187-196.

Wendland, J., Philippsen, P., 2002. An IQGAP-related protein, encoded by AgCYK1, is required for septation in the filamentous fungus Ashbya gossypii.

Fungal Genet. Biol. 37, 81-88.

Wu, J.Q., Bahler, J., Pringle, J.R., 2001. Roles of a fimbrin and an α-actinin-fission yeast cell polarization and cytokinesis. Mol. Biol. Cell. 12, 1061-1077.

Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A.H., Craig, A.M., Sheng, M., 1997. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385, 439-442.

Xu, L.H., Yang, X., Bradham, C.A., Brenner, D.A., Baldwin, A.S. Jr, Craven, R.J.,

Cance, W.G., 2000. The focal adhesion kinase suppresses

transformation-associated, anchorage-independent apoptosis in human breast cancer cells.

25

Involvement of death receptor-related signaling pathways. J. Biol. Chem. 275

(39), 30597-30604.

Fig. 1. 2D-PAGE (10%) analysis of the N. crassa α-actinin and the GST-α-actinin constructs. A. A mixture of N. crassa crude extract and partially digested GST-α-actinin

fusion protein immunoblotted with anti-Neurospora α-actinin antibody. B. Diagrammatic representation of GST-α-actinin construction, bars underline the region of the protein reacting with the anti-Neurospora

α-actinin antibody shown in A. (GST, means

gluthathione S-transferase; CH, Calponin Homology domain; SR, spectrin repeat and EF, refers to EF-hand motif).

Fig. 2. Analysis of α-actinin-actin interactions. SDS-PAGE (10 %) coomassie blue

stained gel (upper panel) of supernatants (sn) and pellets (p) of α-actinin-actin mixtures and the corresponding immunoblot with the anti-actin antibody (lower panel). Lanes a, b and

c are 3.5 μM of G-actin, F-actin and GST-α-actinin respectively. Lanes d and e

represent reaction mixtures containing 3.5 μM actin and 2 μM (lane d) and 3.5 μM (lane

e) α-actinin. Lane f is the same as lane e but with excess calcium.

Fig. 3. Electron micrographs of α-actinin-F-actin cross-reaction products. A. 2 μM

actin; B. α-actinin to actin molar ration 1:1 (2 μM); C. α-actinin to actin molar ratio 1:2 (1 μM:2 μM). Bar 100 nm.

Fig. 4. Calcium-binding of N. crassa α-actinin probed by calcium overlay using

45Ca. a, 10 μg of GST-α-actinin; b, α-actinin from chicken gizzard; c, calmodulin and d,

GST protein were slot-blotted onto a nitrocellulose membrane.

Fig. 5. Immunolocalization of N. crassa α-actinin during different stages of growth.

Germinating conidia, emerging germ tubes and growing hyphae corresponding to 1 hour (A) and 12 h (B-D) growth. Tip region of the hyphae with a branch initial (B).

Localization of α-actinin in the septum (C-D). Bar 5 μm.

Fig. 6. Time lapsed images of live cells for a duration of 5 hours. Laser scanning

confocal microscopy images of Neurospora hyphae expressing α-actinin-GFP. Images correspond to intervals of approximately 1 hour. After one hour of growth the fluorescence concentrated at the site of germination (A), this concentration was maintained until germ tube formation during the first 3 hours of growth (B-C), during hyphal growth no specific localization was found (D-E). The GFP signal accumulated at the fusion site of two hyphae (F). Bar 10 μm.

Fig. 7. In vivo localization of α-actinin in N. crassa. A-B. Transmission and GFP

signal is shown for each acquisition image; complete septum formation took less than 40 min. A. Time series corresponding to the first step of septum formation, the septum is not evident in the transmission images made during the first 20 min. B. Stack serie of the hyphae at 30 minutes, the fusion pore was visualized in the medial acquisition image. C.

confocal image showing a hyphal fusion using the transmission image (a), GFP signal (b)