• Aucun résultat trouvé

The Smooth Base Change Theorem

We say that a morphism of A-analytic spaces 9 : Y -^ X is almost smooth if, for any point x e X, there exist an open Hausdorff neighborhood ^ of x and affinoid domains Vi, .. ., V^C % such that Vi u . . . u V^ is a neighborhood of x and all the induced morphisms y'^V,) -^V, are smooth. Or course, smooth morphisms are almost smooth.

(And we believe that the converse implication is also true.)

7.8.1. Theorem. — Let f\ X' -> X be an almost smooth morphism of k-analytic spaces, and let 9 : Y -> X be a morphism of analytic spaces over k, which give rise to a cartesian diagram

Y -^ X /' / Y' -^ X'

Then for any (Z/^Z) ^-module F, where n is an integer prime to char(^), and for any q ^ 0 there is a canonical isomorphism

/-(R^F)^R^:CTF).

Proof. — First of all, the reasoning from the beginning of the proof of Theorem 7.3.1 reduces the situation to the case when/is a smooth morphism of good ^-analytic spaces.

Furthermore, since the statement is local with respect to X' and is evidently true when/

is Aale, it suffices to assume that/is of pure dimension one.

Let x ' be a point of X', and set x = <p(A:'). One has

(/*(R^ <p, F)),, = (R^ 9, F), = lin^ IP(Y x,, U, F),

where the limit is taken over all 6tale morphisms U -> X with a fixed point u e U over x and with a fixed embedding of fields ^(u) <^^{x)8 over ^f(;v). Similarly, one has

(R° 9:(/" F))^ = I™ H^(Y' Xx- W,/" F),

where the limit is taken over all ftale morphisms W -> X' with a fixed point w e W over x ' and with a fixed embedding of fields J^{w) ^^{x')8 over Jf(^'). Therefore, it suffices to show that for any ^tale morphism (W, w) -> (X', x ' ) there exist ^tale mor-phisms g : U -^ X and A : U" -^ U' = W X x U such that the point w is contained in the image of U" and for any q > 0 one has

Im^V',/" F) -> H^V",/" F)) C Im^V, F) -> H^V",/'- F)), where V = Y X ^ U , V = Y x ^ U ' and V" = Y X^U". We can shrink W and assume that W -> X is a separated smooth morphism of pure dimension one.

By Corollary 7.3.6, there exist separated ftale morphisms g : U -> X and A : U " ->U' = W X x U

W —> X t tI I'

U' -^> U

u" t^

such that the point w is contained in the image of U" and there is a factorization

Rxtd^n.u") —^ R+.(^,v)

\

^

<\ / (Z/»Z)^ [- 2]

where < is induced by the trace mapping. Consider the fibre product of the previous diagram with Y over X

Y X x W —> Y

f t ,

I I"

V —"-> V

t- y

V"

We claim that for any q > 0 there is a factorization IP(VV*F) —^ H^V'V^F)

\ /

H'(V,F)

where the homomorphism H^V, F) —>- W ^ M " , / ' * F) is the canonical one.

Indeed, by the Base Change Theorem for Cohomology with Compact Sup-port 7.7.1, there is a factorization

Rx^»,v") —^ R^»,v)

\ /

(Z/nZ)^ [- 2]

where t' is induced by the trace mapping. By Theorem 7.4.1, we have R«K(r(F|v)) ^^"(R+;(^,r), F|v[- 2]),

Rx:(r(F|y)) ^.^m(Rx:(^,y),F|^[- 2]).

Since ^foOT((Z/HZ)y [— 2], F|v[— 2]) ^ F[v, then there is a commutative diagram R4-:(r(F|v)) —^ Rx:(x*(F|v))

F|v

where the morphism F[y -^ Rx^X'^Fjv)) is the canonical one.

We now apply to the latter commutative diagram the derived functor RFy, where Fy : S(V, Z/yzZ) -> s/b is the functor of global sections on V. Since Fy o ^ == Fy and Fy o ^ = 1^5 we get a commutative diagram

RIV(r(F|^)) -^ Rr^,(x"(F|^))

RFv(F|v)

which gives, for any q > 0, a commutative diagram H»(V',/"F) —^ H^V'VF)

\ / H'(V, F)

in which the homomorphism H^V, F) -> H<(V",/'• F) is the canonical one. The theorem is proved. •

REFERENCES

BERKOVICH, V. G., Spectral theory and analytic geometry over non-Archimedean fields. Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, 1990.

BOSCH, S., Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Raume, Math. Ann., 229 (1977), 25-45.

BOSCH, S., GUNTZER, U., Remmert, R., Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York, 1984.

BOSCH, S., LUTKEBOHMERT, W., Stable reduction and uniformization ofabelian varieties I, Math, Ann., 270 (1985), 349-379.

BOURBAKI, N., Topologie generate, Paris, Hermann, 1951.

CARAYOL, H., Non-abelian Lubin-Tate Theory, in Automorphic Forms, Shimura Varieties, and L-Functions, New York-London, Academic Press, 1990, 15-39.

DRINFELD, V. G., Elliptic modules, Math. USSR Sbomik, 23 (1974), 561-592.

DRINFELD, V. G., Coverings of/»-adic symmetric domains, Fund. Anal. Appl., 10 (1976), 107-115.

ENGELKING, R., General topology, Warszawa, 1977.

FRESNEL,J., VAN DER PUT, M., Geometric analytique rigide et applications. Progress in Mathematics, vol. 18, Boston, Birkhauser, 1981.

GABRIEL, P., ZISMAN, M., Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 35, Berlin-Heidelberg-New York, Springer, 1967.

GODEMENT R., Topologie algebrique et theorie des faisceaux, Paris, Hermann, 1958.

GROTHENDIECK, A., Sur quelques points d'algebre homologique, T6hoku Math. ] . , 9 (1957), 119-221.

GROTHENDIECK, A., Le groupe de Brauer, in Dix exposes sur la cohomologie des schemas, Amsterdam, North-Holland, 1968, 46-188.

GROTHENDIECK, A., DIEUDONNE, J., elements de geometric algebrique, IV. fitude locale des schemas et des morphismes de schemas, Publ. Math. I.H.E.S., 20 (1964), 25 (1965), 28 (1966), 32 (1967).

GRUSON, L., Theorie de Fredholmj&-adique, Bull. Soc. math. France, 94 (1966), 67-95.

HARTSHORNE, R., Residues and Duality, Lecture Notes in Math., 20, Berlin-Heidelberg-New York, Springer, 1966.

HARTSHORNE, R., Algebraic Geometry, Berlin-Heidelberg-New York, Springer, 1977.

KIEHL, R., Ausgezeichnete Ringe in der nichtarchimedischen analytischen Geometric, /. Reine Angew.

Math., 234 (1969), 89-98.

MATSUMURA, H., Commutative ring theory, Cambridge University Press, 1980.

MITCHELL, B., Theory of Categories, New York-London, Academic Press, 1965.

VAN DER PUT, M., The class group of a one-dimensional affinoid space, Ann. Inst. Fourier, 30 (1980), 155-164.

RAYNAUD, M., Anneaux locaux henseliens. Lecture Notes in Math., 169, Berlin-Heidelberg-New York, Springer, 1970.

GROTHENDIECK, A., Seminaire de geometric algebrique, I. Revetements etales et groupe fondamental, Lecture Notes in Math., 224, Berlin-Heidelberg-New York, Springer, 1971.

ARTIN, M., GROTHENDIECK, A., VERDIER, J.-L., Theorie des topos et cohomologie etale des schemas, Lecture Notes in Math., 269, 270, 305, Berlin-Heidelberg-New York, Springer, 1972-1973.

DELIGNE, P. et al., Cohomologie etale, Lectures Notes in Math., 569, Berlin-Heidelberg-New York, Springer, 1977.

SCHNEIDER, P., STUHLER, U., The cohomology of/»-adic symmetric spaces, Invent, math., 105 (1991), 47-122.

SERRE,J.-P., Cohomologie galoisienne, Lectures Notes in Math., 5, Berlin-Heidelberg-New York, Springer, 1964.

ZARISKI, 0., SAMUEL, P., Commutative algebra, Berlin-Heidelberg-New York, Springer, 1975.

INDEX OF NOTATIONS T | y : 1 . 1 (13).

0, OK (system of affinoid spaces) : 1.2 (15).

^, av/u : 1 . 2 . 3 (16).

9^ (9 morphism of analytic spaces) : 1.3 (27).

^Yo/Xo,^Y/x : 1 . 3 (28).

XQ, ^x, (X Hausdorff strictly analytic space) : 1.6 (35).

Xo', Fo (F coherent 6'x-module) : 1.6 (37).

Mod(Xo), Coh(Xo), Pic(Xo) : 1.6 (37).

A(X) (the skeleton of X) : 3.6 (71).

INDEX OF TERMINOLOGY

Boundary of an analytic space : 1.5.4 (34).

Closed immersion : 1.3 (28).

Coherent sheaf : 1.3 (25, 26).

Compact map : 1.1 (14).

Conormal sheaf : 1.3 (28).

Dense class of affinoid spaces : 1.2 (16).

Dense collection of subsets : 1.1 (13).

Dimension of an analytic space : 1.2 (23).

Dimension of a morphism : 1.4 (30).

Duality morphism : 7.3 (135).

Elementary curve : 3.6 (71).

Elementary fibration : 3.7.1 (76).

fitale topology on an analytic space : 4.1 (82).

fitale topology on a germ : 4.2 (86).

(p-Family of supports : 5.1.2 (97).

Fibre of a morphism at a point : 1.4 (30).

Flabby sheaf : 4.2 (88).

Geometric ramification index of an etale morphism : 6.3 (119).

Germ of ^-analytic space : 3.4 (64).

Germ of analytic space over k : 3.4 (65).

Gluing of analytic spaces : 1.3 (24).

Good analytic space : 1.2 (22).

Ground field extension functor : 1.4 (30).

Hausdorff map : 1.1 (14).

Interior of an analytic space : 1.5.4 (34).

Locally (G-locally) closed immersion : 1.3 (28).

Net : 1 . 1 (14).

Open immersion : 1.3 (24).

Paracompact germ : 4.3 (91).

Paracompactifying (p-family of supports : 5.1.2 (97).

Picard group : 1.3 (25, 26).

Quasicomplete field : 2.3.1 (43).

Quasiconstructible sheaf : 4.4.2 (94).

Quasi-immersion : 4.3.3 (90).

Quasi-isomorphism : 1 . 2 . 9 (19).

Quasinet : 1 . 1 (13).

Relative boundary of a morphism : 1.5.4 (34).

Relative interior of a morphism : 1.5.4 (34).

Sheaf of differentials : 1.4 (30).

Smooth pair : 7.4 (143).

T-Special covering : 1.2 (20).

0-Special domain : 1.2 (21).

T-Special set : 1.2 (20).

Stalk of a sheaf : 4.2 (87).

Strong morphism : 1.2.7 (18).

Structural sheaf of an analytic space : 1.3 (25).

Support of a coherent sheaf : 1.3 (25).

Support of a section of a sheaf : 4.2 (87).

G-Topology on an analytic space : 1.3 (25).

Trace mapping : 5.4 (106), 6.2 (112), 7.2 (130).

Zariski closed (open) subset : 1.3 (28).

Department of Theoretical Mathematics The Weizmann Institute of Science P.O.B. 26, 76100 Rehovot, Israel

Manuscrit refu Ie 28 janvier 1991, Revise Ie 13 mai 1992.

21