• Aucun résultat trouvé

rlth*0, if hef(O), h*0

Dans le document a:Ovlo. A mi=2m-l (1.3) Z (Page 36-40)

Under the assumption

sup ll a,llo,rr,r+1y <

-,

Lemma 6.3 and Rellich's compactness theorem guarantee the existence

of

a sub-sequence

zl,

converging

in

Z,(O(^S+1)) and hence

in H?#(q to

an element

u$?#@).

Clearly, rz satisfies (6.12) and (6.13)

with .q;:0,

as well as

(6.16)

(ulLh)s,j2:

0

for

all

h€rf@).

AIso,

z

is

in

"r(O):

With X

and u2 as in the proof of Lemma 6.3,

f ::

PIL)u,

belongs

to 9(R')

and by Lemma 6.2 (i) there exists a unique solution ,?€"/(R')

of

P(DA: i.

Putting

u,,

:: (l-X)un,, i,, : f lqu;

and continuing these functions by zero, we see from interior regularity results, that

,tT

ll(t

*

lxlz)r

(l-i)il,,

"" :

o'

Hence, by (6.5),

u,

tends

to fr in

H?k@). But then

uz:fr.(J(R");

thus uU(A1.

It

remains to lead the assumption

,lim ll

z,llo,e1s+r):-Exterior boundary value problems for elliptic equations

to a contradiction. For this we consider the normalized sequence w,

:

ll uoll o, a(s + ry -14,,.

As above we can conclude that a subsequence 1e;, conv€rges

in

Hffi(CI) to a solu-tion

w(J(Q) of P(L)w:0,yrw:0,

which satisfies (6.16). By the choice

of r/

this implies

w:0,

which contradicts the normalization

of

wo,.

Let us now consider problem (6.12;6.13) with nonzero

g;. It

is possible to construct a function

wct*!-(Q

satisfying

(6.17)

Tiw

: 9i' i :

O'

"'' ffi-l'

supp wnsupp rlr

:

0.

Green's identity gives

for u(.,{*(A)

(r

1r1wlv)o, o

: 2) G

1lr, ryo.,.

Hence,

if

(6.14) is valid, we have

(f-P(L)wlo)0,, : 0 for all

u(,/r*(Q).

By the first part

of

the proof there is a solution

{i<J@) of P(L)fr:f -P(L)w, y.ifr:O.

Moreover, the function

fi

satisfies (6.16). Then the function

u:: il*w

solves (6.12; 6.13) and, in addition, by (6.17), satisfies (6.16).

Since condition (6.14)

is

also necessary

for

the solvability, Theorem 6.4 is proved.

From the proofofTheorem 6,4 one easily deduces a pseudoinverse for problem (6.12;6.13)

o-'

: x (a)

x'fi' p'- -' -'t' (t) *

J (a) j:o

which is continuous as a mapping from

H!,,(qXIIf=or pzm-i-rtz(f)

into äffi(O).

For this we choose

a

nonnegative testfunction

E€0(A)

such that the mapping

.,(*(Q)*K19), u-eu is

injective. Denoting

by

uL,...,Dd

a

basis

of ,f*(A)

for which

(rpuilui\s,e: öii,

the mapping

Q:

K(o)xfi' g'^-t-'t2(f) *1((o)x fi' g'*-i-'21r1,

j:0 j:r

e(f; s): (f-

i:t

* «f,,.;,,,o-Z'k,lr,u,)o,,)vu,;

j:o s)

is a

continuous projection

of K(O)XII!;LHzn-i-u2(f)

onto the range

of

the mapping

g

i

J(O)*K@)X ilf;'

Hzn-i

-uz(I'),

where

39

(6.18)

9u - (P(L)u)

loul., .

..,y*-fllr).

(6.19)

40 J. SnnnNEN and K. J. Wrrscrl

A

pseudoinverse

of I is

given by assigning

to

any

(f;go,.",8^-t)

the unique solution

u€J(A) of

P(L)u

: f, !iu : 8i, i :

O, ...,

m-1,

with the property (6.16).

Hete (f

;80,

...,8.-r):Qff,80, "',8,-r)'

We have

to

show the continuity

of 9-r.

Since

Q

is continuous,

9-r

is

continuous

if

llullr*,o(R)

=

g(ttr Q)u|| 0, o(s)

+ 2t

lly iullr,,- j -Lp, r) J:0

holds

for

any

u€.I(A)

with the properties (6.16-6.18). Estimate (6.19) has to be shown for any Å,

§,

and the constant

c:c(R, S)

may not depend

on a. If

(6.15)

were wrong, ttrere would exist numbers Ä, ,S>0 and a sequence uo(J(Q) such that

lluollzm,e(R)

: l,

l.-3 (tt

r

@)uoli,, ,,(s)

.Zilv

iuollr,,- i -ttz,r)

:

0

and that (6.15) are valid. Without loss of generality, we may suppose that .R

>'S* l.

Then by Lemma 6.3 and Rellich's compactness theorem there exists a subsequence

uk,,

cotyerging to some

a in Hffi(O).

As in the proof of Theorem 6.4, we can

conclude,

that u

belongs

to

.,4r(A) and hence vanishes by (6.16). This contra-dicts (6.20).

We have shown that for any exterior domain

O

with smooth boundary the Dirichlet operator, as defined by (6.18), is a weakly indexed operator with index

0

and admits a pseudoinverse

0-,

which

is

continuous as

a

mapping from

K@)xJIf;t gzn-i-rtz(f) into

H?*@) and for which

Q:gth-' it

a continuous

projection

of

iK(O) onto the range

of 9.

Since the adjoint Dirichlet problem is a problem of the same kind, this is true

for 9* too.

Therefore all assumptions

(A1)-(A6)

are valid

in

the case under discussion and one can conclude that Theorem 3.6

is

applicable

for

exterior boundary value problems

with

respect to the operator

A-

P(L).

Remark. To

solve problem

Q.l5),

one could proceed as

in

the proof of Theorem 6.4, using estimate (6.5)

with

1l; replaced

by Bi.

However, this would yield neither the index of the problem nor the finiteness of the codimension of the range.

References

[l]

AcrraoN, S.: 6ctures on elliptic boundary value problems. - D. Van Nostrand Company, Inc., Princeton, N. J. - Toronto, Ont.-New York-London' 1965.

[2] AcuoN, S. and L. HönrrlnNorn: Asymptotic properties of solutions of differential equations with simple characteristics. - J. Analyse Math' 30, 1976,

l-38,

[3] CarprröN, A. P.: Uniqueness in the Cauchy problem for partial differential equations. - Amer.

J. Math. 80, 1958, 16-36.

(6.20)

Exterior boundary value problems for elliptic equations

[11] Hönlr,c'Nprn, L.: Linear partial diflerential operators. - Springer Verlag, Berlin-Heidelberg-New York, 1969.

[12] HönuaNorn, L.: Lower bounds at inlinity for solutions of differential equations with constant coefficients. - Israel J. Math. 16, 1973, 103-116.

[13] JÄcnn, 'Vl.: Zrtr Theorie der Schwingungsgleichung mit variablen Koeffizienten

in

AuBen-gebieten. - Math. Z. tO2, 1967.62-88.

[14] JöncrNs, K.: Lineare Integraloperatoren. Mathematische kitfäden. - B. G, Teubner, Stutt-gart,197O.

[lI

Lsts, R.: Zur Monotonie der Eigenwerte selbstadjungierter elliptischer Differentialgleichungen.

- Math. z. 96, 1967,26-32.

[18] Luts, R.: AuBenraumaufgaben zur Plattengleichung. - Arch. Rational Mech. Anal.35, 1969,

226-233.

[19] Lus, R.: Zur Theorie der Plattengleichung. - Ber. Ges. Math. Datenverarb. Bonn 101, Ig75.

[20] LrvrNr, L. M.: A uniqueness theorem for the reduced wave equation. - comm. pure Appl.

Math. 17, 1964, 14'7-176.

[21] Ltoxs, J. L. and E. MlcrNes: Non-homogeneous boundary value problems and applications I.

- Springer Verlag, Berlin-Heidelberg-New york., 1972.

[22] Mrvens, N. and J. SnnnrN: The exterior Dirichlet problem for second order elliptic partial differential equations. - J. Math. Mech. 9, 1960, 513-538.

[23] NrnruNvärr, P.: Randwertaufgaben zur Plattengleichung.

-

Ann. Acad, sci. Fenn. ser.

A

I

Math. Dissertationes 16, 1978, 1-71.

[24] PnNrvnn, B. P.: Existence and uniqueness of the solution of the r-metaharmonic equation on an unbounded case. - Vestnik Moscov. Univ. Ser. Mat. Meh. Astronom. Fiz. Him.

5, 1959, 123-135 (Russian).

[25] Plt§, A.: Non-uniqueness in Cauchy's problem for differential equations of elliptic type.

-M. Math. Mech. 9, 1960,557-562.

[26] Pu§, A.: A smooth linear elliptic differential equation without any solution in a sphere.

-Comm. Pure Appl. Math. 14, 1961,599-617.

[2fl Pous, R.: AuBenraumaufgaben in der Theorie der Plattengleichung. - Bonn. Math. Schr.

No. 91, 1976.

[28] Pnorrnn, M. H.: unique continuation for elliptic equations. - Trans. Amer. Math, soc. 95, 1960,81-91.

4r

42 J. SlnaNEN and K. J. Wrrscn: Exterior boundary value problems for elliptic equations [29] Rrr-rrcrr, F.: Uber das asymptotische Verhalten der Lösungen von

/u*

kzu:O in unendlichen

Gebieten. - J. Ber. Deutsch. Math. Verein' 53, 1943,57-65'

[30] snmo, Y.: The principle of Iimiting absorption for second-order differential equations with operator-valued coefficients. - Publ. Res. Inst. Math. sci.7,l97ll72, 581-619' [3I] SnnaNrN, J.: A generalized plate equation with an exterior boundary value problem' - Ber'

Univ. Jyväskylä Math' Inst. 17,1977.

[32] SARINEN. J.: On decomposition of solutions of some higher order elliptic equations. - Ann.

Acad. Sci. Fenn. Ser.

AI4,

1978179,267-277'

[33] SauxrN, J.: On electric and magnetic boundary problems for vector fields in nonhomogeneous anisotropic media. - J. Math' Anal. Appl' (to appear)'

[34] Scnur,rNsrncrn, J. R. and C. H. Wpcox: A Rellich uniqueness theorem for steady-state waYe propagation in inhomogeneous anisotropic media. - Arch. Rational Mech. Anal. 41, 1971,18-45,

[35] VaiNssnc, B. R.: Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations. - Russian Math. surveys 21,115-163.

[36] VeiNsrx.c, B. R.: On elliptic problems in unbounded domains.

-

Math. USSR-Sb' 4, 1968, 419-444.

[37] Vrxul, I. N.: New methods in solving elliptic boundary value problems.

'

John wiley & sons,

Inc., New York, 1967.

[3g] VocersaNc, V.: Eltiptische Diferentialgleichungen mit variablen Koeffizienten in Gebieten

mit unbeschränktem Rand. - Manuscripta Math' 14, 1975,397-4Ol'

[39] Voc4s,luc, v.: Das Ausstrahlungsproblem fiir elliptische Differentialgleichungen in Gebieten

mit unbeschränktem Rand' - Math. Z. 144, 1975, 101-124'

[40] Wrcrrr,, W.: AuBenraumaufgaben zur Plattengleichung mit Hilbertraummethoden'

-

Ber' Ges. Math. Datenverarb. Bonn 67, 1973.

[41] wcxnl,

w.:

Zur Theorie der Dirichletschen Randwertaufgabe zum operator

/2-ka

im Innen- und Augenraum mit der Integralgleichungsmethode.

-

Bonn. Math. Schr.

No.68, 1973.

[42] Wrrcox, c. H.: scattering theory for the d'Alembert equation in exterior domains. - Lecture Notes in Mathematics,2t42, Springer-Verlag' Berlin-New York' 1975'

[43] Wrscn, K. J.: Schiefe AuBenraumaufgaben zu elliptischen Differentialgleichungen zweiter Ordnung. - Bonn. Math. Schr' No' 64' 1973'

[44] Wrrsc.n, K. J.: The exterior Dirichlet problem for a class of fourth order elliptic equations. -J. Math. Anal. Appl. 49, 1975,734J47'

[45] Wrrsqr, K. J.: Radiation conditions and the exterior Dirichlet problem for a class of hieher order elliptic equations. - J. Math. Anal' Appl' 54, 1976,820-839'

J. Saranen

Dans le document a:Ovlo. A mi=2m-l (1.3) Z (Page 36-40)

Documents relatifs