• Aucun résultat trouvé

The ergodic theorem for iterated function systems was first proved by J.Elton in [9].

The key argument of his proof was that, under suitable conditions, for all x, y ∈ X, the probability measure IPx is absolutely continuous with respect to IPy ; this result is interesting in itself and we have the following proposition which sharpens the Elton’s result :

Proposition VII.1 Assume hypotheses H1, H2, H3 and H4. Suppose also that sup

i∈IN

m(log(pi))<+∞.

Then, for any x, y ∈X, the probability measures IPx and IPy are equivalent on Ω.

We will need the two following lemmas

Lemma VII.2 Assume that H1 holds ; then, for all r ∈]ρ; 1[, all x and y in X and

1

2(IPx+IPy)-almost all ω ∈Ω, we have

n→+∞lim

d(TXn(ω)◦ · · · ◦TX1(ω)x, TXn(ω)◦ · · · ◦TX1(ω)y)

rn = 0.

Proof. Assume H1 ; we have

∀x, y ∈X IEx

"

d(TXn◦ · · · ◦TX1x, TXn ◦ · · · ◦TX1y) rnd(x, y)

#

≤(ρ r)n and so

IEx

X

n≥0

d(TXn ◦ · · · ◦TX1x, TXn◦ · · · ◦TX1y) rnd(x, y)

<+∞.

Thus

X

n≥0

d(TXn◦ · · · ◦TX1x, TXn ◦ · · · ◦TX1y)

rn <+∞ IPx−p.s.

The lemma follows immediately. 2

Lemma VII.3 Let (Ω,F, IP) be a probability space and (Fn)n≥0 a filtration such that the σ-algebra generated by ∪nFn is F. Let Q be a probability measure on Ω such that

∀n ≥0 ∀A∈ Fn Q (A) = RAXn(ω)P(dω)where Xn, n≥0is a positive random variable onΩ, measurable with respect to Fn. Let (Tp)p≥0 be a sequence of stopping times relatively to the filtration (Fn)n≥0 such that

i)lim

+∞Tp(ω) = +∞ Q (dω)-p.s

ii) for allp≥0, the sequence (Xn∧Tp)n≥0 converges IP-a.s and inIL1(IP) to the r.v. XTp. Then, the sequence(Xn)n≥0 convergesIP-a.s and inIL1(IP) to a random variable X and we have Q =XIP,that is

∀A∈ F Q (A) =

Z

A

X(ω)IP(dω).

Proof. Using a standart method ([27]), one can show that (Xn)n≥0is a positive martingale with respect to (Fn)n≥0 ; therefore, this martingale convergesIP-a.s to a positive random variableX, and we have, using Fatou’s lemma IEIP[X]≤1.

Furthermore

IEIP[XTp] = X

k≥0

IEIP[Xk1[Tp=k]] +IEIP[X1[Tp=+∞]]

= X

k≥0

Q [Tp =k] +IEIP[X1[Tp=+∞]]

= Q [Tp <+∞] +IEIP[X1[Tp=+∞]].

Using the hypotheses i) andii), we have IEIP[XTp] = lim

k→+∞IEIP[XTp∧k] = 1 and lim

p→+∞Q [Tp <+∞] = 0 and so

1 = lim

p→+∞IEIP[X1[Tp=+∞]]≤IEIP[X].

In another hand, by Fatou’s lemma, we obtain

∀n≥0,∀A∈ Fn

Z

A

X(ω)dIP(ω) ≤lim inf

n→+∞

Z

A

Xn(ω)dIP(ω) = Q (A).

Finally, Q and XIP are two probability measures on Ω such that for any n ≥ 0 and any A∈ Fn,Q (A)≥

Z

A

X(ω)dIP(ω) ; thus Q =XIP. 2

Proof of proposition 7.1. Let us observe that the restriction IPx,n of IPx on the space of functions from Ω intoIRwhich depends only on then first coordinates is defined by

Z

f(ω)IPx,n(dω) = X

1,···,ωn)∈INn

f(ω1· · ·ωn)pωn(Tωn−1 ◦ · · · ◦Tω1x)· · ·pω1(x).

Thus

IPx,n(dω) =hx,y,n(ω)IPy,n(dω) with

hx,y,n(ω) =

n

Y

k=1

pωk(Tωk−1 ◦ · · · ◦Tω1x) pωk(Tωk−1 ◦ · · · ◦Tω1y).

The sequence (hx,y,n(·))n≥0is a positive matingale on (Ω,F, IPy) and so it convergesIPy-a.s to a r.v. hx,y(·). Since sup

i∈IN

m(lnpi)<+∞, there exists c > 0 such that

∀i∈IN ∀x, y ∈X pi(x)

pi(y) ≤exp(c d(x, y)) ;

so, we have∀n ≥0 hx,y,n(ω)≤exp(c(Pnk=1d(Tωk−1 ◦ · · ·Tω1x, Tωk−1 ◦ · · ·Tω1y))).

Let us introduce the stopping timeTp relatively to the filtration (Fk)k≥0 defined by Tp = inf{n≥p:d(TXn+1◦ · · · ◦TX1x, TXn+1◦ · · · ◦TX1y)≥rn+1}

with inf∅= +∞ ; following lemma 6.2 we have lim

p→+∞Tp(ω) = +∞ IPx(dω)-p.s.

For anyn ≥pand IPy-almost all ω∈Ω, we have hx,y,n∧Tp(ω)(ω) ≤ exp(c

p

X

k=1

d(TXk(ω)◦ · · ·TX1(ω)x, TXk(ω)◦ · · ·TX1(ω)y) +c

n∧Tp(ω)

X

k=p+1

rk)

≤ exp(c

p

X

k=1

d(TXk(ω)◦ · · ·TX1(ω)x, TXk(ω)◦ · · ·TX1(ω)y) +crp+1 1−r) ; thus, using Lebesgue’s theorem, one can show that the sequence (hx,y,n∧Tp)n≥0 converges IPy-a.s and in IL1(IPy) to the random variable hx,y,Tp.

Applying lemma 6.3, one can therefore prove that the sequence (hx,y,n)n≥0 converges IPy-a.s and inIL1(IPy) to the random variablehx,yandIPx =hx,yIPy, wherehx,y is defined by

∀ω∈Ω hx,y(ω) =

Y

n=1

pXn(ω)(TXn−1(ω)◦ · · · ◦TX1(ω)x) pXn(ω)(TXn−1(ω)◦ · · · ◦TX1(ω)y). 2

Acknowledgements. I would like to thank Albert Raugi for helpfull discussions and for pointing out his work and Max Bauer for suggestions about redaction of this article.

References

[1] Anorld L., Crauel H.Iterated function systems and multiplicative ergodic theory.

preprint.

[2] Barnsley M.F., Demko S.G., Elton J.M., Geronimo J.S.Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities.Ann. de l’Institut Henri Poincar´e, vol. 24, no 3, (1988), p. 367-394.

[3] Barnsley M.F., Elton J.M.A new class of Markov processes for image encoding.

Adv. Appl. Prob. 20, (1988), p. 14-32.

[4] Berger M.A., Mete Soner M. Random walks generated by affine Mappings.

Journal of theorical probability, vol. 1,no 3, (1988).

[5] Conze J.P., Raugi A. Fonctions harmoniques pour un op´erateur de transition et applications. Bulletin soc. Math. France, 118, (1990), p. 273-310.

[6] Doeblin W., Fortet R. Sur des chaˆınes a liasons compl`etes.Bull. Soc. Math. de France , Vol 65, (1937), p. 132-148.

[7] Dubins L., Freedman D. Invariant probabilities for certains Markov processes . Ann. Math. Stat. 37, (196), p. 837-848

[8] Diacones P., Shahshahani M. Product of random matrices and computer im-age generation. Random Matrices and their applications. 50, Cont. Math A.M.S., Providence, R.I (1986)

[9] Elton J.H.An ergodic theorem for iterated maps.Ergod. Th. and Dynam Syst.,no 7, (1987), p. 481-488.

[10] Fayolles G., Malyshev V.A, Menshikov M.VRandom walks in a quater plane with zero drifts. I Ergodicity and null recurrence.Ann. Inst. Henri Poincar´e, Vol. 28, no 2, (1992), p. 179-194.

[11] Furstenberg H., Kesten H. Products of random matrices. Ann. Math. Statis., no 31, (1960), p. 457-469.

[12] Goldie C. Implicit renewal theory and tails of solutions of random equations. The Annals of Applied Probability, Vol 1, no 1, (1991), p. 126-166.

[13] GRINCEVICIUS A.K.A central limit theorem for the group of linear transforma-tion of the real axis Soviet Math. Doklady , Vol 15, no 6, (1974), p. 1512-1515.

[14] Guivarc’h Y., Hardy J.Th´eor`emes limites pour une classe de chaˆınes de Markov et applications aux diff´eomorphismes d’Anosov. Ann. Inst. Henri Poincar´e, Vol. 24, no 1, (1988), p. 73-98.

[15] Guivarc’h Y., Le Jan Y. Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions. Ann. scient. Ec. Norm. Sup., 4`‘me s´erie, t. 26, 1993, p. 23-50.

[16] Guivarc’h Y., Raugi A. Fronti`eres de Furstenberg, propri´et´es de contraction et th´eor`emes de convergence.Ze¨ıt f¨ur Wahr., no 69, (1985), p. 187-242.

[17] Herv´e L. Etude d’op´erateurs quasi-compacts positifs. Applications aux op´erareurs de transfert.To appear in Ann. Inst. Henri Poincar´e,

[18] Hall P., Heyde C.C.Martingale limit theory and its applications.New York Aca-demic Press(1980)

[19] Hennion H. D´ecomposition spectrale des op´erateurs de Doeblin-Fortet. Proceeding of the A.M.S,no 69, (1993), p. 627-634

[20] Hutchinson J.. Fractals and self-similarity. Indiana U. J. of Math., 30, (1981), p.

713-747.

[21] Ionescu Tulcea C. On a class of operators occuring in the theory of chains of infinite order.Can. J. Math, Vol 11, 1959, p.112-121

[22] Ionescu C., Marinescu G..Sur certaines chaˆınes `a liaisons compl`etes.C.R.A.S., 227, (1948), p. 667-669

[23] Jamison B. Asymptotic behaviour of successive iterates of continuous functions under a Markov operator. J. of Math. Analysis and Applications, t. 9, (1964), p.

203-214.

[24] Karlin S. Some random walks Arising in Learning models. Pac. J. of Math. , 3, (1953, p. 725-756.

[25] Le Page E.Th´eor`emes de renouvellement pour les produits de matrices al´eatoires.

Equations aux diff´erences al´eatoires. S´eminaires de Probabilit´es Rennes, 116. p., Publ. S´em. Math., Univ. Rennes 1, Rennes 1983

Mathematical reviews 88 f : 60157, p 3131

[26] Leguesdron J.P. Marche al´eatoire sur le semi-groupe des contractions de IRd. Cas de la marche al´eatoire sur IR+ avec chocs ´elastiques en z´ero. Ann. Inst. Henri Poincar´e, Vol. 25, no 4, (1989), p. 483-502.

[27] Neveu J. Bases math´ematiques du calcul des probabilit´es. Masson et Cie, 1964.

[28] Norman M.F.Markov processes and learning models. Academic Press, 1972.

[29] Nummelin E.General irreductible Markov chains and non-negative operators. Cam-bridge U. Press, CamCam-bridge (1985).

[30] Peign´e M. Marches de Markov sur le semi-groupe des contractions de IRd. Ann.

Inst. Henri Poincar´e, Vol. 28, no 1, (1992), p. 63-94.

[31] Raugi A. Th´eorie spectrale d’un op´erateur de transition sur un espace compact.

Ann. Inst. Henri Poincar´e, Vol. 28, no 2, (1992), p. 281-309.

[32] Raugi A. Fonctions harmoniques et th´eor`emes limites pour les marches al´eatoires sur les groupes.Bull. Soc. Math. de France , Vol 54, (1977)

[33] Rosenblatt M.Equicontinuous Markov operators.Theor. Prob. and its Appl., vol.

9, (1969), p. 180-197.

[34] Revuz D.Markov chains. North Holland Pub. Comp., 1975

Documents relatifs