• Aucun résultat trouvé

Relation entre la caractérisation initiale de boues secondaires

Dans le document en fr (Page 12-16)

Figure 3.1: Fractionation of sludge total solid by Van Soest method. 84 Figure 3.2: Correlation circle (A), mean squared prediction error (PRESS) (B),

regression coefficient representation (C) and centered variables values of regression

coefficients (D) for the dimension 3 model with all the 12 parameters. 88 Figure 3.3: Mean squared prediction error (PRESS) (A), regression coefficient

representation (B) for the dimension 2 model with the most important parameters. 89 Figure 3.4: Mean squared prediction error (PRESS) (A) and regression coefficient

representation (B) for the PLS model 4 with the parameters of the Van Soest

characterization and SolOC and Ox. 91

Figure 3.5: Mean squared prediction error (PRESS) (A) and regression coefficient representation (B) for the PLS model 5 with the parameters of the biochemical

characterization and SolOC and Ox. 92

Figure 3.6: Calculated and experimental biodegradabilities for model calibration and model validation based on the biochemical characterisation and SolOC and Ox

(PLS model 5). 94

xii Chapitre 4. Influence de la solubilisation du substrat sur les performances de dégradation anaérobie thermophile en réacteur batch

Figure 4.1: Impact of treatment temperature on solubilisation of WAS. 107 Figure 4.2: Soluble compound concentrations during batch anaerobic digestion of

each sludge (batch 4). 108

Figure 4.3: Methane production and VFA concentrations during batch anaerobic digestions of (A) untreated WAS, (B) pretreated at 110°C, (C) pretreated at 165°C in

electric mode, (D) pretreated at 165°C in steam mode and (E) pretreated at 220°C. 111 Figure 4.4: Acetate (A), propionate (B) accumulation maximum rates and methane

(C) production specific maximum rates with different conditions of pretreatment

through batch experiments. 114

Figure 4.5: Variation des concentrations en composés solubles et débit de méthane au cours de la digestion anaérobie thermophile en condition batch d’une boue secondaire non traitée et prétraitée à 165°C (trait plein : concentration en DCO soluble moins la concentration en AGV totaux ; trait discontinu : concentration en

protéines solubles ; trait en pointillé : concentration en glucides solubles). 118 Chapitre 5. Modélisation des performances de digestion anaérobie thermophile en réacteur batch : la cinétique de Contois introduite dans le modèle ADM1

Figure 5.1: Simulated individual VFAs, pH and cumulative CH4 production vs experimental data for untreated WAS. Comparison of the proposed disintegration/hydrolysis model with standard ADM1 (red circles and thin plain line:

experimental data points, black dashed thin line: standard ADM1, black thick plain

line: modified ADM1) 133

Figure 5.2: Simulated individual VFAs, pH and cumulative CH4 production vs experimental data for 110°C pretreated WAS. Comparison of the proposed disintegration/hydrolysis model with standard ADM1 (red circles and thin plain line:

experimental data points, black dashed thin line: standard ADM1, black thick plain

line: modified ADM1). 136

Figure 5.3: Simulated individual VFAs, pH and cumulative CH4 production vs experimental data for 165°C pretreated WAS. Comparison of the proposed disintegration/hydrolysis model with standard ADM1 (red circles and thin plain line:

experimental data points, black dashed thin line: standard ADM1, black thick plain

line: modified ADM1). 137

Figure 5.4: Simulated individual VFAs, pH and cumulative CH4 production vs experimental data for 220°C pretreated WAS. Comparison of the proposed disintegration/hydrolysis model with standard ADM1 (red circles and thin plain line:

experimental data points, black dashed thin line: standard ADM1, black thick plain

line: modified ADM1). 138

Figure 5.5: Comparison between (A) measured VFA concentrations and simulated VFA concentrations (B) measured methane produced and simulated methane produced, for untreated and pretreated WAS. The simulation data come from

modified ADM1 model. 140

xiii Figure 5.6: Concentration en ammoniaque simulée par le modèle modifié ADM1

lors de la dégradation de la boue non traitée thermiquement. 144 Figure 5.7: Suivi des concentrations en NH4+

et en NH3 sur 45 j dans deux réacteurs dégradant une boue secondaire non traitée et prétraitée à 165°C et un réacteur non

alimenté en substrat. 145

Chapitre 6. Modélisation des performances de digestion anaérobie thermophile : introduction de la bioaccessibilité de la matière particulaire dans un modèle ADM1 modifié

Figure 6.1: Methane specific production of WAS untreated and pretreated at 165°C

and 220°C during the second feed of batch reactors (data from Chapter 4). 154 Figure 6.2: COD flows for a particulate substrate in dual-pathway disintegration

modified ADM1 model structure. 155

Figure 6.3: Simulated biomass concentrations for untreated WAS through the four

successive batch tests (A: batch test 1; B: batch test 2; C: batch test 3;

D: batch test 4). 157

Figure 6.4: Chart of heuristic method procedure for optimising the model parameter

values. 158

Figure 6.5: Simulated individual VFAs, pH and cumulative CH4 production vs experimental data for untreated WAS (A: batch 1; B: batch 2; C: batch 3 and D:

batch 4). (red circles and red thin plain line: experimental data; black thick plain

line: modified ADM1 with two hydrolysable composite fractions). 162 Figure 6.6: Simulated Xcs, acetate and C2 degrader concentrations for the third batch

test fed with untreated WAS. 163

Figure 6.7: Sensitivity of acetate, propionate concentrations and methane production in batch test 2 to Xcr disintegration parameters. (red circles and blue thin dotted line:

experimental data points; red thin plain line: simulation with initial values; red thick wide dotted line: simulation with an increment of +50 % on model parameter values;

blue thick small dotted line: simulation with a variation of –50 % on model

parameter values). 166

Figure 6.8: Sensitivity of acetate, propionate concentrations and methane production in batch test 2 to Xcs disintegration parameters. (red circles and blue thin dotted line:

experimental data points; red thin plain line: simulation with initial values; red thick wide dotted line: simulation with an increment of +50 % on model parameter values;

blue thick small dotted line: simulation with a variation of –50 % on model

parameter values). 167

Figure 6.9: Sensitivity of acetate, propionate concentrations and methane production in batch test 2 to propionate degradation parameters. (red circles and blue thin dotted line: experimental data points; red thin plain line: simulation with initial values; red thick wide dotted line: simulation with an increment of +50 % on model parameter values; blue thick small dotted line: simulation with a variation of –50 %

on model parameter values). 168

xiv Figure 6.10: Sensitivity of acetate, propionate concentrations and methane

production in batch test 2 to acetate degradation parameters. (red circles and blue thin dotted line: experimental data points; red thin plain line: simulation with initial values; red thick wide dotted line: simulation with an increment of +50 % on model parameter values; blue thick small dotted line: simulation with a variation of –50 %

on model parameter values). 169

Figure 6.11: Simulated individual VFAs, pH and cumulative CH4 production vs experimental data for WAS pretreated at 110°C (A: batch 1; B: batch 2; C: batch 3 and D: batch 4). (red circles and red thin plain line: experimental data; black thick

plain line: modified ADM1 with two hydrolysable composite fractions). 174 Figure 6.12: Simulated individual VFAs, pH and cumulative CH4 production vs

experimental data for WAS pretreated at 165°C in electric mode (A: batch 1; B:

batch 2; C: batch 3 and D: batch 4). (red circles and red thin plain line:

experimental data; black thick plain line: modified ADM1 with two hydrolysable

composite fractions). 176

Figure 6.13: Simulated individual VFAs, pH and cumulative CH4 production vs experimental data for WAS pretreated at 165°C in steam mode (A: batch 1; B: batch 2; C: batch 3 and D: batch 4). (red circles and red thin plain line: experimental data;

black thick plain line: modified ADM1 with two hydrolysable composite fractions). 178 Figure 6.14: Simulated individual VFAs, pH and cumulative CH4 production vs

experimental data for WAS pretreated at 220°C (A: batch 1; B: batch 2; C: batch 3 and D: batch 4). (red circles and red thin plain line: experimental data; black thick

plain line: modified ADM1 with two hydrolysable composite fractions). 180 Figure 6.15: Degradation rate dynamics for the fourth degradation batch test of

untreated and pretreated WAS samples (rates are expressed in kgCOD.m-3.d-1). 182 Figure 6.16: Simulated vs experimental Qbiogas, QCH4 and QC02 for pilot scale digester

in thermophilic condition with SRT changes. Comparison between the proposed model and the ADM1 standard model (red circles: experimental data points, black plain line: modified ADM1, black dashed line: standard ADM1, blue dashed thin

line: SRT). 185

Figure 6.17: Simulated vs experimental individual VFAs, total COD and pH for pilot scale digester in thermophilic condition with SRT changes. Comparison between the proposed model and the ADM1 standard model (red circles: experimental data

points, black plain line: modified ADM1, black dashed line: standard ADM1). 186 Figure 6.18: Simulated dynamic behavior of composite fractions for standard ADM1

model (Xc) and model with two hydrolysable fractions (Xcr and Xcs). 187 Figure 6.19: Variations du débit de méthane simulé et des concentrations en Xcr et

Xcs simulées pour le digesteur pilote en condition thermophile lors de l’arrêt de

l’alimentation. 190

xv

LISTE DES TABLEAUX LIST OF TABLES

Chapitre 1. Revue bibliographique

Tableau 1.1 : Tableau de bord environnement de Veolia Environnement entre 2005

et 2007. 8

Tableau 1.2 : Impact de traitements thermiques sur la digestion anaérobie de boues

d’épuration. 21

Tableau 1.3 : Protocoles de mesure du potentiel de méthane de substrats organiques

proposés dans la littérature scientifique. 45

Tableau 1.4 : Exemples de productions spécifiques obtenues sur des substrats

similaires et sur un même substrat d’alimentation analysé à différents instants t. 48 Tableau 1.5 : Méthodes de caractérisation de la matière organique de boues suivant

l’objectif de l’étude et les méthodes d’extraction utilisées. 54 Chapitre 2. Matériels et méthodes

Tableau 2.1 : Expériences réalisées au cours des travaux de la thèse. 72 Chapitre 3. Relation entre la caractérisation initiale de boues secondaires et leur

biodégradabilité anaérobie thermophile

Table 3.1: Wastewater treatment plant characteristics. 80

Table 3.2: Macroscopic parameters of sludge samples. 82

Table 3.3: Biochemical composition of sludge samples. 83

Table 3.4: Mean reduction (%) of measured components between input and output of

full scale anaerobic process. 86

Table 3.5: Methane potential and biodegradability of input sludge samples. 87 Table 3.6: PLS model for predicting biodegradability (BD) of sludge sample F output

pretreatment. 93

Chapitre 4. Influence de la solubilisation du substrat sur les performances de

Dans le document en fr (Page 12-16)