• Aucun résultat trouvé

1.5 Les expériences d’astronomie γ de très haute énergie

1.5.3 La relève

La relève des expériences contemporaines d’imagerie atmosphérique TcherenkovH.E.S.S.,MAGIC

et VERITAS sera assurée par l’observatoire CTA [Actis et al., 2011] prévu pour être totalement

opérationnel à l’horizon 2020. Deux réseaux hybrides, l’un au nord et l’autre au sud, constitués de différents types de télescopes, permettront d’une part d’observer des évènements de très basse énergie (∼10 GeV) à l’aide de grands télescopes munis de réflecteurs de 24 m de diamètre, mais aussi d’avoir accès aux rayons γ très énergétiques en couvrant une large surface de petits et de moyens télescopes (respectivement 6 m et 12 m de diamètre), tous dotés d’un champ de vue important (≥6°). Ces caractéristiques vont permettre à l’observatoireCTAd’atteindre un gain en sensibilité d’un facteur

5 à 10 à toutes les énergies par rapport aux expériences qui sont aujourd’hui en fonctionnement. Les premières données techniques devraient être disponibles en 2017.

3http://tevcat.uchicago.edu

1.5. Les expériences d’astronomie γ de très haute énergie 15

16 Bibliographie

Bibliographie

A. A. Abdo, et al. Fermi/Large Area Telescope Bright Gamma-Ray Source List. ApJS, 183:46–66, July 2009a. doi: 10.1088/0067-0049/183/1/46.

A. A. Abdo, et al. The Large-Scale Cosmic-Ray Anisotropy as Observed with Milagro. ApJ, 698: 2121–2130, June 2009b. doi: 10.1088/0004-637X/698/2/2121.

A. A. Abdo, et al. The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars. ApJS, 208:17, October 2013. doi: 10.1088/0067-0049/208/2/17.

J. Abraham, et al. Observation of the Suppression of the Flux of Cosmic Rays above 41019eV. Physical Review Letters, 101(6):061101, August 2008. doi: 10.1103/PhysRevLett.101.061101. M. Ackermann, et al. The First Fermi-LAT Gamma-Ray Burst Catalog. ApJS, 209:11, November

2013. doi: 10.1088/0067-0049/209/1/11.

M. Actis, et al. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Experimental Astronomy, 32:193–316, Decem- ber 2011. doi: 10.1007/s10686-011-9247-0.

M. Aguilar, et al. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV. Physical Review Letters, 110(14):141102, April 2013. doi: 10.1103/PhysRevLett.110.141102. E. Aliu, et al. Observation of Pulsed γ-Rays Above 25 GeV from the Crab Pulsar with MAGIC.

Science, 322:1221–, November 2008. doi: 10.1126/science.1164718.

R. Atkins, et al. Milagrito, a TeV air-shower array. Nuclear Instruments and Methods in Physics Research A, 449:478–499, July 2000. doi: 10.1016/S0168-9002(00)00146-7.

A. Barrau, et al. The CAT imaging telescope for very-high-energy gamma-ray astronomy. Nuclear Instruments and Methods in Physics Research A, 416:278–292, October 1998. doi: 10.1016/S0168-9002(98)00749-9.

A. R. Bell. The acceleration of cosmic rays in shock fronts. I. MNRAS, 182:147–156, January 1978. G. F. Bignami, et al. The COS-B experiment for gamma-ray astronomy. Space Science Instrumen-

tation, 1:245–268, August 1975.

J. Blümer, R. Engel, et J. R. Hörandel. Cosmic rays from the knee to the highest energies. Progress in Particle and Nuclear Physics, 63:293–338, October 2009. doi: 10.1016/j.ppnp.2009.05.002. S. Carrigan, et al. The H.E.S.S. Galactic Plane Survey - maps, source catalog and source population.

ArXiv e-prints, July 2013.

M. F. Cawley, et al. Application of imaging to the atmospheric Cherenkov technique. International Cosmic Ray Conference, 3:453–456, August 1985.

J. Cortina, et al. Technical Performance of the MAGIC Telescope. International Cosmic Ray Conference, 5:359, 2005.

M. de Naurois et CELESTE Collaboration. Status and Current Sensitivity of the CELESTE Ex- periment. In F. A. Aharonian et H. J. Völk, editors, American Institute of Physics Conference Series, volume 558 of American Institute of Physics Conference Series, page 540, April 2001. C. Dermer et G. Menon. High energy radiation from black holes: gamma rays, cosmic rays, and

Bibliographie 17 B. L. Dingus. HAWC (High Altitude Water Cherenkov) Observatory for Surveying the TeV Sky. In S. Ritz, P. Michelson, et C. A. Meegan, editors, The First GLAST Symposium, volume 921 of American Institute of Physics Conference Series, pages 438–439, July 2007. doi: 10.1063/1. 2757390.

T. Ebisuzaki, et al. The JEM-EUSO Project: Observing Extremely High Energy Cosmic Rays and Neutrinos from the International Space Station. Nuclear Physics B Proceedings Supplements, 175: 237–240, January 2008. doi: 10.1016/j.nuclphysbps.2007.11.005.

E. Fermi. On the Origin of the Cosmic Radiation. Physical Review, 75:1169–1174, April 1949. doi: 10.1103/PhysRev.75.1169.

C. E. Fichtel, et al. High-energy gamma-ray results from the second small astronomy satellite. ApJ, 198:163–182, May 1975. doi: 10.1086/153590.

W. Galbraith et J. V. Jelley. Light Pulses from the Night Sky associated with Cosmic Rays. Nature, 171:349–350, February 1953. doi: 10.1038/171349a0.

D. S. Hanna, et al. The STACEE-32 ground based gamma-ray detector. Nuclear Instruments and Methods in Physics Research A, 491:126–151, September 2002. doi: 10.1016/S0168-9002(02) 01126-9.

A. K. Harding. Pulsar High-Energy Emission From the Polar Cap and Slot Gap. ArXiv e-prints, October 2007.

R. C. Hartman, et al. The Third EGRET Catalog of High-Energy Gamma-Ray Sources. ApJS, 123:79–202, July 1999. doi: 10.1086/313231.

HEGRA Collaboration, et al. Performance of the stereoscopic system of the HEGRA imaging air Čerenkov telescopes: Monte Carlo simulations and observations. Astroparticle Physics, 10: 275–289, May 1999. doi: 10.1016/S0927-6505(98)00062-0.

A. M. Hillas. The Origin of Ultra-High-Energy Cosmic Rays. ARA&A, 22:425–444, 1984. doi: 10.1146/annurev.aa.22.090184.002233.

A. M. Hillas. Cerenkov light images of EAS produced by primary gamma. In F. C. Jones, editor, International Cosmic Ray Conference, volume 3 of International Cosmic Ray Conference, pages 445–448, August 1985.

J. A. Hinton. The status of the HESS project. New A Rev., 48:331–337, April 2004. doi: 10.1016/ j.newar.2003.12.004.

J. Holder, et al. Status of the VERITAS Observatory. In F. A. Aharonian, W. Hofmann, et F. Rieger, editors, American Institute of Physics Conference Series, volume 1085 of American Institute of Physics Conference Series, pages 657–660, December 2008. doi: 10.1063/1.3076760. K.-H. Kampert et M. Unger. Measurements of the cosmic ray composition with air shower experi-

ments. Astroparticle Physics, 35:660–678, May 2012. doi: 10.1016/j.astropartphys.2012.02.004. G. Kanbach, et al. The project EGRET (Energetic Gamma-Ray Experiment Telescope) on NASA’s

Gamma-Ray Observatory (GRO). Space Sci. Rev., 49:69–84, 1988. A. Moralejo. Status of Magic-II. ArXiv e-prints, December 2009.

P. L. Nolan, et al. Fermi Large Area Telescope Second Source Catalog. ApJS, 199:31, April 2012. doi: 10.1088/0067-0049/199/2/31.

18 Bibliographie C. Pittori, et al. First AGILE catalog of high-confidence gamma-ray sources. A&A, 506:1563–1574,

November 2009. doi: 10.1051/0004-6361/200911783.

K. V. Ptitsyna et S. V. Troitsky. PHYSICS OF OUR DAYS Physical conditions in potential accelerators of ultra-high-energy cosmic rays: updated Hillas plot and radiation-loss constraints. Physics Uspekhi, 53:691–701, October 2010. doi: 10.3367/UFNe.0180.201007c.0723.

M. Punch, et al. Detection of TeV photons from the active galaxy Markarian 421. Nature, 358:477, August 1992. doi: 10.1038/358477a0.

G. B. Rybicki et A. P. Lightman. Radiative Processes in Astrophysics. Wiley-VCH, June 1986. B. N. Swanenburg, et al. COS B observation of high-energy gamma radiation from 3C273. Nature,

275:298, September 1978. doi: 10.1038/275298a0.

The Fermi-LAT Collaboration. Fermi Establishes Classical Novae as a Distinct Class of Gamma-Ray Sources. ArXiv e-prints, August 2014.

T. C. Weekes, et al. Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. ApJ, 342:379–395, July 1989. doi: 10.1086/167599.

Chapitre 2

Noyaux actifs de galaxies

Sommaire

2.1 Introduction . . . 19