• Aucun résultat trouvé

Radiation impacts on morbidity in Crustaceans

Morbiditycanbebroadlydefinedas“Alossoffunctional capac-itiesgenerallymanifestedasreducedfitness,whichmayrender organismslesscompetitiveandmoresusceptibletootherstressors, thusreducingtheirlifespan”(Copplestoneetal.,2008).Definition ofthetermmorbidityvariesbetweenauthorsandencompassesa vastnumberofendpointsincludingperturbationstogrowthrates, behaviouralalterationsandimmunesystemeffects(Copplestone etal.,2004).Inordertomaintainrelevancebothecologicallyand forenvironmentalprotection,anendpointshouldbeamenableto

N.Fulleretal./AquaticToxicology167(2015)55–6759 Table2

Numericalbenchmarkvaluesin␮Gy/hr−1proposedbyanumberofdifferentorganisationsanddirectivesfortheprotectionofpopulationsofarangeofbiota.USDOE=UnitedStatesDepartmentofEnergy.NCRP=NationalCouncil onRadiationProtectionandMeasurements.IAEA=InternationalAtomicEnergyAgency.-=Nodataprovided.AdaptedfromAnderssonetal.,(2008).

DoseLevel(␮Gy/h−1)

USDOE(1990) NCRP(1990) IAEA(1992) Environment Canada(2003)

FASSET(2003) Larsson,(2004)

ERICA(2007) Beresfordetal.

(2007)

ICRP(2008) UNSCEAR(2008) PROTECT(2009) Andersson,(2008)

FreshwaterOrganisms 400 400 400 100 10 400 10

Algae 100

Macrophytes 100

BenthicInvertebrates 200

Fish 20

ReferenceTrout 40–400

ReferenceFrog 4–40

MarineOrganisms 400 400 100 10 400

MarineMammals

DeepOceanOrganisms 1000 10

ReferenceCrab 400–4000

ReferenceFlatfish 40–400

ReferenceBrownSeaweed 40–400

TerrestrialOrganisms 100 100 10 100 10

Plants 400

ReferencePineTree 4–40

ReferenceWildGrass 40–400

Animals 40

Invertebrates 200

ReferenceBee 400–4000

ReferenceEarthworm 400–4000

Mammals 100

ReferenceDeer 4–40

ReferenceRat 4–40

Birds 4–40

ReferenceDuck 4–40

Table3

SummaryofmorbiditystudiesinCrustacea.HTOrepresentsTritiatedWater.Acuteexposuresaredefinedhereasthoselastinglessthan24h,withchronicexposureslasting overaperiodoftheorganismslifespanandgreaterthan24h

Species DoseRate/Total Dose

LowestObserved EffectDose/Dose Rate(LOEDR)

RadiationSource ExposureDuration ExposureType Conclusion Reference

Pollicipespolymerus7.9,62.5nGy/hr−1, 0.625,6.25and 62.5␮Gy/hr−1

0.000625mGy/h−1 HTO 32Days Chronic Alteredmoulting

patterns

Abbott&Mix, (1979)

Daphniamagna 0.02,0.11and 0.99mGy/hr−1

0.11mGy/h−1 241Am 23Days Chronic Reductioninbody

mass,Increased

Daphniamagna 0.3,1.5and 15mGy/hr−1

0.3mGy/h−1 241Am 70Days Chronic Increasedoxygen

consumption,

Artemiasalina 100,200,400and 800Gy

200Gy 6Co ∼30–220Minutes Acute Decreaseinrespiration rate

Angelovic&Engel (1968)

Callinectessapidus 40,80,160,320 and640Gy

40Gy 6Co ∼11–175Minutes Acute Behaviouralchanges;

reductioninirritability, catatonicstateathigh doses

Engel,(1967)

Daphniamagna 0.41,4.2and 31mGy/hr-1

31mGy/hr−1 137Cs 23Days Chronic Decreasein

mass-specific

0.5and5Gy 0.5Gy 6Co <5Minutes Acute Morphological

aberrations;

Daphniamagna 0.007,0.07,0.65, 4.7and 35.4mGy/hr1

4.7mGy/hr−1 137Cs 75Days Chronic Reductionsinbody

lengthandVon

9.1Gy 6Co 0–20Minutes Acute Alterationstomoulting

patterns

5.6Gy X-Ray 1Minute Acute Behaviouralchanges;

detectionand

3mGy 6Co ∼0–10Minutes Acute Behaviouralchanges;

alterationsto

3mGy 6Co ∼0–10Minutes Acute Morphological deformations, Decreased hepatosomaticindex

Stalinetal.(2013b)

measurement,specifictothehazardinquestionandappropriate forextrapolationtohigherlevelsofbiologicalorganisation(Ankley etal.,2010;Suter,1990).Thepracticalityofusingmorbidityasan endpointforradiationexposuremaythereforebelimitedduetothe lackofspecificityandmultitudeofeffectsitincludes.Thisis exem-plifiedwithinthecrustaceansubphylum,withadiversearrayof endpoints(SeeTable3forsummary)usedtoassessmorbidity.

3.1. Radiation-inducedimpactsongrowth&respiration

Alonzo et al., (2006, 2008a) investigated the effects of chronic internal exposure to the alpha emitting radionuclide,

241Americium,onthegrowth dynamicsof Daphniamagna. The authorsrecordedasignificantlylowerdrymassandbodylength ofirradiatedspecimensatdosesof∼1.5mGy/hr−1infirst gener-ationorganisms(F0),withsignificantincreasesintheseverityof effectsovergenerations.Forexample,individualsoftheF2 genera-tiondisplayeda15%reductionindrymassatdosesof0.3mGy/hr−1

(Alonzo et al., 2008a). A recent study furtherunderpinned the potential of ionisingradiations to perturb growth dynamics in daphnids(Parisotetal.,2015),withreductionsof5and13 %in thegrowth rateof F2generation daphnidsexposed to 4.7 and 35.4mGy/hr−1ofgammaradiation,respectively.Experimental evi-dencesuggeststhatlargerdaphnidshaveenhanced competitive and resourceexploitation abilityrelative tosmallerindividuals, leadingtoelevatedmortalityin thoseindividuals withreduced competitioncapacity(KreutzerandLampert,1999).Thefinding thatradionuclideexposuremayperturbgrowthdynamics there-forehasimportantimplicationsfornaturalcrustaceanpopulation dynamics.

Inthepreviousstudy(Alonzoetal.,2008a),oxygen consump-tionofD.magnawaselevatedabovecontrolsatalldoses,suggesting anincreaseinmetabolicexpenditureinducedbyradiationstress.

Exposureoforganisms tostressorsand adverseconditionsmay resultinreallocationofmetabolicenergytowardsmaintenanceand leadtoreducedenergyinvestmentperoffspring(Baillieuletal.,

N.Fulleretal./AquaticToxicology167(2015)55–67 61

2005).Thiswasreflected by a reduced resistancetostarvation recordedinneonatesderivedfrom0.02mGy/hr−1 exposedadult daphnids(Alonzoetal.,2006).Itisofnotethatthisdoseratefalls belowthevalueof∼0.4mGy/hr1providedbyanumberof orga-nisationsbelowwhichnodeleteriouspopulationleveleffectsare predictedtooccurinaquaticorganisms(SeeTable2)byanorderof magnitude.Arecentstudy(SarapultsevaandGorski,2013)further suggesteddeleteriousimpactsonneonatesrelatingtometabolic perturbations.Followingparentalexposuretoacutegammadoses of100and1000mGyfromCobalt-60,a∼20%decreaseinthemean lifespanofnon-exposedfirstgenerationD.magnaoffspringwas demonstrated.

Anotherstudyof Daphniamagnaexposed tochronicgamma irradiationfrom137Csreportedcontrastingresultstothe afore-mentioned study (Alonzo et al., 2008a) of decreased oxygen consumptionwithincreasingdose(Gilbinetal.,2008).D.magna receivinggammadoseratesof 31mGy/hr1 displayeda signifi-cantlylowermass-specificrespirationrate,comparedwithdose ratesof0.3,1.5and15mGy/hr1allelicitinganincreasein respira-tionratefollowingAmericium-241(analphaemitter)exposurein thestudyofAlonzoetal.,(2008a).Whilstthelownumberof repli-cates(n=6)recognisedbytheauthorinthestudyofGilbinetal., (2008)maypreventcomparisonacrossstudies,thisunderpinsthe importanceofaccountingfordifferingradiationsourcesandthe correspondingvariabilityinrelativebiologicaleffectiveness(RBE).

ThetermRBEwascoinedin1931(FaillaandHenshaw,1931)to accountforthevariabilityinbiologicaleffectobservedwithdose, doserateandtypeofradiation(Valentin,2003).RBEincreasesas afunctionofLETwithhighlinearenergytransfer(LET)sourcesof radiation,e.g.,alphaemitters,typicallymoreeffectiveateliciting biologicaldamageinexperimentalsystemsthanlowLETradiation, i.e.,gammaandbetaraysreachingamaximumat∼100keV/␮m (HallandHei,2003;UNSCEAR,1996).Thismaybeusedtoaccount forthedifferentresponsesofD.magnainthesetwostudies.

Thevariabilityinbiologicaleffectrelatingtothegivenradiation sourceisexemplifiedbyastudyofmorbidityinthegoosebarnacle, Pollicipespolymerus,whichrecordedalteredmoultingpatternsat extremelylowbetadosesof0.62␮Gy/hr−1(AbbottandMix,1979).

Theradiationsourceemployedinthepreviousstudywastritiated water(HTO),aradionuclidethatisdischargedintogroundwater systemsfromnuclearoperations(Jaeschkeetal.,2011;Jhaetal., 2005).Despitetherelativelylowenergy emissionofbeta parti-clesfromHTO(average betaenergy of5.73±0.03keV(Pillinger et al.,1961), thenature and behaviourof this radiation source withinorganismshasledtosignificantconcernovertheRBEof theradionuclide(Bridges,2008;LittleandLambert,2008).Ithas beendemonstratedthatHTOmaybeirreversiblyincorporatedinto organiccompoundswithinorganisms(TakedaandKasida,1979) andthereforemayproducea biologicaleffectdisparatewithits emissioncharacteristics.Inaddition,theauthorsofthe aforemen-tionedstudyonPollicipespolymerus(AbbotandMix,1979)stated thatcalculateddoseswereexclusiveofbackgroundradiationwhich wasnotquantified.Thishighlightstheimportanceofrobust quan-tificationofreceiveddoseinradiobiologystudies(Pentreath,2009).

3.2. Theeffectsofionisingradiationonthebehaviour&

histopathologyofCrustaceanspecies

Ionisingradiationhasbeendemonstratedtoinducebehavioural changesinanumberofcrustaceanspeciesincludingcrabs(Engel, 1967), prawns (Stalin et al., 2013a) and crayfish (Rodriguez and Kimeldorf, 1976). Alterations to behavioural patterns are fundamental in environmental risk assessments since these perturbationsmayariseasanadaptivemechanismtochronic con-taminantexposureandhavethepotentialtoalterspecies–species interactions(Dell’Omo,2002).Theavailableliteratureregarding

behaviouralimpactsofradiationinvolvesmostlyacuteexposures tohighdosesofradiation(Engel,1967;RodriguezandKimeldorf, 1976),withthemagnitudeofbehaviouralchangescorrelatingwith doselevels.Forexample,Engel(1967)assessedtheimpactofboth chronic and acuteradiation exposures onthebehaviour of the bluecrab,Callinectessapidus,ahighlyaggressiveandcannibalistic species(Bushmann,1999).Areductioninaggressivenessof Call-inectessapidusspecimenssubjecttosingleacuteirradiationswith

6Codosesfrom40to640Gywasobserved,whilsthigherdoses induceda catatonicstate.Continuousexposurestolowerdoses (0.72,1.64&6.53Gy/d−1)for70daysinducedcessationof feed-ingandabnormalbehaviouralpatternsdeviatingfromthenormal pugnacious natureofC. sapidus,withtheextentofbehavioural effects relating to dose. Whilst the receiveddose remains sig-nificantly higher than estimates of the highest external doses infreshwatersystemsimmediatelyaftertheChernobylaccident ([4.2–8.3mGy/hr1frombottomsediments]Kryshevetal.,2005), the findingthat prolongedexposures may perturb behavioural patterns has implications for contaminated areas where radia-tionlevels remainelevatedoverlong time scales.Furthermore, limited datasuggestsinduction of behaviouraleffects atlower, environmentallyrelevantdoses.Stalinetal.,(2013a)demonstrated behaviouralchangesincludingalterationstoswimmingpatterns inthegiantfreshwaterprawn,Macrobrachiumrosenbergiiatacute gammadosesof3mGy.

Fewstudieshaveconsideredtheimpactsofionisingradiation onmorphologicalandhistologicalparametersincrustaceans.Stalin etal.,(2013a,b)demonstratedinductionofhistologicaland mor-phologicalaberrationsincludingswollenandnecroticlamellaein the gill,deformations of the uropod, and discolouration of the abdomeninM.rosenbergiioveradoserangeof3–3000mGy(Stalin etal.,2013a),withthemagnitudeofeffectsrelatingtodose.Iwasaki (1973)adoptedahistologicalapproachtoassessgamma radiation-inducedeffectsinoogoniaandoocytesofthebrineshrimp,Artemia salina. A dose-dependent increase in cellulardeformations and thenumber ofpyknoticcells (celldegradationcharacterisedby chromatincondensation)wasrecordedoverahighdoserangeof 250–3000GyfromCobalt-60.Furthermore,Mothersilletal.,(2001) recordedperturbations tocytoplasmicorganellesin hematopoi-etic cultures of Nephrops norvegicus at gamma doses of 0.5Gy.

Deformationsincludedabnormalmitochondrial-rough endoplas-mic reticulum complexes at 0.5Gy, progressing to complete disintegration ofthecellular cytoplasmatdoses of 5Gy. Struc-turalperturbationstothegilllamellaeofcrustaceanshavebeen recorded in response toa number of toxicants (Li et al.,2007;

SaravanaBhavanandGeraldine,2000)andmayultimatelyimpair gillfunctioning(Tamseetal.,1995)leadingtoasphyxia.Future studiesshouldconsiderhistologicalimpactsonthecrustaceangill usingchronic,environmentallyrelevantradiationdosesinorder tocorroboratethisfinding.Adecreaseinthehepatosomaticindex ofM.rosenbergiiwasalsoobservedasaconsequenceofradiation exposure(Stalinetal.,2013b)whichmayprovidefurtherevidence thatradiationelicitsalterationstoenergybudgetssincechangesto theHSImayreflectmobilizationandutilizationofenergyreserves (Sánchez-Pazetal.,2007).

Behaviouralanalysisofcrustaceanspeciesexposedtoionising radiationhasreliedlargelyuponanecdotalvisualobservationsover adefinedtimeperiod(Stalinetal.,2013a).Thisapproachis sub-jecttoanumberoflimitationsincludingalackofteststandards (Kaneetal.,2004),alowsensitivitycomparablewithvideo-based behaviouralanalysersandthepotentialfor individualbias. Fur-thermore, the available studies have employed acute radiation exposureswhichmayinducedifferentbehaviouraleffectsto equiv-alentdosesdeliveredoverlongertimescales(Solomonetal.,2009).

Futurestudies shouldcouple chronic,environmentally relevant exposuredurationswithahigh-throughputbehaviouraltracking

system.Suchsystemsminimisebiasbyprovidingsensitive,reliable recordingsofsmallanimalbehaviourundercontrolledconditions.

4. Theeffectofionisingradiationonreproductionin

Documents relatifs