• Aucun résultat trouvé

pour réaliser des fonctions RF plus avancées telles que des déphaseurs reconfigurables. Ce seront les premiers blocs de base des objectifs du projet MUFRED : concevoir un réseau phasé

(et/ou un réseau réflecteur) d’antennes à balayage de faisceau ultra-rapide à base de

commutateur VO

2

.

BIBLIOGRAPHIE

[1] G. M. Rebeiz, RF MEMS: Theory, Design and Technology, Hoboken, New Jersez:

Wiley-Interscience, 2003.

[2] W. Zhou, W. Sheng, J. Cui, Y. Han, X. Ma et R. Zhang, «SR-Crossbar Topology for

Large-Scale RF MEMS Switch Matrices,» IET Microwaves, Antennas & Propagation, vol. 13, pp.

231-238, 2019.

[3] M. Maglione, «Recent Advances in Integrated Ferroelectric and Multiferroic Materials,»

2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp.

216-219, 2010.

[4] B.-J. Che, F.-Y. Meng, Y.-L. Lyu et Q. Wu, «A Novel Liquid Crystal Based Leaky Wave

Antenna,» 2016 IEEE MTT-S International Microwave Workshop Series on Advanced

Materials and Processes for RF and THz Applications (IMWS-AMP), 2016.

[5] T. Wang, Y. Peng, W. Jiang, Y. M. Huang, B. M. F. Rahman, R. Divan, D. Rosenmann et G.

Wang, «Integrating Nanopatterned Ferromagnetic and Ferroelectric Thin Films for

Electrically Tunable RF Applications,» IEEE Transactions on Microwave Theory and

Techniques, vol. 65, pp. 504-512, Feb. 2017.

[6] T. Singh et R. R. Mansour, «Characterization of Phase Change Material Germanium

telluride for RF Switches,» Proceedings of the 48th European Microwave Conference

(EuMC), pp. 475-478, 2018.

[7] V. Dubost, «Une Initiation aux Concepts et Matériaux de la Transition Métal-Isolant de

Mott,» Thèse de Doctorat, 2014.

[8] N. F. Mott, «Metal-Insulator Transition,» Reviews of Modern Physics, vol. 40, pp. 677-683,

1968.

[9] Z. Yang, C. Ko et S. Ramanathan, «Oxide Electronics Utilizing Ultrafast Metal-Insulator

Transitions,» Annual Review of Materials Research, vol. 41, pp. 337-367, 2011.

[10] N. F. Mott, «The Basis of the Electron Theory of Metals, with Special Reference to the

Transition Metal,» Electron Theory of Metals, pp. 416-422, 1949.

[11] J. Hubbard, «Electron Correlations in Narrow Energy Bands,» Proceedings of the Royal

Society of London, vol. 276, pp. 238-257, 1963.

[12] R. E. Peierls, Quantum Thepry of Solids, London: Oxford University Press, 1955.

[13] G. Grüner, «The Dynamics of Charge-Density Waves,» Reviews of Modern Physics, vol. 60,

pp. 1129-1181, 1988.

Chapitre 3 - Matériaux à transition isolant-métal

[14] P. W. Anderson, «Absence of Diffusion in Certain Random Lattices,» Physical Review, vol.

109, pp. 1492-1505, 1958.

[15] R. Zaabi, «Films Minces Intelligents à Propriétés Commandables pour des Applications

Electriques et Optiques Avancées : Dopage du Dioxyde de Vanadium,» Thèse de

l'Université de Limoges, 2015.

[16] A. Didelot, «Films d'Oxydes de Vanadium Thermochromes Dopés Aluminium Obtenus

Après un Recuit d'Oxydationo-Cristallisation pour Applications dans le Solaire

Thermique,» Thèse de l'Université de Lorraine, 2017.

[17] A. L. Pergament, G. B. Stefanovich, N. A. Kuldin et A. A. Velichko, «On the Problem of

Metal-Insulator Transition in Vanadium Oxydes,» ISRN Condensed Matter Physics, 2013.

[18] F. J. Morin, «Oxides Which Show a Metal-To-Insulator Transition At The Neel

Temperature,» Physical Review Letters, vol. 3, pp. 34-36, 1959.

[19] V. Eyert, «The Metal-Insulator Transitions of VO2 : A Band Theoretical Approach,» Annals

of Physics, vol. 11, pp. 650-702, 2002.

[20] D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer et M. A. El Khakani, «Grain Size

Effect on the Semiconductor-Metal Phase Transition Characteristics of

Magnetron-Sputtered VO2 Thin Films,» Applied Physics Letters, vol. 87, p. 051910(3), 2005.

[21] B. G. Chae et H. T. Kim, «Effects of W Doping on the Metal-Insulator Transition in

Vanadium Dioxide Film,» Physica B, vol. 405, pp. 663-667, 2010.

[22] R. McGee, A. Goswami, B. Khorshidi, K. McGuire, K. Schofield et T. Thundat, «Effect of

Process Parameters on Phase Stability and Metal-Insulator Transition of Vanadium Dioxide

(VO2) Thin Films by Pulsed Laser Deposition,» Acta Materialia, vol. 137, pp. 12-21, 2017.

[23] D. Yu, J. Wu, Q. Gu et H. Park, «Germanium Telluride Nanowires and Nanohelices with

Memory-Switching Behavior,» Journal of American Chemical Society, vol. 128, pp.

8148-8149, 2006.

[24] J. Leroy, A. Bessaudou, F. Cosset et A. Crunteanu, «Structural, Electrical and Opticla

Properties of Thermochomic VO2 Thin Films Obtained by Reactive Electron Beam

Evaporation,» Thin Solid Films, vol. 520, pp. 4823-4825, 2012.

[25] N. Sepulveda, A. Rua, R. Cabrera et F. Fernandez, «young's Modulus of Vo2 Thin Films as a

Function of Temperature Including Insulator-to-Metal Transition regime,» Applied Physics

Letters, vol. 92, p. 191913(3), 2008.

[26] R. G. Mani et S. Ramanathan, «Observation of a Uniform Temperature Dependence in the

Electrical Resistance Across the Structural Phase Transition in Thin Film Vanadium Oxide

(VO2),» Applied Physics Letters, vol. 91, p. 062104(3), 2007.

Field Effect Transistors,» Solid-State Electronics, vol. 54, pp. 654-659, 2010.

[28] D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti et S. Ramanathan, «Electrical

Triggering of Metal-Insulator Transition in Nanoscale Vanadium Oxide Junctions,» Journal

of Applied Physics, vol. 106, p. 083702(5), 2009.

[29] J. Leroy, A. Crunteanu, A. Bessaudou, F. Cosset, C. Champeaux et J.-C. Orlianges,

«High-Speed Metal Insulator Transition in Vanadium Dioxide Films Induced by an Electrical

Pulsed Voltage Over Nano-Gap Electrodes,» Applied Physics Letters, vol. 100, p.

213507(4), 2012.

[30] F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, A. Crunteanu et P. Blondy,

«RF-Microwave Switches Based on Reversible Semiconductor-Metal Transition of VO2 Thin

Films Synthesized by Pulsed Laser Deposition,» Applied Physics Letters, vol. 91, p.

223505(3), 2007.

[31] A. Crunteanu, F. Dumas-Bouchiat, C. Champeaux, A. Catherinot, A. Pothier et P. Blondy,

«Microwave Switching Functions Using Reversible Metal-Insulator Transition (MIt) in VO2

Thin Films,» Proceedings of the 37th European Microwave Conference, 2007.

[32] Y. W. Lee, B.-J. Kim, S. Choi, H.-T. Kim et G. Kim, «Photo-Assisted Electrical Gating in a

Two-Terminal Device Based on Vanadium Dioxide Thin Film,» Optics Express, vol. 15, pp.

12108-12113, 2007.

[33] A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget et J. C. Kieffer,

«Femtosecond Structural Dynamics in VO2 During an Ultrafast Solid-Solid Phase

Transition,» Physical Review Letters, vol. 87, p. 237401(4), 2001.

[34] S. M. Babulanam, T. S. Eriksson, G. A. Niklasson et C. G. Granqvist, «Thermochromic VO2

Films for Energy Efficient Windows,» Solar Energy Materials, vol. 16, pp. 347-363, 1987.

[35] C. G. Granqvist, S. Green, G. A. Niklasson, N. R. Mlyuka, S. Von Kraemer et P. Georen,

«Advances in Chromogenic Materials and Devices,» Thin Solid Films, vol. 518, pp.

3046-3053, 2010.

[36] S.-Y. Li, A. Niklasson et C. G. Granqvist, «A Thermochromic Low-Emmittance Coating:

Calculations for Nanocomposites of IN2O3:Sn and VO2,» Applied Physics Letters, vol. 99,

p. 131907(3), 2011.

[37] Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao et G. Tan, «VO2 Based Double

Layered Films for Smart Windows: Optical Desgin, all Solution Preparation and Improved

Properties,» Solar Energy Materials & Solar Cells, vol. 95, pp. 2677-2684, 2011.

[38] J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai et X. Liu, «VO2 Thermochromic

Smart Window for Energy Savings and Generation,» Scientific Reports, vol. 3, 2013.

[39] Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira et C. Cao, «Nanoceramic VO2

Documents relatifs