• Aucun résultat trouvé

Supplemental data

6.6 Qu’en est-il de l’humain?

chez la souris DT2-DIO. Ils ont démontré qu’il y a une modulation significative de l’activité et de la clairance des cyp450s par l’effet du diabète induit par la diète riche en gras, dont les cyp2c, cyp2d et cyp3a. Par homologie, les sous-familles cyp2c, cyp2d et cyp3a chez la souris correspondent au CYP2C9, CYP2D6 et CYP3A4 chez l’humain, respectivement. Le CYP3A4 hépatique est responsable du métabolisme et de l’élimination de 50%, et avec le CYP2C9 et CYP2D6, l’ensemble de ces trois isoenzymes métabolisent environ 90% des médicaments utilisés en clinique chez l’humain (88, 99, 100, 139, 140). Ce phénomène observé chez la souris DT2-DIO pourrait se produire également chez l’humain. Malgré que l’homologie des cytochromes P450 ne soit pas parfaite entre la souris et l’humain, ce qui demeure une faiblesse incontournable lorsque les études sont effectuées avec des espèces animales, ces travaux permettent d’évaluer si la présence du DT2 peut avoir une influence sur la capacité des CYP450s à métaboliser les médicaments et donc à les éliminer. Ces résultats nous permettent maintenant d’obtenir des données préliminaires supportant l’évaluation de l’impact du DT2 sur les CYP450s chez l’humain.

7 Conclusion

Nos résultats indiquent que le DT2 induit par l’obésité est associé à des changements significatifs de l’expression et de l’activité de plusieurs cyp450s hépatiques et extra-hépatiques chez la souris C57BL/6. En effet, l’activité métabolique de certains cyp450s dont les cyp3a semble être diminuée significativement par le DT2. Également, cette modulation de l’activité des cyp450s chez la souris DT2-DIO était tissu-dépendante. En effet, l’activité des cyp2d semble augmenter au niveau des reins chez la souris DT2-DIO, mais diminuer au niveau des poumons.

Ces résultats présentent une portée clinique importante pour les individus atteints de DT2 et qui possèdent d’autres comorbidités nécessitant une polymédication. En effet, des changements dans l’activité des CYP450s liés à la présence du DT2 pourront avoir un impact majeur sur la pharmacocinétique des médicaments dont le métabolisme s’effectue via ces isoenzymes des CYP450s. De fait, des altérations dans la pharmacocinétique pourront causer des changements dans les concentrations plasmatiques et tissulaires des médicaments chez ces patients et ainsi, les mettre à risque des inefficacités thérapeutiques ou encore à des toxicités médicamenteuses.

Ce profil complet d’expression et d’activité des cyp450s hépatiques et extra-hépatiques obtenu chez la souris C57BL/6 sous diète riche en gras ouvre des pistes de réflexions sur la pharmacocinétique des médicaments chez les personnes atteints de DT2. Des études chez l’humain sont nécessaires afin de mettre en évidence ces impacts sur le changement de la pharmacocinétique dans le contexte de DT2. L’objectif ultime est de mieux comprendre les

diabétiques afin de diminuer la morbidité reliée aux médicaments et d’optimiser leur thérapie. Les résultats de cette étude permettent d’établir des preuves de concept, de réaliser des études chez l’humain afin de confirmer cliniquement ces observations. Dans l’ensemble, nos recherches visent à fournir des outils afin d’optimiser le choix thérapeutique et les dosages médicamenteux appropriés chez les patients diabétiques : une avancée dans l’approche de la médecine personnalisée.

8 Bibliographie

1. Tilles G, Wallach D. [The treatment of syphilis with mercury: an exemplary therapeutic history]. Histoire des sciences medicales. 1996;30(4):501-10.

2. Tilles G, Wallach D. [History of the treatment of syphilis with mercury: five centuries of uncertainty and toxicity]. Revue d'histoire de la pharmacie. 1996;44(312 suppl):347-51. 3. Miguel A, Azevedo LF, Araujo M, Pereira AC. Frequency of adverse drug reactions in hospitalized patients: a systematic review and meta-analysis. Pharmacoepidemiology and drug safety. 2012;21(11):1139-54.

4. Impicciatore P, Choonara I, Clarkson A, Provasi D, Pandolfini C, Bonati M. Incidence of adverse drug reactions in paediatric in/out-patients: a systematic review and meta-analysis of prospective studies. British journal of clinical pharmacology. 2001;52(1):77-83.

5. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. Jama. 1998;279(15):1200-5.

6. Alomar MJ. Factors affecting the development of adverse drug reactions (Review article). Saudi Pharmaceutical Journal : SPJ. 2014;22(2):83-94.

7. Atkinson AJ AD, Daniels CE, Dedrick RL, Markey SP, editors. Principles of Clinical Pharmacology. 2nd ed. San Diego: Academic Press; 2007.

8. Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, et al. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA and cell biology. 1993;12(1):1-51.

9. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996;6(1):1-42.

10. Caldwell J. Drug metabolism and pharmacogenetics: the British contribution to fields of international significance. British journal of pharmacology. 2006;147 Suppl 1:S89-99.

11. Bachmann C, Bickel MH. History of drug metabolism: the first half of the 20th century. Drug metabolism reviews. 1985;16(3):185-253.

12. Ure A. On gouty concretions, with a new method of treatment. Medico-chirurgical transactions. 1841;24:30-5.

13. Estabrook RW. A passion for P450s (rememberances of the early history of research on cytochrome P450). Drug metabolism and disposition: the biological fate of chemicals. 2003;31(12):1461-73.

14. Mueller GC, Miller JA. The reductive cleavage of 4-dimethylaminoazobenzene by rat liver; the intracellular distribution of the enzyme system and its requirement for triphosphopyridine nucleotide. The Journal of biological chemistry. 1949;180(3):1125-36. 15. Mueller GC, Miller JA. The metabolism of methylated aminoazo dyes. II. Oxidative demethylation by rat liver homogenates. The Journal of biological chemistry. 1953;202(2):579- 87.

16. Axelrod J. The enzymatic demethylation of ephedrine. The Journal of pharmacology and experimental therapeutics. 1955;114(4):430-8.

17. Brodie BB, Axelrod J, Cooper JR, Gaudette L, La Du BN, Mitoma C, et al. Detoxication of drugs and other foreign compounds by liver microsomes. Science. 1955;121(3147):603-4.

19. Axelrod AE, Pruzansky J. The role of the vitamins in antibody production. Annals of the New York Academy of Sciences. 1955;63(2):202-9; discussion, 9-13.

20. Axelrod J. The enzymatic deamination of amphetamine (benzedrine). The Journal of biological chemistry. 1955;214(2):753-63.

21. Williams RT. Detoxication mechanisms. The metabolism of drugs and allied organic compounds. London, UK.1947. 288 p.

22. Garfinkel D. Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Archives of biochemistry and biophysics. 1958;77(2):493-509. 23. Klingenberg M. Pigments of rat liver microsomes. Archives of biochemistry and biophysics. 1958;75(2):376-86.

24. Omura T, Sato R. The Carbon Monoxide-Binding Pigment of Liver Microsomes. Ii. Solubilization, Purification, and Properties. The Journal of biological chemistry. 1964;239:2379-85.

25. Omura T, Sato R. The Carbon Monoxide-Binding Pigment of Liver Microsomes. I. Evidence for Its Hemoprotein Nature. The Journal of biological chemistry. 1964;239:2370-8. 26. Estabrook RW, Cooper DY, Rosenthal O. The Light Reversible Carbon Monoxide Inhibition of the Steroid C21-Hydroxylase System of the Adrenal Cortex. Biochemische Zeitschrift. 1963;338:741-55.

27. Cooper DY, Estabrook RW, Rosenthal O. The stoichiometry of C21 hydroxylation of steroids by adrenocortical microsomes. The Journal of biological chemistry. 1963;238:1320-3. 28. Cooper DY, Levin S, Narasimhulu S, Rosenthal O. Photochemical Action Spectrum of the Terminal Oxidase of Mixed Function Oxidase Systems. Science. 1965;147(3656):400-2. 29. Conney AH. Pharmacological implications of microsomal enzyme induction. Pharmacological reviews. 1967;19(3):317-66.

30. Sladek NE, Mannering GJ. Evidence for a new P-450 hemoprotein in hepatic microsomes from methylcholanthrene treated rats. Biochemical and biophysical research communications. 1966;24(5):668-74.

31. Omura T. Forty years of cytochrome P450. Biochemical and biophysical research communications. 1999;266(3):690-8.

32. Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, et al. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA and cell biology. 1991;10(1):1-14.

33. Nebert DW, Nelson DR. P450 gene nomenclature based on evolution. Methods in enzymology. 1991;206:3-11.

34. Nelson DR. Cytochromes P450 in humans [cited 2015]. Available from: http://drnelson.uthsc.edu/human.P450.table.html.

35. Correia MA, Sinclair PR, De Matteis F. Cytochrome P450 regulation: The interplay between its heme and apoprotein moieties in synthesis, assembly, repair and disposal. Drug metabolism reviews. 2011;43(1):1-26.

36. Guengerich FP. Kinetic deuterium isotope effects in cytochrome P450 oxidation reactions. Journal of labelled compounds & radiopharmaceuticals2013. p. 428-31.

37. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & therapeutics. 2013;138(1):103-41.

39. Yengi LG, Xiang Q, Pan J, Scatina J, Kao J, Ball SE, et al. Quantitation of cytochrome P450 mRNA levels in human skin. Analytical biochemistry. 2003;316(1):103-10.

40. van de Kerkhof EG, de Graaf IA, Ungell AL, Groothuis GM. Induction of metabolism and transport in human intestine: validation of precision-cut slices as a tool to study induction of drug metabolism in human intestine in vitro. Drug metabolism and disposition: the biological fate of chemicals. 2008;36(3):604-13.

41. Shimada T, Yun CH, Yamazaki H, Gautier JC, Beaune PH, Guengerich FP. Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens. Molecular pharmacology. 1992;41(5):856-64.

42. Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2003;123(5):369-75.

43. Hakkola J, Raunio H, Purkunen R, Pelkonen O, Saarikoski S, Cresteil T, et al. Detection of cytochrome P450 gene expression in human placenta in first trimester of pregnancy. Biochemical pharmacology. 1996;52(2):379-83.

44. Omiecinski CJ, Redlich CA, Costa P. Induction and developmental expression of cytochrome P450IA1 messenger RNA in rat and human tissues: detection by the polymerase chain reaction. Cancer research. 1990;50(14):4315-21.

45. Kitada M, Kamataki T. Cytochrome P450 in human fetal liver: significance and fetal- specific expression. Drug metabolism reviews. 1994;26(1-2):305-23.

46. Beresford AP. CYP1A1: friend or foe? Drug metabolism reviews. 1993;25(4):503-17. 47. Wang JJ, Zheng Y, Sun L, Wang L, Yu PB, Li HL, et al. CYP1A1 Ile462Val polymorphism and susceptibility to lung cancer: a meta-analysis based on 32 studies. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation. 2011;20(6):445-52.

48. Surekha D, Sailaja K, Rao DN, Padma T, Raghunadharao D, Vishnupriya S. Association of CYP1A1*2 polymorphisms with breast cancer risk: a case control study. Indian journal of medical sciences. 2009;63(1):13-20.

49. Willey JC, Coy EL, Frampton MW, Torres A, Apostolakos MJ, Hoehn G, et al. Quantitative RT-PCR measurement of cytochromes p450 1A1, 1B1, and 2B7, microsomal epoxide hydrolase, and NADPH oxidoreductase expression in lung cells of smokers and nonsmokers. American journal of respiratory cell and molecular biology. 1997;17(1):114-24. 50. Kim JH, Sherman ME, Curriero FC, Guengerich FP, Strickland PT, Sutter TR. Expression of cytochromes P450 1A1 and 1B1 in human lung from smokers, non-smokers, and ex-smokers. Toxicology and applied pharmacology. 2004;199(3):210-9.

51. Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC cancer. 2009;9:187.

52. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. The Journal of pharmacology and experimental therapeutics. 1994;270(1):414-23.

53. Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug metabolism reviews. 2002;34(1-2):83-448.

55. Shimada T, Yamazaki H, Foroozesh M, Hopkins NE, Alworth WL, Guengerich FP. Selectivity of polycyclic inhibitors for human cytochrome P450s 1A1, 1A2, and 1B1. Chemical research in toxicology. 1998;11(9):1048-56.

56. Racha JK, Rettie AE, Kunze KL. Mechanism-based inactivation of human cytochrome P450 1A2 by furafylline: detection of a 1:1 adduct to protein and evidence for the formation of a novel imidazomethide intermediate. Biochemistry. 1998;37(20):7407-19.

57. Brockmoller J, Cascorbi I, Kerb R, Sachse C, Roots I. Polymorphisms in xenobiotic conjugation and disease predisposition. Toxicology letters. 1998;102-103:173-83.

58. Ortiz de Montellano PR. The 1994 Bernard B. Brodie Award Lecture. Structure, mechanism, and inhibition of cytochrome P450. Drug metabolism and disposition: the biological fate of chemicals. 1995;23(11):1181-7.

59. Takemura H, Itoh T, Yamamoto K, Sakakibara H, Shimoi K. Selective inhibition of methoxyflavonoids on human CYP1B1 activity. Bioorganic & medicinal chemistry. 2010;18(17):6310-5.

60. Peter Guengerich F, Chun YJ, Kim D, Gillam EM, Shimada T. Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutation research. 2003;523-524:173- 82.

61. Liehr JG, Ricci MJ. 4-Hydroxylation of estrogens as marker of human mammary tumors. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(8):3294-6.

62. Jennings BL, Sahan-Firat S, Estes AM, Das K, Farjana N, Fang XR, et al. Cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiology. Hypertension. 2010;56(4):667-74.

63. Pingili AK, Kara M, Khan NS, Estes AM, Lin Z, Li W, et al. 6beta-hydroxytestosterone, a cytochrome P450 1B1 metabolite of testosterone, contributes to angiotensin II-induced hypertension and its pathogenesis in male mice. Hypertension. 2015;65(6):1279-87.

64. Godoy W, Albano RM, Moraes EG, Pinho PR, Nunes RA, Saito EH, et al. CYP2A6/2A7 and CYP2E1 expression in human oesophageal mucosa: regional and inter-individual variation in expression and relevance to nitrosamine metabolism. Carcinogenesis. 2002;23(4):611-6. 65. Ritschel WA, Brady ME, Tan HS, Hoffmann KA, Yiu IM, Grummich KW. Pharmacokinetics of coumarin and its 7-hydroxy-metabolites upon intravenous and peroral administration of coumarin in man. European journal of clinical pharmacology. 1977;12(6):457- 61.

66. Hecht SS, Hochalter JB, Villalta PW, Murphy SE. 2'-Hydroxylation of nicotine by cytochrome P450 2A6 and human liver microsomes: formation of a lung carcinogen precursor. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(23):12493-7.

67. Zanger UM, Klein K, Saussele T, Blievernicht J, Hofmann MH, Schwab M. Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics. 2007;8(7):743-59.

68. Nemoto N, Sakurai J, Funae Y. Maintenance of phenobarbital-inducible Cyp2b gene expression in C57BL/6 mouse hepatocytes in primary culture as spheroids. Archives of biochemistry and biophysics. 1995;316(1):362-9.

69. Hanna IH, Reed JR, Guengerich FP, Hollenberg PF. Expression of human cytochrome P450 2B6 in Escherichia coli: characterization of catalytic activity and expression levels in

70. Ortiz de Montellano PR. Cytochrome P450: structure, mechanism, and biochemistry. Third ed: Springer US; 2005. 690 p.

71. Wang H, Tompkins LM. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Current drug metabolism. 2008;9(7):598-610.

72. Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug metabolism reviews. 1997;29(1- 2):413-580.

73. Kharasch ED, Hoffer C, Whittington D, Walker A, Bedynek PS. Methadone pharmacokinetics are independent of cytochrome P4503A (CYP3A) activity and gastrointestinal drug transport: insights from methadone interactions with ritonavir/indinavir. Anesthesiology. 2009;110(3):660-72.

74. Turpeinen M, Raunio H, Pelkonen O. The functional role of CYP2B6 in human drug metabolism: substrates and inhibitors in vitro, in vivo and in silico. Current drug metabolism. 2006;7(7):705-14.

75. Totah RA, Rettie AE. Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clinical pharmacology and therapeutics. 2005;77(5):341-52.

76. Delozier TC, Kissling GE, Coulter SJ, Dai D, Foley JF, Bradbury JA, et al. Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug metabolism and disposition: the biological fate of chemicals. 2007;35(4):682-8.

77. Klose TS, Blaisdell JA, Goldstein JA. Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. Journal of biochemical and molecular toxicology. 1999;13(6):289-95.

78. Wang JS, Neuvonen M, Wen X, Backman JT, Neuvonen PJ. Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug metabolism and disposition: the biological fate of chemicals. 2002;30(12):1352-6.

79. Ozaki H, Ishikawa CT, Ishii T, Toyoda A, Murano T, Miyashita Y, et al. Clearance rates of cerivastatin metabolites in a patient with cerivastatin-induced rhabdomyolysis. Journal of clinical pharmacy and therapeutics. 2005;30(2):189-92.

80. Ishikawa C, Ozaki H, Nakajima T, Ishii T, Kanai S, Anjo S, et al. A frameshift variant of CYP2C8 was identified in a patient who suffered from rhabdomyolysis after administration of cerivastatin. Journal of human genetics. 2004;49(10):582-5.

81. Backman JT, Kyrklund C, Neuvonen M, Neuvonen PJ. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clinical pharmacology and therapeutics. 2002;72(6):685- 91.

82. Lucas RA, Weathersby BB, Rocco VK, Pepper JM, Butler KL. Rhabdomyolysis associated with cerivastatin: six cases within 3 months at one hospital. Pharmacotherapy. 2002;22(6):771-4.

83. Archived - Market withdrawal of Baycol (cerivastatin) - Bayer Inc. In: Canada H, editor. 2001.

84. Tornio A, Filppula AM, Kailari O, Neuvonen M, Nyronen TH, Tapaninen T, et al. Glucuronidation converts clopidogrel to a strong time-dependent inhibitor of CYP2C8: a phase II metabolite as a perpetrator of drug-drug interactions. Clinical pharmacology and therapeutics. 2014;96(4):498-507.

Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug metabolism and disposition: the biological fate of chemicals. 1996;24(5):515-22.

87. Guengerich FP. In vitro techniques for studying drug metabolism. Journal of pharmacokinetics and biopharmaceutics. 1996;24(5):521-33.

88. Caraco Y, Muszkat M, Wood AJ. Phenytoin metabolic ratio: a putative marker of CYP2C9 activity in vivo. Pharmacogenetics. 2001;11(7):587-96.

89. Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ. Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics. 2010;11(6):781-91.

90. Yasar U, Eliasson E, Dahl ML, Johansson I, Ingelman-Sundberg M, Sjoqvist F. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochemical and biophysical research communications. 1999;254(3):628-31. 91. Yasar U, Tybring G, Hidestrand M, Oscarson M, Ingelman-Sundberg M, Dahl ML, et al. Role of CYP2C9 polymorphism in losartan oxidation. Drug metabolism and disposition: the biological fate of chemicals. 2001;29(7):1051-6.

92. Yasar U, Forslund-Bergengren C, Tybring G, Dorado P, Llerena A, Sjoqvist F, et al. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clinical pharmacology and therapeutics. 2002;71(1):89-98.

93. Crespi CL, Miller VP. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics. 1997;7(3):203-10.

94. Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacology & therapeutics. 1997;73(1):67-74.

95. Margaglione M, Colaizzo D, D'Andrea G, Brancaccio V, Ciampa A, Grandone E, et al. Genetic modulation of oral anticoagulation with warfarin. Thrombosis and haemostasis. 2000;84(5):775-8.

96. Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999;353(9154):717-9.

97. An SH, Lee KE, Chang BC, Gwak HS. Association of gene polymorphisms with the risk of warfarin bleeding complications at therapeutic INR in patients with mechanical cardiac valves. Journal of clinical pharmacy and therapeutics. 2014;39(3):314-8.

98. Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn-Schmiedeberg's archives of pharmacology. 2004;369(1):23-37.

99. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clinical pharmacokinetics. 2009;48(11):689-723.

100. Neafsey P, Ginsberg G, Hattis D, Sonawane B. Genetic polymorphism in cytochrome P450 2D6 (CYP2D6): Population distribution of CYP2D6 activity. Journal of toxicology and environmental health Part B, Critical reviews. 2009;12(5-6):334-61.

101. Beverage JN, Sissung TM, Sion AM, Danesi R, Figg WD. CYP2D6 polymorphisms and the impact on tamoxifen therapy. Journal of pharmaceutical sciences. 2007;96(9):2224-31. 102. Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics. 2002;3(2):229-43.

Caucasian population: allele frequencies and phenotypic consequences. American Journal of Human Genetics. 1997;60(2):284-95.

104. Daly AK. Pharmacogenetics of the cytochromes P450. Current topics in medicinal chemistry. 2004;4(16):1733-44.

105. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacology & therapeutics. 2007;116(3):496-526.

106. Wijnen PA, Limantoro I, Drent M, Bekers O, Kuijpers PM, Koek GH. Depressive effect of an antidepressant: therapeutic failure of venlafaxine in a case lacking CYP2D6 activity. Annals of clinical biochemistry. 2009;46(Pt 6):527-30.

107. Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P, et al. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. The New England journal of medicine. 2004;351(27):2827-31.

108. Yue QY, Alm C, Svensson JO, Sawe J. Quantification of the O- and N-demethylated and the glucuronidated metabolites of codeine relative to the debrisoquine metabolic ratio in urine in ultrarapid, rapid, and poor debrisoquine hydroxylators. Therapeutic drug monitoring. 1997;19(5):539-42.

109. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Current drug metabolism. 2002;3(6):561-97.

110. Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annual review of pharmacology and toxicology. 2003;43:149-73.

111. Sidorik L, Kyyamova R, Bobyk V, Kapustian L, Rozhko O, Vigontina O, et al. Molecular chaperone, HSP60, and cytochrome P450 2E1 co-expression in dilated cardiomyopathy. Cell biology international. 2005;29(1):51-5.

112. Guengerich FP, Kim DH, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chemical research in toxicology. 1991;4(2):168-79.

113. Kharasch ED, Hankins DC, Cox K. Clinical isoflurane metabolism by cytochrome P450 2E1. Anesthesiology. 1999;90(3):766-71.

114. Spracklin DK, Hankins DC, Fisher JM, Thummel KE, Kharasch ED. Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro. The Journal of pharmacology and experimental therapeutics. 1997;281(1):400-11.

115. Cheung C, Yu AM, Ward JM, Krausz KW, Akiyama TE, Feigenbaum L, et al. The cyp2e1-humanized transgenic mouse: role of cyp2e1 in acetaminophen hepatotoxicity. Drug metabolism and disposition: the biological fate of chemicals. 2005;33(3):449-57.

116. Lee SS, Buters JT, Pineau T, Fernandez-Salguero P, Gonzalez FJ. Role of CYP2E1 in the hepatotoxicity of acetaminophen. The Journal of biological chemistry. 1996;271(20):12063- 7.

117. Wolf KK, Wood SG, Allard JL, Hunt JA, Gorman N, Walton-Strong BW, et al. Role of CYP3A and CYP2E1 in alcohol-mediated increases in acetaminophen hepatotoxicity: comparison of wild-type and Cyp2e1(-/-) mice. Drug metabolism and disposition: the biological

Documents relatifs