• Aucun résultat trouvé

E.2 Les polaritons de surface

E.2.2 Les phonon-polaritons de surface

Étudions maintenant les conditions d’existence des phonon-polaritons de surface. Pour cela, nous considérons le cas d’un cristal polaire diatomique tel que le SiC. Nous avons déjà vu que la permittivité diélectrique d’un tel matériau peut être modélisée par un modèle d’oscillateur

ε(ω) = ε∞ · 1 +ω 2 L− ω2T ωT2 − ω2 ¸ (E.34) De même que pour l’étude des plasmon-polaritons, nous considérons ici un cristal sans perte afin de pouvoir obtenir une relation de dispersion en fonction de ω et K réels. Nous noterons ωsup la valeur de la fréquence pour laquelle Re(ε) = −1. Nous avons alors

ωsup=

s

ε∞ω2L+ ωT2

ε∞+ 1

Fig.E.4 –Relation de dispersion pour les phonon-polaritons de volume dans un cristal dipolaire de carbure

de silicium (ωL=18.253 1013rad.s−1, ωT=14.937 1013rad.s−1, ωsup=17.851 1013rad.s−1).

Cette fréquence limite, en dessous de laquelle des ondes de surface sont susceptibles d’exister, correspond à l’asymptote horizontale de la relation de dispersion lorsque K→ ∞ comme on peut le voir sur la figure E.4. Il est à noter que, comme pour les métaux, seule la branche en dessous de la ligne de lumière correspond à la relation de dispersion des phonon-polaritons de surface.

Bibliographie

Auslander, J. E. & Hava, S. (1996). Scattering-matrix propagation algorithm in full-vectorial optics of multilayer grating structures. Opt. Lett., 21, 1765.

Baldasaro, P. F., Raynolds, J. E., Charache, G. W., DePoy, D. M., Ballinger, C. T., & Donovan, T. (2001). Thermodynamic analysis of thermophotovoltaic efficiency and power density tradeoffs. J. Appl. Phys., 89, 3319.

Battula, A. & Chen, S. C. (2006). Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance. Phys. Rev. B, 74, 245407.

Bäck, T., Fogel, D. B., & Michalewicz, Z. (1997). Handbook of Evolutionary Computation. Oxford University Press, Bristol and New York.

Ben-Abdallah, P. (2004). Thermal antenna behavior for thin-solid structures. J. Opt. Soc. Am. A, 21, 1368.

Ben-Adballah, P. & Ni, B. (2005). Single-defect bragg stacks for high-power narrow-band thermal emission. J. Appl. Phys., 97, 104910.

Biehs, S.-A., Reddig, D., & Holthaus, M. (2007). Thermal radiation and near-field energy density of thin metallic films. Eur. Phys. J. B, 55, 237.

Biswas, R., Ozbay, E., Temelkuran, B., Bayindir, M., & Sigalas, M. M. (2001). Exceptionnal directionnal sources with photonic bandgap crystals. J. Opt. Soc. Am B, 17.

Boersch, H., Geiger, J., Imbusch, A., & Niedrig, N. (1966). High resolution investigation of the energy losses of 30 kev electrons in aluminum foils of various thicknesses. Phys. Rev., 22, 146.

Brown, E. R. & McMahon, O. B. (1995). High zenital directivity from a dipole antenna on a photonic crystal. Appl. Phys. Lett., 68, 1300.

Burke, J. J., Stegeman, G. I., & Tamir, T. (1985). Surface polaritons-like waves guides by thin, lossy metal film. Phys. Rev. B, 33, 5186.

Callen, H. B. (1951). Irreversibility and generalyzed noise. Phys. Rev., 83, 34.

Carminati, R. & Greffet, J. J. (1999). Near-field effects in spatial coherence of thermal sources. Phys. Rev. Lett., 82, 1660.

Celanovic, I., O’sullivan, F., Ilak, M., Kassakian, J., & Perreault, D. (2004). Design and optimization of one dimensionnal photonic crystals for thermophotovoltaic applications. Opt. Lett., 29, 863.

Celanovic, I., Perreault, C. J., & Kassakian, Z. M. (2005). Resonant-cavity enhanced thermal emission. Phys. Rev. B, 72, 075127.

Cotter, N. P. K., Preist, T. W., & Sambles, J. R. (1995). Scattering-matrix approch to multilayer diffraction. J. Opt. Soc. Am. A, 12, 1097.

Coutts, T. J. (1999). A review of progress in thermophotovoltaic generation of electricity. Renewable and Sustainable Energy Reviews, 3, 77.

Coutts, T. J. (2001). A overview of thermophotovoltaic generation of electricity. Solar energy materials and solar cells, 66, 443.

Cravalho, E. G., Tien, C. L., & Caren, R. P. (1967). Effect of small spacings on radiative transfer between two dielectrics. J. Heat Transfer, 89, 351.

Dahan, N., Niv, A., Biener, G., Gorodetski, Y., Kleiner, V., & Hasman, E. (2007). Enhanced coherency of thermal emission : beyond the limitation imposed by delocalized surface waves. Phys. Rev. B, 76, 045427.

Darwin, C. (1859). The Origin of Species : By Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. Bantam Classics.

De Wilde, Y., Formanek, F., Carminati, R., Gralak, B., Lemoine, P. A., Mulet, J. P., Joulain, K., Chen, Y., & Greffet, J. J. (2006). Thermal radiation scannig tunnelling microscopy. Nature, 444, 740.

Dionne, J. A., Sweatlock, L. A., & Atwater, H. A. (2005). Planar metal plasmon waveguides : frequency-dependent dispersion, propagation, localization and loss beyond the free electron model. Phys. Rev. B, 72, 075405.

Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N., & Vincent, P. (2002). A metamaterial for directive emission. Phys. Rev. Lett., 89, 213902.

Fleming, J. G., Lin, S. Y., El Kady, I., Biswas, R., & Ho, K. M. (2002). All metallic three dimensionnal photonic cristal with a large infrared bandgap. Nature, 417, 52.

Greffet, J. J., Carminati, R., Joulain, K., Mulet, J. P., Mainguy, S., & Chen, Y. (2002). Coherent emission of light by thermal sources. Nature, 416, 61.

Hesketh, P. J., Zemel, J. N., & Gebhart, B. (1986). Organ pipe radiant modes of periodic micromachinedsilicon surfaces. Nature, 324, 549.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. U. Michigan Press, Ann Arbor, Mich.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. MIT Press/Bradford Books Edition, Cambridge, MA.

Iida, M., Tani, M., Sakai, K., & Watanabe, M. (2004). Simple layer-by layer photonic crystal for the control of the thermal emission. Phys. Rev. B, 69, 245119.

John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev . Lett., 58, 2486.

Joulain, K., Carminati, R., Mulet, J. P., & Greffet, J. J. (2003). Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B, 68, 245405. Joulain, K. & Loizeau, A. (2007). Coherent thermal emission by microstructured waveguides.

Joulain, K., Mulet, J. P., Marquier, F., Carminati, R., & Greffet, J. J. (2005). Surface elec- tromagnetic waves thermally excited : Radiative heat transfer, coherence properties and casimir forces revisited in the near field. Surf. Science Reports, 57, 59.

Katayama-Yoshida, H. & Sato, K. (2003). Materials design for semiconductor spintronics by ab initio electronic-structure calculation. Physica B, 327, 337.

Kesler, M. P., Maloney, J. G., Shirley, B. L., & Smith, G. S. (1996). Antenna design with the use of photonic band gap materials as all dielectric planar reflectors. Microwave Opt. Technol. Lett., 11, 169.

Kittel, C. (1972). Introduction à la physique de l’état solide. Bordas, Paris.

Kliewer, K. L. & Fuchs, R. (1967). Collective electronic motion in a metallic slab. Phys. Rev., 153, 498.

Ko, D. Y. K. & Inkson, J. C. (1988). Scattering-matrix approch to multilayer diffraction. Phys. Rev. B, 38, 9945.

Kohn, W. & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev A, 140, 1133.

Kollyukh, O. G., Liptuga, A. I., Morozhenko, V., & Pipa, V. I. (2003). Thermal radiation of plane-parallel semitransparent layers. Opt. Com., 225, 349.

Landau, L. D., Lifschitz, E. M., & Pitaevskii, L. P. (1980). Physique statistique. Oxford : Pergamon Press.

Laroche, M. (2005). Rôle des ondes de surface dans la modification des propriétés radiatives de matériaux microstructurés. Application à la conception de sources infrarouges et à l’effet thermophotovoltaïque. PhD thesis, Ecole Centrale Paris - France.

Laroche, M., Carminati, R., & Greffet, J. J. (2006). Coherent thermal antenna using a photonic crystals slab. Phys. Rev. Lett., 96, 123903.

Le Gall, J., Olivier, M., & Greffet, J. J. (1997). Experimental observation of photonic crystal emission near a photonic band edge. Phys. Rev. B, 55, 10105.

Lee, B. J. & Zhang, Z. M. (2006). Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Appl. Phys., 100, 063529.

Lee, B. J. & Zhang, Z. M. (2007). Coherent thermal emission from modified periodic multilayer structures. Journal of Heat Transfer, 129, 17.

Licciulli, A., Diso, D., Torsello, G., Tundo, S., Maffezzoli, A., Lomascolo, M., & Mazzer, M. (2003). The challenge of high-performance selective emitters for thermophotovoltaic applications. Semicond. Sci. Tech., 18, 174.

Lin, S. Y., Fleming, J. G., & El Kady, I. (2003). Experimental observation of photonic crystal emission near a photonic band edge. Appl. Phys. Lett., 83, 593.

Lin, S. Y., Hietala, V. M., Lyo, S. K., & Zaslavsky, A. (1996). Photonic band gap quantum well and quantum box structures : A high-q resonant cavity. Appl. Phys. Lett, 68, 3233. Loomis, J. L. & Marris, H. J. (1994). Theory of heat transfer by evanescent electromagnetic

waves. Phys. Rev. B, 50, 18517.

Mandel, L. & Wolf, S. (1995). Optical coherence and quantum optics. Cambridge University Press.

- France.

Maystre, D. & Nevière, N. (1977). Quantitative theoretical study of the plasmon anomalies of diffraction gratings. J. Opt., 8, 165.

Modest, M. F. (1993). Radiative Heat Transfer. McGraw-Hill, New-York.

Mulet, J. P. (2003). Modélisation du rayonnment thermique par une approche électromagné- tique. Rôle des ondes de surface dans le transfert d’énergie aux courtes échelles et dans les forces de Casimir. PhD thesis, Université de Paris XI - France.

Narayanaswamy, A. & Chen, G. (2004). Thermal emission control with one-dimensionnal metallodielectric photonic crystals. Phys. Rev. B, 70, 125101.

Niebergall, L., Stepanyuk, V. S., Berakdar, J., & Bruno, P. (2006). Controlling the spin polarization of nanostructures on magnetic substrates. Phys. Rev. Lett., 96, 127204. Ordal, M. A., Bell, R. J., Alexander, R. W. J., Long, L. L., & Querry, M. R. (1985). Optical

properties of fourteen metals in the infrared and far infrared : Al, co, cu, au, fe, pb, mo, ni, pd, pt, ag, ti, v, and w. Appl. Opt., 24, 4493.

Ordal, M. A., Long, L. L., Bell, R. J., Bell, S. E., Bell, R. R., Alexander, R. W. J., & Ward, C. A. (1983). Optical properties of fourteen metals in the infrared and far infrared : Al, co, cu, au, fe, pb, mo, ni, pd, pt, ag, ti, v, and w. Appl. Opt., 22, 1099.

O’Sullivan, F. (2004). Fabrication and testing of an infrared spectral control component for thermophotovoltaic power conversion application. PhD thesis, Massachusetts Institut of Technology - USA.

O’Sullivan, F., Celanovic, I., Jovanovic, N., & Kassakian, J. (2005). Optical characteristics of one dimensionnal Si/Sio2 photonic crystals for thermophotovoltaic applications. J. Appl. Phys., 97, 033529.

Ozbay, E., Tuttle, G., Sigalas, M. M., Soukoulis, C. M., & Ho, K. M. (1995). Defect structures in a layer-by-layer photonic band gap crystal. Phys. Rev. B, 51, 13961.

Palik, E. D. (1998). Handbook of optical constants of solids. Academic Press, London.

Pastureaud, T., Laude, V., & Ballandras, S. (2002). Stable scattering-matrix method for surface acoustic waves in piezoelectric multilayers. Appl. Phys. Lett., 80, 2544.

Planck, M. (1901). Annalen der Physik, 4, 553.

Polder, D. & Van Hove, M. (1971). Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B, 4, 3303.

Pralle, M. U., Moelders, N., McNeal, M. P., Puscasu, I., Greenwald, A. C., Daly, J. T., Johnson, E. A., George, T., Choi, D. S., El Kady, I., & Biswas, R. (2002). Photonic crystal enhanced narrow-band infrared emitters. Appl. Phys. Lett., 81, 4685.

Raether, H. (1988). Surface plasmons on smooth and rough surfaces and on gratings. Springer- Verlag, Berlin.

Rashidi-Huyeh, M. & Palpant, B. (2006). Conuterintuitive thermo-optical response of metal- dielectric nanocomposite materials as a result of local elctromagnetic field enhancement. Phys. Rev. B, 74, 075405.

Rytov, S. M. (1953). Theory of electrical fluctuations and heat emission. Akademii Nauk SSSR, 6, 130.

Rytov, S. M. (1958). Correlation theory of thermal fluctuations in a isotropic medium. Sov. Phys. JETP.

Sai, H., Kamikawa, T., Kanamori, Y., Hane, K., Yugami, H., & Yamaguchi, M. (2004). in proceedings of the sixth nrel conference on thermophotovoltaic generation of electricity. AIP. Conf. Proc., 738, 206.

Sai, H. & Yugami, H. (2004). Thermophotovoltaic generation with selective radiators based on tungsten surface gratings. Appl. Phys. Lett., 85, 3399.

Sang, H., Li, Z. Y., & Gu, B. Y. (2004). Stack-sequence dependent defect modes in one dimensional photonic crystals. Phys. Lett. A, 331, 414.

Sang, H. Y., Li, Z. Y., & Gu, B. Y. (2005). defect modes in multiple constituent one dimensional photonic crystals examined by an analytic bloc- mode approach. Chin. Phys. Lett., 22, 365. Sarid, D. (1981). Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett.,

47, 1927.

Shchegrov, A. V., Joulain, K., Carminati, R., & Greffet, J. J. (2000). Near field spectral effect due to electromagnetic surface excitations. Phys. Rev. Lett., 85, 1548.

Shelby, R., Smith, D. R., & Schultz, S. (2001). Experimental verification of a negative index of refraction. Science, 292, 77.

Siegel, R. & Howell, J. R. (2001). Thermal Radiation Heat Transfer (4th edition). Taylor and Francis, New York.

Sigalas, M. M., Biswas, R., Li, Q., Crouch, D., Leung, W., Lough, B., Nielsen, S., McCalmont, S., Tuttle, G., & Ho, K. M. (1997). Dipole antennas on photonic band gap crystals : experiment and simulation. Microwave Opt. Technol. Lett., 15, 153.

Sipe, J. E. (1987). New green-function formalism for surface optics. J. Opt. Soc. Am. B, 4, 481.

Smith, D. R. & Kroll, N. (2000). Negative refractive index in left-handed materials. Phys. Rev. Lett., 85, 2933.

Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 84, 4184.

Soukoulis, C., Linden, S., & Wegener, M. (2007). Negative refractive index at optical wave- lengths. Science, 315, 47.

Swan, J. B., Otto, A., & Fellenzer, H. (1967). Observed retardation effects on the energy of the w+- surface plasmons in thin aluminum foils. Phys. Stat. Sol., 23, 171.

Tsang, L., Kong, J. A., & Ding, K. H. (2000). Scattering of electromagnetic waves : theory and applications. Wiley-Interscience Publication, New York.

Ujihara, K. (1972). Reflectivity of metals at high temperatures. J. Appl. Phys., 43, 2376. Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values

frequency regime. Phys. Rev. E, 75, 016604.

Yablonovitch, E. (1987). Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev . Lett., 58, 2059.

Yablonovitch, E., Gmitter, T. J., Meade, M. D., Rappe, A. M., Brommer, K., & Joannopoulos, J. D. (1991). donor and acceptor modes in photonic band structure. Phys. Rev. Lett., 67, 3380.

Yannopapas, V. (2006). Thermal emission form three-dimensional arrays of gold nanoparticles. Phys. Rev. B, 73, 113108.

Yeh, P. (1998). Optical Waves in Layered Media. Wiley-Interscience Publication, New York. Zhang, S., Fan, W., Panoiu, N. C., Malloy, K. J., Osgood, R. M., & Brueck, S. R. J. (2005).

Experimental demonstration of near-infrared negative-index metamaterial. Phys. Rev. Lett, 95, 137404.