• Aucun résultat trouvé

Perspectives regarding the liver-targeted mouse model of HI/HA patients . 60

To evaluate a putative immune response after adenoviral delivery, cytokines measure-ments should be performed at pre- and post-injection times. This should be completed by hematoxylin/eosin staining to assess the structure of the liver acini and the possible infiltration of immune cells. HepGlud1-/- Ad-hGDHS445Ldisplayed higher peripheral con-centrations of glutamate, suggesting that the predominant flux of the reaction catalysed by mutant GDH is towards glutamate synthesis. It would be interesting to investigate potential links between such higher plasma glutamate levels and epilepsy. In the brain, increased extracellular concentrations of glutamate before or during seizure onset con-tributes to their initiation [Meldrum, 1994]. To assess the differences between control mice and HepGlud1-/- Ad-hGDHS445L in epileptogenesis, we could perform pentylenetetrazole injections in escalating doses as a model revealing sensitivity to epilepsy seizures. Record-ing of the experiments would potentially provide us with important information about seizure onset, its severity and duration. This in turn might permit us to assess if higher peripheral concentrations of glutamate impact on the onset and duration of seizures in our mouse model, potentially recapitulating epileptic phenotype in HA/HA patients and the contribution of hepatic mutant GDH. If this turn to be successfully established we could combine this set up with the mouse model of GDH knock out in central nervous system. Through stereotaxic injection we could potentially deliver human mutant GDH to the region of interest in the brain. Pump with glutamate placed subcutaneously with optimized released could reach the plasma glutamate concentration from HepGlud1-/ -Ad-hGDHS445L. Thereby mimicking its phenotype: increased plasma glutamate concen-tration. Thus, we could assess if increased peripheral glutamate concentration can impact glutamate turn over in the brain and its effect on human mutant GDH in the brain.

3.5 Conclusions

More than 60 years of research has been dedicated to the understanding of the function and allosteric regulation of GDH, which sheer complexity continues to challenge and mystify scientists. Its complex tissue-specific behaviour evolved to accommodate new functions in different cell types. Its importance is witnessed by single point mutations inGLU D1 gene causing detrimental HI/HA syndrome, which case study was presented in the first paper of this thesis. It is the first molecular characterisation of G446V-GDH. This mutation af-fects complex dance between allosteric regulators and GDH, handicapping proper motion necessary for the catalytic turnover of the enzyme.

3.5. Conclusions

In our second study, we used a mouse model of liver-specific GDH knockout display-ing mild systemic hyperammonaemia. To understand metabolic consequences of hepatic GDH deletion we investigated inter-organ ammonium trafficking. We characterize changes in nitrogen metabolism based on the amount of protein consumed by investigating am-monium detoxifying systems and excretion through urine. We measured main amam-monium carriers: urea and glutamine in plasma and urine; which led us to build a comprehensive model of nitrogen metabolism based on protein consumption. Interestingly, we observed that hyperammonaemia of HepGlud1-/- mice decreased substantially with high protein intake. The standard treatment of patients suffering from elevated plasma ammonium levels consists in the limitation of protein intake. Our study may suggest an interesting alternative for patients suffering for inborn mutations affecting ammonium metabolism with functional liver.

Studies on hyperammonaemia started more than a century ago, when a Pavlov and colleagues observed in 1893 ‘meat intoxication syndrome’ on dogs with a portacaval shunt [Hahn M, 1893]. In recent years, this topic has been studied sparsely, maybe because stud-ies on ammonium pose a significant technical problem concerning the nature of ammonium itself and, as a consequence, are difficult to perform. However, in order to understand the consequences of hyperammonaemia and to develop potential therapies, such a missing knowledge would be essential. We are in the process of establishing the mouse model which could potentially address the question of source of hyperammonaemia in HI/HA patients.

Bibliography

M. M. Adeva, G. Souto, N. Blanco and C. Donapetry. Ammonium metabolism in humans.

Metabolism, 61(11):1495–511, 2012. ISSN 0026-0495. doi:10.1016/j.metabol.2012.07.

007.

Y. D. Bhutia and V. Ganapathy. Glutamine transporters in mammalian cells and their functions in physiology and cancer.Biochim Biophys Acta, 1863(10):2531–9, 2016. ISSN 0006-3002 (Print) 0006-3002. doi:10.1016/j.bbamcr.2015.12.017.

B. P. Bode, B. C. Fuchs, B. P. Hurley, J. L. Conroy, J. E. Suetterlinet al. Molecular and functional analysis of glutamine uptake in human hepatoma and liver-derived cells. Am J Physiol Gastrointest Liver Physiol, 283(5):G1062–73, 2002. ISSN 0193-1857 (Print) 0193-1857. doi:10.1152/ajpgi.00031.2002.

L. Boon, W. J. Geerts, A. Jonker, W. H. Lamers and C. J. Van Noorden. High protein diet induces pericentral glutamate dehydrogenase and ornithine aminotransferase to provide sufficient glutamate for pericentral detoxification of ammonia in rat liver lobules.

Histochem Cell Biol, 111(6):445–52, 1999. ISSN 0948-6143 (Print) 0948-6143. doi:

10.1007/s004180050380.

C. Bos, C. C. Metges, C. Gaudichon, K. J. Petzke, M. E. Pueyoet al.Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr, 133(5):1308–15, 2003. ISSN 0022-3166 (Print) 0022-3166. doi:10.1093/jn/133.5.1308.

J. T. Brosnan, M. E. Brosnan, R. Charron and I. Nissim. A mass isotopomer study of urea and glutamine synthesis from 15n-labeled ammonia in the perfused rat liver. J Biol Chem, 271(27):16,199–207, 1996. ISSN 0021-9258 (Print) 0021-9258 (Linking).

M. E. Brosnan and J. T. Brosnan. Hepatic glutamate metabolism: a tale of 2 hepatocytes.

Am J Clin Nutr, 90(3):857s–861s, 2009. ISSN 0002-9165. doi:10.3945/ajcn.2009.27462Z.

S. M. Busque and C. A. Wagner. Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter snat3 (slc38a3) in mouse kidney. Am J Physiol Renal Physiol, 297(2):F440–50, 2009. ISSN 1522-1466. doi:

10.1152/ajprenal.90318.2008.

M. Buttrose, D. McKellar and T. C. Welbourne. Gut-liver interaction in glutamine home-ostasis: portal ammonia role in uptake and metabolism. Am J Physiol, 252(6 Pt 1):E746–50, 1987. ISSN 0002-9513 (Print) 0002-9513. doi:10.1152/ajpendo.1987.252.

6.E746.

J. Cahill, G. F. Fuel metabolism in starvation. Annu Rev Nutr, 26:1–22, 2006. ISSN 0199-9885 (Print) 0199-9885. doi:10.1146/annurev.nutr.26.061505.111258.

P. C. Calder. Glutamine and the immune system. Clin Nutr, 13(1):2–8, 1994. ISSN 0261-5614 (Print) 0261-5614.

S. Carobbio, F. Frigerio, B. Rubi, L. Vetterli, M. Bloksgaardet al. Deletion of glutamate dehydrogenase in beta-cells abolishes part of the insulin secretory response not required for glucose homeostasis. J Biol Chem, 284(2):921–9, 2009. doi:M806295200[pii]10.1074/

jbc.M806295200.

S. Carobbio, H. Ishihara, S. Fernandez-Pascual, C. Bartley, R. Martin-Del-Rio et al. In-sulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia, 47(2):266–76, 2004. ISSN 0012-186X (Print) 0012-186X (Linking). doi:10.1007/s00125-003-1306-2.

T. W. Chang and A. L. Goldberg. The metabolic fates of amino acids and the formation of glutamine in skeletal muscle. J Biol Chem, 253(10):3685–93, 1978. ISSN 0021-9258 (Print) 0021-9258.

S. T. Chung, S. K. Chacko, A. L. Sunehag and M. W. Haymond. Measurements of gluconeogenesis and glycogenolysis: A methodological review. Diabetes, 64(12):3996–

4010, 2015. ISSN 0012-1797 (Print) 0012-1797. doi:10.2337/db15-0640.

N. S. Cohen, F. S. Kyan, S. S. Kyan, C. W. Cheung and L. Raijman. The apparent km of ammonia for carbamoyl phosphate synthetase (ammonia) in situ. Biochem J, 229(1):205–11, 1985. ISSN 0264-6021 (Print) 0264-6021 (Linking). doi:10.1042/

bj2290205.

BIBLIOGRAPHY

J. P. Colombo, H. Cervantes, M. Kokorovic, U. Pfister and R. Perritaz. Effect of different protein diets on the distribution of amino acids in plasma, liver and brain in the rat.

Ann Nutr Metab, 36(1):23–33, 1992. ISSN 0250-6807 (Print) 0250-6807. doi:10.1159/

000177695.

A. J. Cooper, E. Nieves, A. E. Coleman, S. Filc-DeRicco and A. S. Gelbard. Short-term metabolic fate of [13n]ammonia in rat liver in vivo. J Biol Chem, 262(3):1073–80, 1987.

ISSN 0021-9258 (Print) 0021-9258.

A. J. Cooper, E. Nieves, K. C. Rosenspire, S. Filc-DeRicco, A. S. Gelbardet al.Short-term metabolic fate of 13n-labeled glutamate, alanine, and glutamine(amide) in rat liver. J Biol Chem, 263(25):12,268–73, 1988. ISSN 0021-9258 (Print) 0021-9258 (Linking).

R. J. DeBerardinis and T. Cheng. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 29(3):313–24, 2010. ISSN 0950-9232.

doi:10.1038/onc.2009.358.

J. DuBose, T. D. Urine ammonium and preclinical acidosis in ckd. J Am Soc Nephrol, 28(8):2258–2260, 2017. ISSN 1533-3450 (Electronic) 1046-6673 (Linking). doi:10.1681/

ASN.2017040470.

C. Eipel, K. Abshagen and B. Vollmar. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol, 16(48):6046–57, 2010. ISSN 2219-2840 (Electronic) 1007-9327 (Linking). doi:10.3748/wjg.v16.i48.6046.

J. H. Exton. Regulation of gluconeogenesis by glucocorticoids.Monogr Endocrinol, 12:535–

46, 1979. ISSN 0077-1015 (Print) 0077-1015. doi:10.1007/978-3-642-81265-1 28.

P. Felig. The glucose-alanine cycle. Metabolism, 22(2):179–207, 1973. ISSN 0026-0495 (Print) 0026-0495.

R. Gebhardt. Metabolic zonation of the liver: regulation and implications for liver func-tion. Pharmacol Ther, 53(3):275–354, 1992. ISSN 0163-7258 (Print) 0163-7258. doi:

10.1016/0163-7258(92)90055-5.

M. Grimaldi, M. Karaca, L. Latini, E. Brioudes, T. Schalch et al. Identification of the molecular dysfunction caused by glutamate dehydrogenase s445l mutation responsible for hyperinsulinism/hyperammonemia. Hum Mol Genet, 26(18):3453–3465, 2017. ISSN 1460-2083 (Electronic) 0964-6906 (Linking). doi:10.1093/hmg/ddx213.

N. M. P. I. Hahn M, Massen O. Die eck’sche fistel zwischen der unteren hohlvene und der pfortader und ihre folgen fur den organismus. Arch Exp Pathol Pharm., 32:161–210, 1893.

T. B. Hakvoort, Y. He, W. Kulik, J. L. Vermeulen, S. Duijstet al.Pivotal role of glutamine synthetase in ammonia detoxification.Hepatology, 65(1):281–293, 2017. ISSN 0270-9139.

doi:10.1002/hep.28852.

D. Haussinger. Nitrogen metabolism in liver: structural and functional organization and physiological relevance.Biochem J, 267(2):281–90, 1990a. ISSN 6021 (Print) 0264-6021 (Linking). doi:10.1042/bj2670281.

D. Haussinger. Nitrogen metabolism in liver: structural and functional organization and physiological relevance.Biochem J, 267(2):281–90, 1990b. ISSN 6021 (Print) 0264-6021 (Linking).

D. Haussinger, W. H. Lamers and A. F. Moorman. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme, 46(1-3):72–93, 1992. ISSN 0013-9432 (Print) 0013-0013-9432. doi:10.1159/000468779.

D. Haussinger and F. Schliess. Glutamine metabolism and signaling in the liver. Front Biosci, 12:371–91, 2007. ISSN 1093-9946 (Print) 1093-4715 (Linking). doi:10.2741/2070.

D. Haussinger and F. Schliess. Pathogenetic mechanisms of hepatic encephalopathy. Gut, 57(8):1156–65, 2008. ISSN 1468-3288 (Electronic) 0017-5749 (Linking). doi:10.1136/

gut.2007.122176.

Y. He, T. B. Hakvoort, S. E. Koehler, J. L. Vermeulen, D. R. de Waartet al. Glutamine synthetase in muscle is required for glutamine production during fasting and extrahep-atic ammonia detoxification. J Biol Chem, 285(13):9516–24, 2010. ISSN 0021-9258 (Print) 0021-9258. doi:10.1074/jbc.M109.092429.

A. Hewagama, H. I. Guy, J. F. Vickrey and D. R. Evans. Functional linkage between the glutaminase and synthetase domains of carbamoyl-phosphate synthetase. role of serine 44 in carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (cad). J Biol Chem, 274(40):28,240–5, 1999. ISSN 0021-9258 (Print) 0021-9258. doi:

10.1074/jbc.274.40.28240.

T. Hussain and R. Mulherkar. Lymphoblastoid cell lines: a continuous in vitro source of cells to study carcinogen sensitivity and dna repair. Int J Mol Cell Med, 1(2):75–87, 2012. ISSN 2251-9637 (Print) 2251-9637.

BIBLIOGRAPHY

A. A. Jackson. Limits of adaptation to high dietary protein intakes. Eur J Clin Nutr, 53 Suppl 1:S44–52, 1999. ISSN 0954-3007 (Print) 0954-3007. doi:10.1038/sj.ejcn.1600743.

O. Kalyuzhniy, N. C. Di Paolo, M. Silvestry, S. E. Hofherr, M. A. Barryet al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci U S A, 105(14):5483–8, 2008. ISSN 1091-6490 (Electronic) 0027-8424 (Linking).

doi:10.1073/pnas.0711757105.

R. R. Kapoor, S. E. Flanagan, P. Fulton, A. Chakrapani, B. Chadefaux et al.

Hyperinsulinism-hyperammonaemia syndrome: novel mutations in the glud1 gene and genotype-phenotype correlations. Eur J Endocrinol, 161(5):731–5, 2009. ISSN 0804-4643 (Print) 0804-0804-4643. doi:10.1530/eje-09-0615.

M. Karaca, F. Frigerio, S. Migrenne, J. Martin-Levilain, D. M. Skyttet al.Gdh-dependent glutamate oxidation in the brain dictates peripheral energy substrate distribution. Cell Rep, 13(2):365–75, 2015. doi:10.1016/j.celrep.2015.09.003.

M. Karaca, J. Martin-Levilain, M. Grimaldi, L. Li, E. Dizinet al.Liver glutamate dehydro-genase controls whole-body energy partitioning through amino acid-derived gluconeo-genesis and ammonia homeostasis. Diabetes, 67(10):1949–1961, 2018a. ISSN 0012-1797.

doi:10.2337/db17-1561.

M. Karaca, J. Martin-Levilain, M. Grimaldi, L. Li, E. Dizinet al.Liver glutamate dehydro-genase controls whole-body energy partitioning through amino acid-derived gluconeo-genesis and ammonia homeostasis. Diabetes, 67(10):1949–1961, 2018b. ISSN 1939-327X (Electronic) 0012-1797 (Linking). doi:10.2337/db17-1561.

J. A. Kellum. Determinants of blood ph in health and disease. Crit Care, 4(1):6–14, 2000.

ISSN 1364-8535 (Print) 1364-8535. doi:10.1186/cc644.

A. Kelly, D. Ng, J. Ferry, R. J., A. Grimberg, S. Koo-McCoyet al. Acute insulin responses to leucine in children with the hyperinsulinism/hyperammonemia syndrome. J Clin Endocrinol Metab, 86(8):3724–8, 2001. ISSN 0021-972X (Print) 0021-972X (Linking).

doi:10.1210/jcem.86.8.7755.

M. H. Kim and H. Kim. Oncogenes and tumor suppressors regulate glutamine metabolism in cancer cells. J Cancer Prev, 18(3):221–6, 2013. ISSN 2288-3649 (Print) 2288-3649.

M. H. Kim and H. Kim. The roles of glutamine in the intestine and its implication in in-testinal diseases.Int J Mol Sci, 18(5), 2017. ISSN 1422-0067. doi:10.3390/ijms18051051.

H. W. Lee, G. Osis, M. E. Handlogten, H. Guo, J. W. Verlander et al. Effect of di-etary protein restriction on renal ammonia metabolism. Am J Physiol Renal Phys-iol, 308(12):F1463–73, 2015. ISSN 1931-857X (Print) 1522-1466. doi:10.1152/ajprenal.

00077.2015.

M. Li, C. Li, A. Allen, C. A. Stanley and T. J. Smith. The structure and allosteric regulation of glutamate dehydrogenase. Neurochem Int, 59(4):445–55, 2011. ISSN 0197-0186 (Print) 0197-0197-0186. doi:10.1016/j.neuint.2010.10.017.

M. Li, C. Li, A. Allen, C. A. Stanley and T. J. Smith. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis. Neurochem Res, 39(3):433–45, 2014. ISSN 0364-3190. doi:10.1007/s11064-013-1173-2.

A. Lieber, C. Y. He, L. Meuse, C. Himeda, C. Wilson et al. Inhibition of nf-kappab activation in combination with bcl-2 expression allows for persistence of first-generation adenovirus vectors in the mouse liver. J Virol, 72(11):9267–77, 1998. ISSN 0022-538X (Print) 0022-538X (Linking).

A. Lieber, C. Y. He, L. Meuse, D. Schowalter, I. Kirillovaet al. The role of kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol, 71(11):8798–807, 1997. ISSN 0022-538X (Print) 0022-538X (Linking).

S. Lim. Metabolic acidosis.Acta Med Indones, 39(3):145–50, 2007. ISSN 0125-9326 (Print) 0125-9326.

M. MacDonald, N. Neufeldt, B. N. Park, M. Berger and N. Ruderman. Alanine metabolism and gluconeogenesis in the rat. Am J Physiol, 231(2):619–26, 1976. ISSN 0002-9513 (Print) 0002-9513 (Linking). doi:10.1152/ajplegacy.1976.231.2.619.

P. Maechler. Glutamate pathways of the beta-cell and the control of insulin secretion.

Diabetes Res Clin Pract, 131:149–153, 2017. ISSN 0168-8227. doi:10.1016/j.diabres.

2017.07.009.

H. Matsutaka, T. Aikawa, H. Yamamoto and E. Ishikawa. Gluconeogenesis and amino acid metabolism. 3. uptake of glutamine and output of alanine and ammonia by non-hepatic splanchnic organs of fasted rats and their metabolic significance. J Biochem, 74(5):1019–29, 1973. ISSN 0021-924X (Print) 0021-924x.

D. E. Matthews and R. G. Campbell. The effect of dietary protein intake on glutamine and glutamate nitrogen metabolism in humans. Am J Clin Nutr, 55(5):963–70, 1992.

ISSN 0002-9165 (Print) 0002-9165. doi:10.1093/ajcn/55.5.963.

BIBLIOGRAPHY

M. R. Mc, C. C. Lund and J. L. Oncley. Unbound amino acid concentrations in human blood plasmas. J Clin Invest, 36(12):1672–9, 1957. ISSN 0021-9738 (Print) 0021-9738 (Linking). doi:10.1172/JCI103568.

B. S. Meldrum. The role of glutamate in epilepsy and other cns disorders. Neurology, 44(11 Suppl 8):S14–23, 1994. ISSN 0028-3878 (Print) 0028-3878 (Linking).

C. Moundras, C. Remesy and C. Demigne. Dietary protein paradox: decrease of amino acid availability induced by high-protein diets. Am J Physiol, 264(6 Pt 1):G1057–65, 1993. ISSN 0002-9513 (Print) 0002-9513. doi:10.1152/ajpgi.1993.264.6.G1057.

M. D. Norenberg, K. V. Rama Rao and A. R. Jayakumar. Ammonia neurotoxicity and the mitochondrial permeability transition. J Bioenerg Biomembr, 36(4):303–7, 2004. ISSN 0145-479X (Print) 0145-479x. doi:10.1023/b:Jobb.0000041758.20071.19.

K. Nose, T. Mizuno, N. Yamane, T. Kondo, H. Ohtaniet al. Identification of ammonia in gas emanated from human skin and its correlation with that in blood. Anal Sci, 21(12):1471–4, 2005. ISSN 0910-6340 (Print) 0910-6340.

Y. Ohtake and M. G. Clemens. Interrelationship between hepatic ureagenesis and gluco-neogenesis in early sepsis. Am J Physiol, 260(3 Pt 1):E453–8, 1991. ISSN 0002-9513 (Print) 0002-9513. doi:10.1152/ajpendo.1991.260.3.E453.

S. W. Olde Damink, N. E. Deutz, C. H. Dejong, P. B. Soeters and R. Jalan. Interorgan ammonia metabolism in liver failure. Neurochem Int, 41(2-3):177–88, 2002. ISSN 0197-0186 (Print) 0197-0197-0186.

O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera et al. Brain metabolism during fasting. J Clin Invest, 46(10):1589–95, 1967. ISSN 0021-9738 (Print) 0021-9738 (Linking). doi:10.1172/JCI105650.

A. A. Palladino and C. A. Stanley. The hyperinsulinism/hyperammonemia syn-drome. Rev Endocr Metab Disord, 11(3):171–8, 2010. ISSN 1389-9155. doi:10.1007/

s11154-010-9146-0.

H. Patel, M. A. Menouar and A. Bhardwaj. Physiology, Respiratory Quotient. Treasure Island (FL), 2020.

E. Payne and J. G. Morris. The effect of protein content of the diet on the rate of urea formation in sheep liver. Biochem J, 113(4):659–62, 1969. ISSN 0264-6021 (Print) 0264-6021 (Linking). doi:10.1042/bj1130659.

J. Peret, S. Foustock, M. Chanez, B. Bois-Joyeux and J. L. Robinson. Hepatic metabolites and amino acid levels during adaptation of rats to a high protein, carbohydrate-free diet.

J Nutr, 111(10):1704–10, 1981. ISSN 0022-3166 (Print) 0022-3166. doi:10.1093/jn/111.

10.1704.

J. C. Peters and A. E. Harper. Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism. J Nutr, 115(3):382–98, 1985. ISSN 0022-3166 (Print) 0022-3166. doi:10.1093/jn/115.3.382.

P. E. Peterson and T. J. Smith. The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery. Structure, 7(7):769–82, 1999. ISSN 0969-2126 (Print) 0969-2126. doi:10.1016/s0969-2126(99)80101-4.

N. Qvartskhava, P. A. Lang, B. Goerg, V. I. Pozdeev, M. P. Ortizet al. Hyperammonemia in gene-targeted mice lacking functional hepatic glutamine synthetase. Proc Natl Acad Sci U S A, 112(17):5521–6, 2015a. ISSN 0027-8424 (Print) 0027-8424. doi:10.1073/

pnas.1423968112.

N. Qvartskhava, P. A. Lang, B. Gorg, V. I. Pozdeev, M. P. Ortizet al. Hyperammonemia in gene-targeted mice lacking functional hepatic glutamine synthetase. Proc Natl Acad Sci U S A, 112(17):5521–6, 2015b. ISSN 0027-8424. doi:10.1073/pnas.1423968112.

D. W. Rice, P. J. Baker, G. W. Farrants and D. P. Hornby. The crystal structure of glutamate dehydrogenase from clostridium symbiosum at 0.6 nm resolution. Biochem J, 242(3):789–95, 1987. ISSN 0264-6021 (Print) 0264-6021. doi:10.1042/bj2420789.

R. T. Schimke. Adaptive characteristics of urea cycle enzymes in the rat. J Biol Chem, 237:459–68, 1962. ISSN 0021-9258 (Print) 0021-9258.

M. Schuler, A. Dierich, P. Chambon and D. Metzger. Efficient temporally controlled targeted somatic mutagenesis in hepatocytes of the mouse.Genesis, 39(3):167–72, 2004.

ISSN 1526-954X (Print) 1526-954X (Linking). doi:10.1002/gene.20039.

Y. Schutz. Protein turnover, ureagenesis and gluconeogenesis.Int J Vitam Nutr Res, 81(2-3):101–7, 2011. ISSN 0300-9831 (Print) 0300-9831. doi:10.1024/0300-9831/a000064.

r. Shambaugh, G. E. Urea biosynthesis i. the urea cycle and relationships to the citric acid cycle. Am J Clin Nutr, 30(12):2083–7, 1977. ISSN 0002-9165 (Print) 0002-9165.

doi:10.1093/ajcn/30.12.2083.

BIBLIOGRAPHY

D. M. Shayakhmetov, Z. Y. Li, S. Ni and A. Lieber. Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol, 78(10):5368–81, 2004. ISSN 0022-538X (Print) 0022-538X (Linking). doi:10.1128/jvi.78.10.5368-5381.2004.

L. D. Smith and U. Garg. Urea cycle and other disorders of hyperammonemia, pages 103–123. 2017. ISBN 9780128028964. doi:10.1016/B978-0-12-802896-4.00004-3.

T. J. Smith and C. A. Stanley. Untangling the glutamate dehydrogenase allosteric night-mare. Trends Biochem Sci, 33(11):557–64, 2008. ISSN 0968-0004 (Print) 0968-0004.

doi:10.1016/j.tibs.2008.07.007.

C. Spanaki and A. Plaitakis. The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox Res, 21(1):117–27, 2012. ISSN 1029-8428. doi:

10.1007/s12640-011-9285-4.

M. Spodenkiewicz, C. Diez-Fernandez, V. Rufenacht, C. Gemperle-Britschgi and J. Haberle. Minireview on glutamine synthetase deficiency, an ultra-rare inborn er-ror of amino acid biosynthesis. Biology (Basel), 5(4), 2016. ISSN 2079-7737 (Print) 2079-7737. doi:10.3390/biology5040040.

C. A. Stanley. Regulation of glutamate metabolism and insulin secretion by glutamate dehydrogenase in hypoglycemic children. Am J Clin Nutr, 90(3):862s–866s, 2009. ISSN 0002-9165 (Print) 0002-9165. doi:10.3945/ajcn.2009.27462AA.

C. A. Stanley, J. Fang, K. Kutyna, B. Y. Hsu, J. E. Ming et al. Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. hi/ha contributing investigators. Diabetes, 49(4):667–73, 2000.

C. A. Stanley, Y. K. Lieu, B. Y. Hsu, A. B. Burlina, C. R. Greenberg et al. Hyperin-sulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med, 338(19):1352–7, 1998. ISSN 0028-4793 (Print) 0028-4793. doi:10.1056/nejm199805073381904.

B. Stoll, J. Henry, P. J. Reeds, H. Yu, F. Jahooret al. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets.J Nutr, 128(3):606–14, 1998. ISSN 0022-3166 (Print) 0022-3166. doi:10.1093/jn/128.3.606.

M. Stumvoll, C. Meyer, G. Perriello, M. Kreider, S. Welleet al. Human kidney and liver gluconeogenesis: evidence for organ substrate selectivity.Am J Physiol, 274(5):E817–26, 1998. ISSN 0002-9513 (Print) 0002-9513. doi:10.1152/ajpendo.1998.274.5.E817.

M. Stumvoll, G. Perriello, C. Meyer and J. Gerich. Role of glutamine in human carbo-hydrate metabolism in kidney and other tissues. Kidney Int, 55(3):778–92, 1999. ISSN 0085-2538 (Print) 0085-2538. doi:10.1046/j.1523-1755.1999.055003778.x.

C. Su, X. J. Liang, W. J. Li, D. Wu, M. Liuet al. Clinical and molecular spectrum of glu-tamate dehydrogenase gene defects in 26 chinese congenital hyperinsulinemia patients.J Diabetes Res, 2018:2802,540, 2018. ISSN 2314-6745 (Print). doi:10.1155/2018/2802540.

Y. L. Sun, H. Xie, H. L. Lin, Q. Feng and Y. Liu. Construction and identification of recombinant adenovirus carrying human timp-1shrna gene. Genet Mol Res, 14(1):199–

208, 2015. ISSN 1676-5680 (Electronic) 1676-5680 (Linking). doi:10.4238/2015.January.

16.3.

J. R. Treberg, S. Banh, U. Pandey and D. Weihrauch. Intertissue differences for the role of glutamate dehydrogenase in metabolism. Neurochem Res, 39(3):516–26, 2014. ISSN 0364-3190. doi:10.1007/s11064-013-0998-z.

J. R. Treberg, K. A. Clow, K. A. Greene, M. E. Brosnan and J. T. Brosnan. Systemic activation of glutamate dehydrogenase increases renal ammoniagenesis: implications for the hyperinsulinism/hyperammonemia syndrome. Am J Physiol Endocrinol Metab, 298(6):E1219–25, 2010. ISSN 0193-1849. doi:10.1152/ajpendo.00028.2010.

L. Vetterli, S. Carobbio, S. Pournourmohammadi, R. Martin-Del-Rio, D. M. Skytt et al.

Delineation of glutamate pathways and secretory responses in pancreatic islets with β-cell-specific abrogation of the glutamate dehydrogenase. Mol Biol Cell, 23(19):3851–62, 2012. ISSN 1059-1524 (Print) 1059-1524. doi:10.1091/mbc.E11-08-0676.

M. Watford. Glutamine and glutamate metabolism across the liver sinusoid.J Nutr, 130(4S Suppl):983s–7s, 2000. ISSN 0022-3166 (Print) 0022-3166. doi:10.1093/jn/130.4.983S.

D. S. Weigle, P. A. Breen, C. C. Matthys, H. S. Callahan, K. E. Meeuwset al. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin con-centrations. Am J Clin Nutr, 82(1):41–8, 2005. ISSN 0002-9165 (Print) 0002-9165.

doi:10.1093/ajcn.82.1.41.

I. D. Weiner. Roles of renal ammonia metabolism other than in acid-base homeostasis. Pe-diatr Nephrol, 32(6):933–942, 2017. ISSN 1432-198X (Electronic) 0931-041X (Linking).

doi:10.1007/s00467-016-3401-x.

BIBLIOGRAPHY

I. D. Weiner, W. E. Mitch and J. M. Sands. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol, 10(8):1444–58, 2015. ISSN 1555-9041 (Print) 1555-9041. doi:10.2215/cjn.10311013.

I. D. Weiner and J. W. Verlander. Renal ammonia metabolism and transport. Compr Physiol, 3(1):201–20, 2013. ISSN 2040-4603. doi:10.1002/cphy.c120010.

S. A. Weinzimer, C. A. Stanley, G. T. Berry, M. Yudkoff, M. Tuchmanet al. A syndrome of congenital hyperinsulinism and hyperammonemia. J Pediatr, 130(4):661–4, 1997.

ISSN 0022-3476 (Print) 0022-3476. doi:10.1016/s0022-3476(97)70256-7.

M. Wood, P. Perrotte, E. Onishi, M. E. Harper, C. Dinneyet al. Biodistribution of an ade-noviral vector carrying the luciferase reporter gene following intravesical or intravenous administration to a mouse. Cancer Gene Ther, 6(4):367–72, 1999. ISSN 0929-1903 (Print) 0929-1903 (Linking). doi:10.1038/sj.cgt.7700090.

R. Z. Yang, S. Park, W. J. Reagan, R. Goldstein, S. Zhonget al. Alanine aminotransferase isoenzymes: molecular cloning and quantitative analysis of tissue expression in rats and serum elevation in liver toxicity. Hepatology, 49(2):598–607, 2009. ISSN 0270-9139 (Print) 0270-9139. doi:10.1002/hep.22657.

V. R. Young, A. E. El-Khoury, C. A. Raguso, A. H. Forslund and L. Hambraeus. Rates of urea production and hydrolysis and leucine oxidation change linearly over widely varying protein intakes in healthy adults. J Nutr, 130(4):761–6, 2000. ISSN 0022-3166 (Print) 0022-3166. doi:10.1093/jn/130.4.761.

R. Zaragoza, J. Renau-Piqueras, M. Portoles, J. Hernandez-Yago, A. Jordaet al.Rats fed prolonged high protein diets show an increase in nitrogen metabolism and liver megami-tochondria. Arch Biochem Biophys, 258(2):426–35, 1987. ISSN 9861 (Print) 0003-9861. doi:10.1016/0003-9861(87)90364-x.

A. Zijno, P. Porcedda, F. Saini, A. Allione, B. Garofaloet al.Unsuitability of lymphoblas-toid cell lines as surrogate of cryopreserved isolated lymphocytes for the analysis of dna double-strand break repair activity. Mutat Res, 684(1-2):98–105, 2010. ISSN 0027-5107 (Print) 0027-5107. doi:10.1016/j.mrfmmm.2009.12.008.