Dans le document New insights into the diversity of deep-sea benthic foraminifera (Page 178-200)


5.3 Perspectives

There is a considerable work left to be done concerning deep-sea benthic foraminifera.

Many issues remain unsolved and new molecular methods have just opened a door on a tremendous world never seen before.

It is really important that our knowledge on “early foraminifera” improves in the near future. Each new description of monothalamous species adds an important piece of information regarding this largely overlooked group, which is, however, the core richness of the entire phylum. This kind of investigations should include molecular data for a much larger set of species, which is the only possible way to establish a solid phylogenetic classification of this group.

We wish to expand physico-chemical analyses on xenophyophores. We propose notably to further investigate radioactive elements contained in their stercomata and their possible origins. Additionally, it could be worthwhile to get the RNA of some specimens and obtain sequences of functional genes. This might give us some clues to understand biological functions linked to the particular feature of fecal pellets sequestration, which drastically modify the concentrations of metallic compounds within the deep-sea sediment.

We should acknowledge that it was particularly frustrating failing to establish komokiaceans origin by molecular tools. This project should be continued by collecting fresh specimens, and enlarged to other described species of Komokiacea.

Concerning the chapter on “hidden” foraminiferal richness (including numerous cosmopolite unidentified taxa and squatters) we should design specific fluorescent probes and apply them to sediment samples to reveal targeted undescribed species.

The applications of massive sequencing methods are countless. Our preliminary analyses probably still retain a lot of information we are not able to unscramble yet. For that reason and because the costs of analyses are not so high (at least in the case of Solexa), we should multiply basic tests to settle properly those new methods. However, it will be hard to

wait for starting a new project and screening the deep-sea sediment on a large scale. We believe that massive sequencing could be a way to circumnavigate the problematic issue of deep-sea sampling and its lack of representativeness. It is now possible to perform far more replicates, which should increase the accuracy of any environmental analysis.

Among numerous analyses, which could be performed using massive sequencing approach, three in particular, have retained our attention: 1) testing possible correlations between foraminiferal richness and some environmental parameters such as depth, latitude and the species richness of other meiofaunal group (for instance nematodes); 2) testing the ubiquity or wide dispersal of target species; and finally 3) monitoring foraminiferal populations in a reduced area over time by massive sequencing of DNA and RNA extracts.

Last but not least, the extracellular DNA obviously amplified during our 454 project should be investigated. It might be possible to estimate its concentration by real time PCR and determine its profile in the sediment.


Abdullah, F., Sina, I., and Fauzee, F. (2008). The ground beetle fauna (Coleoptera:

Carabidae) of Kenyir water catchment, Terengganu, Peninsular Malaysia. Pak J Biol Sci 11, 2478-2483.

Abele, L.G., and Walters, K. (1979). Marine benthic diversity: a critique and alternative explanation. Journal of Biogeography 6, 115-126.

Adam, G., Marsh, A.G., Mullineaux, L.S., Young, G.M., and Manahan, D.T. (2001). Larval dispersal potential of the tubeworm Riftiapachyptila at deep-sea hydrothermal vents.

Nature 411, 77-80.

Adl, S.M., Simpson, A.G.B., Farmer, M.A., Andersen, R.A., Anderson, O.R., Barta, J.R., Bowser, S.S., Brugerolle, G., Fensome, R.A., and Fredericq, S.(2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52, 399-451.

Alldredge, A.L., and Silver, M.J. (1988). Characteristics, dynamics and significance of marine snow. Progress in Oceanography 20, 41-82.

Allen, J.A. and Sanders, H.L. (1996). The zoogeography, diversity and origin of deep-sea protobranch bivalves of the Atlantic: the epilogue. Progress in Oceanography 38, 95-153.

Altenbach, A.V., Pflaumann, U., Schiebel, R., Thies, A., Timm, S., and Trauth, M. (1999).

Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon. Journal of Foraminiferal Research 29, 173-185.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J Mol Biol 215,403-410.

Alve, E. (1995). Benthic foraminiferal responses to estuarine pollution: a review. Journal of Foraminiferal Research 25, 190-203.

Alve, E. (1999). Colonization of new habitats by benthic foraminifera: a review. Earth-Sci Rev 46, 167-185.

Alve, E., and Goldstein, S.T. (2002). Resting stage in benthic foraminiferal propagules: a key feature for dispersal? Evidence from two shallow water species. Journal of Micropalaeontology 21, 95-96.

Alve, E., and Goldstein, S.T. (2003). Propagule transport as a key method of dispersal in benthic Foraminifera (Protista). Limnology and Oceanography 48, 2163-2170.

Anderson, T.R., and Rice, T. (2006). Deserts on the sea floor: Edward Forbes and his azoic hypothesis for a lifeless deep ocean. Endeavour 30, 131-137.

Andersson, J.O. (2009). Horizontal gene transfer between microbial eukaryotes. Methods Mol Biol 532, 473-487.

Armynot du Châtelet, E., Debenay, J.P., and Soulard, R. (2004). Foraminiferal proxies for pollution monitoring in moderately polluted harbours. Environmental Pollution 127, 27-40.

Arzola, R.G., Wynn, R.B., Lastras, G., Masson, D.G., and Weaver, P.P.E. (2008).

Sedimentary features and processes in the Nazaré and Setúbal submarine canyons, west Iberian margin. Marine Geology 250, 64-88.

Atkins, M.S., Teske, A.P., and Anderson, D.R. (2000) A survey of flagellate diversity at four deep-sea hydrothermal vents in Eastern Pacific ocean using structural and molecular approaches. J. Eukaryot. Microbiol. 47, 400-411.

Aurahs, R., Grimm, G.W., Hemleben, V., Hemleben, C., and Kucera, M. (2009).

Geographical distribution of cryptic genetic types in the planktonic foraminifer Globigerinoides ruber. Mol Ecol 18, 1692-1706.

Bahls, A.S., Rathburn, A.E., and Perez, M.E. (2004). Responses of deep-sea benthic foraminifera to seasonal fluctuations in productivity of the Southern California margin. Paper presented at: Geological Society of America North-Central Section - 38th Annual Meeting (St. Louis, Missouri, USA ).

Bano, N., Ruffin, S., Ransom, B., and Hollibaugh, J.T. (2004) Phylogenetic composition of Arctic Ocean Archaeal assemblages and comparison with Antarctic assemblages.

Applied Environmental Microbiology 70, 781-789.

Banner, F.T. (1971). A new genus of Planorbulinidae an endoparasite of another foraminifer.

Revista Española de Micropaleontología 3, 113-128.

Barth, D., Krener. S., Fokin, S.I., and Berendonk, T.U. (2006) Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome c oxidase I sequences. J.

Eukaryot. Microbiol. 53,20-25.

Bergquist, D.C., Williams, F.M., and Fisher, C.R. (2000). Longevity record for deep-sea invertebrate. Nature 403, 499-500.

Bergsten, H. (1994). Recent benthic foraminifera of a transect from the North Pole to the Yermak Plateau, estern central Arctic Ocean. Marine Geology 119, 251-267.

Bertram, M.A., and Cowen, J.P. (1999). Temporal variations in the deep-water colonization rates of small benthic foraminifera: the results of an experiment on Cross Seamount.

Deep-Sea Research I 46, 1021-1049.

Billett, D.S., and Hansen, B. (1982). Abyssal aggregations of Kolga hyalina Danielssen and Koren (Echinodermata: Holothuroidea) in the northeast Atlantic Ocean. Deep-Sea Research 29A, 799-818.

Billett, D.S.M., Lampitt, R.S., Rice, A.L., and Mantoura, R.F.C. (1983). Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302, 520-522.

Bilofsky, H.S., Burks, C., Fickett, J.W., Goad, W.B., Lewitter, F.I., Rindone, W.P., Swindell, C.D., and Tung, C.S. (1986) The GenBank genetic sequence databank. Nucleic Acids Res 14,1-4.

Boltovskoy, E., and Wright, R. (1976). Recent Foraminifera (The Hague, W. Junk).

Boucher, G., and Lambshead, P.J.D. (1995). Ecological biodiversity of marine nematodes in samples from temperate, tropical, and deep-sea regions. Conserv Biol 9, 1594-1604.

Bowser, S.S., Habura, A., Pawlowski, J. (2006). Molecular Evolution of Foraminifera.

Genomics and Evolution of Microbial Eukaryotes. Katz, L. and Bhattacharya, D. (Eds) Oxford University Press, 78-93.

Brandt, A., Gooday, A.J., Brandao, S.N., Brix, S., Brokeland, W., Cedhagen, T., Choudhury, M., Cornelius, N., Danis, B., De Mesel, I., et al. (2007). First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447, 307-311.

Brinckmeyer, R., Knittel, K., Jürgens, J., Weyland, H., Amann, R., and Helmke, E. (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice.

Applied Environmental Microbiology 69, 6610-6619.

Broadman, R.S., Cheetham, A.H., and Rowell, A.J. (1987). Fossil Invertebrates (Cambridge, MA, Blackwell Science).

Buckley, D.E., Owens, E.H., Schafer, C.T., Vilks, G., Cranston, R.E., Rashid, M.A., Wagner, F.J.E., and Walker, D.A. (1974). Canso strait and Chedaucto bay: a multidisciplinary study of the impact of man on the marine environment. Geological Survey of Canada 1, 133-160.

Bunker, D.E., and Naeem, S. (2006). Species diversity and ecosystem functioning. Science 312, 846-848; author reply 846-848.

Butman, C.A. (1987). Larval settlement of soft-sediment invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanography and Marine Biology - an Annual Review 25, 113-165.

Canals, M., Puig, P., de Madron, X.D., Heussner, S., Palanques, A., and Fabres, J. (2006).

Flushing submarine canyons. Nature 444, 354-357.

Caralp, M. (1989). Relationship to the quality of marine organic matter. Geo-Marine Letters 9, 37-43.

Cartwright, N.G., Gooday, A.J., and Jones, A.R. 1989. The morphology, internal organization and taxonomic position of Rhizammina algaeformis Brady, a large, agglutinated, deep-sea foraminifer. Journal of Foraminiferal Research 19: 115-125.

Cavalier-Smith, T. (2002). The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297-354.

Cedhagen, T. (1994). Taxonomy and Biology of Hyrrokkin-Sarcophaga Gen Et Sp-N, a Parasitic Foramiferan (Rosalinidae). Sarsia 79, 65-82.

Cedhagen, T., Gooday, A.J., and Pawlowski, J. (2009). A new genus and two new species of saccamminid foraminiferans (Protista, Rhizaria) from the deep Southern Ocean.

Zootaxa 2096, 9-22.

Cedhagen, T., and Pawlowski, J. (2002). Toxisarcon synsuicidica n. gen., N. sp., a large monothalamous foraminiferan from the west coast of Sweden. Journal of Foraminiferal Research 32, 351-357.

Chen, L., DeVries, A.L., and Cheng, C.H. (1997). Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci U S A 94, 3817-3822.

Chen, Y.C., Eisner, J.D., Kattar, M.M., Rassoulian-Barrett, S.L., Lafe, K., Bui, U., Limaye, A.P., and Cookson, B.T. (2001). Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J Clin Microbiol 39, 4042-4051.

Childress, J.J., and Fischer, C.R. (1992). The biology of hydrothermal vent animals:

physiology, biochemistry and autotrophic symbioses. Oceanography and Marine Biology - an Annual Review 30, 337-441.

Clement, M., Posada, D., and Crandall, K.A. (2000). TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657-1659.

Cole, J.J., Honjo, S., and Erez, J. (1987). Benthic decomposition of organic matter at deep-water site in the Panama Basin. Nature 327, 703-704.

Corliss, B.H., and Chen, C. (1988). Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology 16, 716-719.

Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, and A., Crane, K. (1979). Submarine Thermal Sprirngs on the Galapagos Rift. Science 203, 1073-1083.

Cox, K.D., Scherm, H., and Riley, M.B. (2006). Characterization of Armillaria spp. from peach orchards in the southeastern United States using fatty acid methyl ester profiling. Mycol Res 110, 414-422.

Cronin, T.M., and Raymo, M.E. (1997). Orbital forcing of deep-sea benthic species diversity.

Nature 385, 624-627.

Crump, B.C., Armbrust, E.V., and Baross, J.A. (1999). Phylogenetic analysis of particle-attached and free-living bacterial communities in the Colubia river, its estuary, and the adjacent ocean. Appl Environ Microbiol 65, 3192-3204.

Culver, S.J. (1991). Early Cambrian Foraminifera from West Africa. Science 254, 689-691.

Curtis, T.P., Head, I.M., Lunn, M., Woodcock, S., Schloss, P.D., and Sloan, W.T. (2006).

What is the extent of prokaryotic diversity? Philos Trans R Soc Lond B Biol Sci 361, 2023-2037.

Curtis, T.P., Sloan, W.T., and Scannell, J.W. (2002). Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99, 10494-10499.

Cushman, J.A. (1928). Foraminifera, their classification and economic use, 4 edn (Harvard University Press).

d 'Orbigny, A. (1826). Tableau méthodique de la classe des Céphalopodes. 3ème ordre Foraminifères. Ann Sci Nat, Paris (Zool) 7, 245-374.

Damare, S., Raghukumar, C., and Raghukumar, S. (2006). Spore germination of fungi belonging to Aspergillus species under deep-sea conditions. Deep Sea Research I 55:670-678

Danovaro, R., Dell'Anno, A., Corinaldesi, C., Magagnini, M., Noble, R., Tamburini, C., and Weinbauer, M. (2008a). Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084-1087.

Danovaro, R., Gambi, C., Dell'Anno, A., Corinaldesi, C., Fraschetti, S., Vanreusel, A., Vincx, M., and Gooday, A.J. (2008b). Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18, 1-8.

Danovaro, R., Gambi, C., Lampadariou, N., and Tselepides, A. (2008c). Deep-sea nematode biodiversity in the Mediterranean basin: testing for longitudinal, bathymetric and energetic gradients. Ecography 31, 231-244.

Darling, K.F., Kucera, M., Pudsey, C.J., and Wade, C.M. (2004). Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics.

Proc Natl Acad Sci U S A 101, 7657-7662.

Darling, K. F., and Wade, C. M. (2008). The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology 67, 216-238.

Darling, K.F., Wade, C.M., Kroon, D., Leigh Brown, A.J., and Bijma, J. (1999). The diversity and distribution of modern planktic foraminiferal small subunit ribosomal RNA genotypes and their potential as tracers of present and past ocean circulations.

Paleoceanography 14, 3-12.

Darling, K.F., Wade, C.M., Stewart, I.A., Kroon, D., Dingle, R., and Leigh Brown, A.J.

(2000). Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405, 43-47.

Darwin, C. (1859). On the origin of species by means of natural selection. In, Murray, ed.

(London), p. 52.

Darwin, F. (1887). The life and letters of Charles Darwin, including an autobiographical chapter, Vol 2, London: John Murray, Albemarle street ed.

Darwin, F., and Seward, A.C. (1903). Charles Darwin, letter to W.B. Carpenter, 1872. In, F.a.A.C.S. Darwin, ed. (New York).

Dawson, S.C., and Pace, N.R. (2002). Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A 99, 8324-8329.

De Laca, T.E., Bernhard, J.M., Reilly, A., and Bowser, S.S. (2002). Notodendrodes hyalinosphaira (sp. nov.): structure and autoecology of an allogromiid-like agglutinated foraminifer. Journal of Foraminiferal Research 32, 177-187.

De Stigter, H.C., Boer, W., De Jesús Mendes, P.A., Jesus, C.C., Thomsen, L., Van den Berg, G.D., and Van Weering, T.C.E. (2007). Recent sediment transport and deposition in Nazaré Canyon, Portuguese continental margin. Marine Geology 246, 144-164.

de Vargas, C., Norris, R., Zaninetti, L., Gibb, S.W., and Pawlowski, J. (1999). Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci U S A 96 (101), 2864-2868.

de Vargas, C., and Pawlowski, J. (1998). Molecular versus taxonomic rates of evolution in planktonic foraminifera. Molecular Phylogenetics and Evolution 9, 463-469.

de Vargas, C., Renaud, S., Hilbrecht, H., and Pawlowski, J. (2001). Pleistocene adaptive radiation in Globorotalia truncatulinoides: genetic, morphologic, and environmental evidence. Paleobiology 27, 104-125.

de Vargas, C., Zaninetti, L., Hilbrecht, H., and Pawlowski, J. (1997) Phylogeny and rates of molecular evolution of planktonic foraminifera: SSU rDNA sequences compared to the fossil record. Journal of Molecular Evolution 45:285-294.

Debenay, J.P., Guillou, J.J., Redois, F., and Geslin, E. (2000). Distribution trends of foraminiferal assemblages in paralic environments. A base for using foraminifera as bioindicators. In Enviromental Micropaleontology, E.R.a.M. Kluver, ed. (New York, Geobiology), pp. 39-67.

Debenay, J.P., and Pawlowski, J. (1996). Les foraminifers actuels (Paris).

DeLaca, T.E., Karl, D.M., and Lipps, J.H. (1981). Direct use of dissolved organic carbon by agglutinated benthic foraminifera. Nature 289, 287-289.

Dell'Anno, A., and Danovaro, R. (2005). Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 309, 2179-2179.

DeLong, E.F., Franks, D.G., and Alldredge, A.L. (1993). Phylogenetic diversity of aggregate-attached and free-living marine bacterial assemblages. Limnology and Oceanography 38, 924-934.

Deming, J.W., and Colwell, R.R. (1982). Barophilic bacteria associated with the digestive tract of abyssal holothurians. Appl Environ Microbiol 44, 1222-1230.

Deuser, W.G., and Ross, E.H. (1989). Seasonally abundant planktonic foraminifera of Sargasso Sea: Succession, deep-water fluxes, isotopic composition, and paleoceanographic implications. Journal of Foraminiferal Research 19, 168-193.

Deutsch, C., Sarmiento, J.L., Sigman, D.M., Gruber, N., and Dunne, J.P. (2007). Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445, 163-167.

Diaz, S., and Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16, 646-655.

Douglas, R.G. (1979). Foraminiferal Ecology and Paleoecology. In SEPM Short Course No 6, W.H.B. J. H. Lipps, M. A. Buzas, R. G. Douglas, C. A. Ross, ed. (Society of Economic Paleontologists and Mineralogists), pp. 21-53.

Douglas, R.G. (1981). Paleoecology of continental margin basins: a modern case history from the borderland of Southern California. In Depositional Systems of Active Continental Margin Basins, R.G.D.e. al., ed. (Bakersfield, California, Society of Economic Paleontologists and Mineralogists, Pacific Section), pp. 121-156.

Douglas, R.H., Mullineaux, C.W., and Partridge, J.C. (2000). Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger. Philos Trans R Soc Lond B Biol Sci 355, 1269-1272.

Dugan, B., and Flemings, P.B. (2000). Overpressure and fluid flow in the new jersey continental slope: implications for slope failure and cold seeps. Science 289, 288-291.

Ebeling, A.W., and Caillet, G.M. (1974). Mouth size and predator strategy of midwater fishes.

Deep-Sea Research 21, 959-968.

Edgcomb, V.P., Kysela, D.T., Teske, A., de Vera Gomez, A., and Sogin, M.L. (2002).

Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment.

Proc Natl Acad Sci U S A 99, 7658-7662.

El Menyawi, I., Wogerbauer, M., Sigmund, H., Burgmann, H., and Graninger, W. (2000).

Identification of yeast species by fatty acid profiling as measured by gas-liquid chromatography. J Chromatogr B Biomed Sci Appl 742, 13-24.

Elias, M., Hill, R.I., Willmott, K.R., Dasmahapatra, K.K., Brower, A.V., Mallet, J., and Jiggins, C.D. (2007). Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proc Biol Sci 274, 2881-2889.

Ellison, R.L., Broome, R., and Oglivie, R. (1986). Foraminiferal response to trace metal contamination in the Patapsco river and Baltimore harbour, Maryland. Marine Pollution Bulletin 17, 419-423.

Epping, E., Van Der Zee, C., Soetaert, K., and Helder, W. (2002). On the oxidation and burial of organic carbon in sediments of the Iberian margin and Nazaré Canyon (NE Atlantic). Progress in Oceanography 52: 399–431.

Epstein, S., and López-García, P. (2008). Missing protists: a molecular prospective.

Biodiversity and Conservation 17, 261-276.

Ereshefsky, M., and Matthen, M. (2005). Taxonomy, polymorphism, and history: An introduction to population structure theory. Philosophy of Science 72, 1-21.

Ertan, K.T., Hemleben, V., and Hemleben, C. (2004). Molecular evolution of some selected benthic foraminifera as inferred from sequences of the small subunit ribosomal DNA.

Marine Micropaleontology 53, 367-388.

Erwin, P.M., and Thacker, R.W. (2008). Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol 17, 2937-2947.

Etter, R.J., and Grassle, J.F. (1992). Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature 369, 576-578.

Etter, R.J., Rex, M.A., Chase, M.C., and Quattro, J.M. (1999). A genetic dimension to deep-sea biodiversity. Deep-Sea Res. I 46, 1095-1099.

Etter, R.J., Rex, M.A., Chase, M.R., and Quattro, J.M. (2005). Population differentiation decreases with depth in deep-sea bivalves. Evolution 59, 1479-1491.

Evans, K.M., Wortley, A.H., and Mann, D.G. (2007). An assessment of potential diatom

“barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158,349-364.

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinformatics Online 1, 47-50.

Excoffier, L., Smouse, P., and Quattro, J. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479-491.

Finlay, B.J. (2002). Global Dispersal of Free-Living Microbial Eukaryote Species. Science 296, 1061-1063.

Finlay, B.J., Esteban, G.F., and Fenchel, T. (2004). Protist Diversity is different? Protist 155, 15-22.

Finlay, B.J., and Fenchel, T. (2004). Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155, 237-244.

Flakowski, J., Bolivar, I., and Fahrni, J. (2005). Actin phylogeny of foraminifera. Journal of Foraminiferal Research 35, 93-102.

Fontaneto, D., Kaya, M., Herniou, E.A., and Barraclough, T.G. (in Press). Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Mol Phylogenet Evol.

Fontanier, C., Jorissen, F.J., Licari, L., Alexandre, A., Anschutz, P., and Garbonel, P. (2002).

Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats. Deep-Sea Research I 49, 751–785.

Forbes, E. (1844). Report on the Mollusca and Radiata of the Aegean Sea, and on their distribution, considered as bearing on geology. In Report of the British Association for the Advancement of Science for 1843, pp. 129-193.

Fox, J.W. (2006). Using the Price Equation to partition the effects of biodiversity loss on ecosystem function. Ecology 87, 2687-2696.

Fraser, R.H., and Currie, D.J. (1996). The species richness-energy hypothesis in a system where historical factors are thought to prevail: coral reefs. American Naturalist 148, 138-159.

Frontalini, F., and Coccioni, R. (2008). Benthic foraminifera for heavy metal pollution monitoring: A case study from the central Adriatic Sea coast of Italy. Estuarine, Coastal and Shelf Science 76, 404-417.

Gage, J.D. (2004). Diversity in deep-sea benthic macrofauna: the importance of local ecology, the larger scale, history and the Antarctic. Deep-Sea Research II 51, 1689–1708.

Gage, J.D., and Tyler, P.A. (1991). Deep-sea biology: a natural history of organisms at the deep-sea floor (Cambridge, Cambridge University Press).

Galtier, N., Gouy, M., and Gautier, C. (1996). SEAVIEW and PHYLO_WIN, two graphic tools for sequence alignment and molecular phylogeny. Comput. Applic. Biosci. 12, 543-548.

Garcia, R., Koho, K.A., De Stigter, H.C., Epping, E., Koning, E., and Thomsen, L. (2007).

Distribution of meiobenthos in the Nazaré Canyon and adjacent slope (western Iberian Margin) in relation to sedimentary composition. Marine Ecology Progress Series 240, 207–220.

Garcia, R., and Thomsen, L. (2008). Bioavailable organic matter in surface sediments of the Nazaré canyon and adjacent slope (Western Iberian Margin). Journal of Marine Systems 74: 44–59

Gardner, W.D., Hinga, K.R., and Marra, J. (1983). Observation on the degradation of biogenic material in the deep ocean with implications on accuracy of sediment trap fluxes. Journal of Marine Research 41, 195-214.

Gaston K. J., S.J.I. (2004). Biodiversity: an introduction, second edt. (Blackwell Publishing).

Goldstein, S. (1999). In Modern Foraminifera, B.K. Sen Gupta, ed. (Dordrecht, Kluwer), pp.


Gonzalez-Oreja, J.A. (2008). The Encyclopedia of Life vs. the Brochure of Life: Exploring the relationships between the extinction of species and the inventory of life on Earth.

Zootaxa 1965, 61-68.

Gooday, A.J. (1984a). Komokiacean foraminifers (Protozoa) and paludicelline ctenostomes (Bryozoa) from the abyssal northeast Atlantic. Journal of Natural History 18, 765-784.

Gooday, A.J. (1984b). Records of deep-sea rhizopod tests inhabited by metazoans in the north east Atlantic. Sarsia 69, 45-53.

Gooday, A.J. (1988). A response by benthic foraminifera to phytodetritus deposition in the deep sea. Nature 332, 70-73.

Gooday, A.J. (1993). Deep-sea benthic foraminiferal species which exploit phytodetritus:

characteristic features and controls on distribution. Mar. Micropaleontol. 22, 187-205.

Gooday, A.J. (1995). Micro- and nanoforaminifera from abyssal northeast Atlantic sediments:

a preliminary report. Int Rev Gesamten Hydrobiol 80, 361-383.

Gooday, A.J. (2002a). Biological responses to seasonally varying fluxes of organic matter to the ocean floor: A review. Journal of Oceanography 58, 305-332.

Gooday, A.J. (2002b). Organic-walled allogromiids: Aspects of their occurrence, diversity and ecology in marine habitats. Journal of Foraminiferal Research 32, 384-399.

Gooday, A.J. (2003). Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics. Adv Mar Biol 46, 1-90.

Gooday, A.J., Bernhard, J.M., Levin, L.A., and Suhr, S.B. (2000). Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas. Deep-Sea Res Part II-Top Stud Oceanogr 47, 25-54.

Gooday, A.J., Bett, B.J., and Pratt, D.N. (1993). Direct Observation of Episodic Growth in an Abyssal Xenophyophore (Protista). Deep-Sea Research I-Oceanographic Research Papers 40, 2131-2143.

Gooday, A.J., and Cartwright, N. (1987). Rhizammina algaeformis: a giant komokiacean foraminifer?. Deep Sea Newsletter 13, 13-15.

Gooday, A.J., and Cartwright, N. (1987). Rhizammina algaeformis: a giant komokiacean foraminifer?. Deep Sea Newsletter 13, 13-15.

Dans le document New insights into the diversity of deep-sea benthic foraminifera (Page 178-200)