• Aucun résultat trouvé

6.2. CONCLUSIONS ET PERSPECTIVES GENERALES

6.2.2. Perspectives

Ainsi les récepteurs GluCls pourraient intervenir dans de nombreuses fonctions. Il serait intéressant d’évaluer leur participation dans les processus visuels ou tactiles. Avant de commencer ce travail de thèse, j’avais participé aux expériences des effets sub-létaux du

fipronil sur l’apprentissage tactile chez l’abeille, et notamment sur la latéralisation de l’information apprise. L’effet du fipronil aboutissait à une baisse de l’acquisition et une baisse sous-jacente des performances de rappel, mais n’affectait pas le transfert bilatéral du stimulus renforcé. Ceci avait permis de souligner le rôle des réseaux inhibiteurs dans ces processus d’apprentissage et de mémoire, auxquels participent les récepteurs GluCls, et qui sont ciblés par le fipronil. Ces travaux ont fait l’objet d’un article publié dans

Journal of Insect Physiology (Bernadou et al. 2009). Une utilisation d’outils plus

spécifiques, comme les siRNA dirigés contre l’un ou l’autre variants GluCls, permettrait peut-être de révéler un effet sur le transfert bilatéral de l’information apprise.

Si cela s’avère être le cas, alors il devient probable que les récepteurs GluCls participent à d’autres modalités sensorielles. Il serait tout à fait possible d’évaluer la participation des variants GluCls dans la vision et la locomotion au moyen de tests de phototaxie, déjà utilisés dans notre équipe pour évaluer l’effet d’exposition au thymol (Bergougnoux et al. 2012). Le corps central étant impliqué dans les comportements locomoteurs et d’orientation (Strauss 2002, Homberg 2008, Homberg et al. 2011) et connaissant la localisation anatomique des variants GluCls dans le corps central, notamment la division inférieure, il serait judicieux d’observer l’effet d’un traitement siRNA sur les capacités de vol et d’orientation de l’abeille, dans des expériences de libre-vol.

Au niveau cellulaire, une des perspectives les plus intéressantes que je n’ai pas eu le temps d’approfondir est la caractérisation du profil électrophysiologique de chaque variant. J’ai pu effectuer quelques enregistrements de cellules de Kenyon en patch-clamp (figure annexe A4), sans pouvoir aller plus loin. Cela aurait permis de corroborer l’observation de Guillaume Barbara sur l’existence des deux courants véhiculés par les canaux GluCls au niveau des cellules de lobe antennaire (Barbara et al. 2005), et d’essayer de chaque courant à un variant. Dans cette optique, un enjeu technique de taille aurait été la localisation spécifique de chaque variant sur des cellules en culture, et l’enregistrement en patch-clamp par la suite. La mise au point de cultures secondaires pures en cellules gliales permettrait d’avoir un bon modèle pour étudier l’expression et les propriétés des sous-unités Amel_GluCl natives. J’ai bon espoir, si l’avenir me le permet, de me remettre à travailler sur ces expériences. Il faudra probablement passer par la mise au point d’une technique de détection de variant plus efficace et qui n’affecte pas l’intégrité cellulaire. Une alternative envisageable est l’expression hétérologue dans

l’ovocyte de xénope, technique largement utilisée pour la caractérisation de profil électrophysiologique de différents récepteurs, GluCl y compris (Cully et al. 1994, Cully et al. 1996, Vassilatis et al. 1997, Forrester et al. 2003).

Enfin, un des aspects que j’aimerais expérimenter par la suite, et dont j’ai déjà exposé quelques pistes dans les ouvertures, serait la caractérisation de l’expression des récepteurs GluCls au cours du développement de l’abeille, en fonction de l’âge des abeilles adultes, mais également en fonction de la saison. Bien que l’abeille soit considérée comme « modèle-animal de laboratoire », elle n’en reste pas moins sous l’influence de l’environnement extérieur et de ses paramètres. Les premiers travaux de l’équipe consistaient à évaluer l’effet de pesticides sur le comportement de l’abeille, en se basant sur des études de terrain et en essayant d’évaluer l’effet en condition de laboratoire. En partant de cet aspect de recherche appliquée, nous sommes remontés petit-à-petit vers un aspect plus fondamental de la recherche ; dans mon cas, la caractérisation fonctionnelle de deux variants d’un récepteur dans un processus biologique fondamental, la mémoire. Essayer d’évaluer la dynamique d’expression des GluCls « sur le terrain » permettrait, en quelque sorte, de boucler la boucle : améliorer la compréhension des mécanismes d’action de certains pesticides et apporter un éclairage supplémentaire sur certains aspects de la physiologie de l’abeille.

Bibliographie

Abel, R., Rybak, J. and Menzel, R. (2001). Structure and response patterns of olfactory interneurons in the honeybee,Apis mellifera. The Journal of Comparative Neurology 437, 363– 383.

Aigner, A. (2006). Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. Journal of biotechnology 124, 12–25.

Aliouane, Y., el Hassani, A. K., Gary, V., Armengaud, C., Lambin, M. and Gauthier, M. (2009). Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environmental Toxicology and Chemistry 28, 113–122.

Amdam, G. V. (2011). Social context, stress, and plasticity of aging. Aging Cell 10, 18–27.

Amdam, G. V. and Omholt, S. W. (2003). The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. Journal of Theoretical Biology 223, 451–464. Amdam, G., Simões, Z., Guidugli, K., Norberg, K. and Omholt, S. (2003). Disruption of

vitellogenin gene function in adult honeybees by intra-abdominal injection of double- stranded RNA. BMC Biotechnol 3, 1–8.

Ament, S. A., Corona, M., Pollock, H. S. and Robinson, G. E. (2008). Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. PNAS 105, 4226– 4231.

Anctil, M. (2009). Chemical transmission in the sea anemone Nematostella vectensis: A genomic perspective. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 4, 268–289.

Aronstein, K. A., Pankiw, T. and Saldivar, E. (2006). SID-1 is implicated in systemic gene silencing in the honey bee. Journal of Apicultural Research 45, 20–24.

Arriza, J. L., Fairman, W. A., Wadiche, J. I., Murdoch, G. H., Kavanaugh, M. P. and Amara, S. G. (1994). Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. The Journal of neuroscience 14, 5559–5569.

Arriza, J. L., Eliasof, S., Kavanaugh, M. P. and Amara, S. G. (1997). Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proceedings of the National Academy of Sciences 94, 4155–4160.

Bamber, B. A., Twyman, R. E. and Jorgensen, E. M. (2003). Pharmacological characterization of the homomeric and heteromeric UNC‐49 GABA receptors in C. elegans. British journal of pharmacology 138, 883–893.

Barbara, G. S., Zube, C., Rybak, J., Gauthier, M. and Grünewald, B. (2005). Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191, 823– 836.

Beech, R. N., Wolstenholme, A. J., Neveu, C. and Dent, J. A. (2010). Nematode parasite genes: what’s in a name? Trends in parasitology 26, 334–340.

Beg, A. A. and Jorgensen, E. M. (2003). EXP-1 is an excitatory GABA-gated cation channel. Nature neuroscience 6, 1145–1152.

Behrends, A., Scheiner, R., Baker, N. and Amdam, G. V. (2007). Cognitive aging is linked to social role in honey bees (Apis mellifera). Exp. Gerontol. 42, 1146–1153.

Bellés, X. (2010a). Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annual review of entomology 55, 111–128.

Bellés, X. (2010b). Beyond Drosophila: RNAi In Vivo and Functional Genomics in Insects. Annual Review of Entomology 55, 111–128.

Ben-Ari, Y., Aniksztejn, L. and Bregestovski, P. (1992). Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends in neurosciences 15, 333–339.

Benton, R., Vannice, K. S., Gomez-Diaz, C. and Vosshall, L. B. (2009). Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in Drosophila. Cell 136, 149–162.

Bergougnoux, M., Treilhou, M. and Armengaud, C. (2012). Exposure to thymol decreased phototactic behaviour in the honeybee (Apis mellifera) in laboratory conditions. Apidologie 44, 82–89.

Bernadou, A., Démares, F., Couret-Fauvel, T., Sandoz, J. C. and Gauthier, M. (2009). Effect of fipronil on side-specific antennal tactile learning in the honeybee. Journal of Insect Physiology 55, 1099–1106.

Bernstein, E., Caudy, A. A., Hammond, S. M. and Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

Beye, M., Härtel, S., Hagen, A., Hasselmann, M. and Omholt, S. (2002). Specific developmental gene silencing in the honey bee using a homeobox motif. Insect molecular biology 11, 527– 532.

Bicker, G. (1999). Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microscopy Research and Technique 45, 174–183.

Bicker, G., Schäfer, S., Ottersen, O. P. and Storm-Mathisen, J. (1988). Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J Neurosci 8, 108–2.

Birnbaumer, L., Campbell, K. P., Catterall, W. A., Harpold, M. M., Hofmann, F., Horne, W. A., Mori, Y., Schwartz, A., Snutch, T. P., Tanabe, T., et al. (1994). The naming of voltage-gated calcium channels. Neuron 13, 505–506.

Bitterman, M. E., Menzel, R., Fietz, A. and Schäfer, S. (1983). Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97, 107–119.

Bocquet, N., Nury, H., Baaden, M., Le Poupon, C., Changeux, J.-P., Delarue, M. and Corringer, P.-J. (2008). X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457, 111–114.

Boumghar, K., Couret-Fauvel, T., Garcia, M. and Armengaud, C. (2012). Evidence for a role of GABA- and glutamate-gated chloride channels in olfactory memory. Pharmacol. Biochem. Behav. 103, 69–75.

Boyan, G. and Williams, J. (2004). Embryonic development of the sensory innervation of the antenna of the grasshopper Schistocerca gregaria. Arthropod Structure & Development 33, 381–397.

Boyan, G., Williams, J., Posser, S. and Bräunig, P. (2002). Morphological and molecular data argue for the labrum being non-apical, articulated, and the appendage of the intercalary segment in the locust. Arthropod Structure & Development 31, 65–76.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72, 248–254.

Bräunig, P. and Pflüger, H.-J. (2001). The unpaired median neurons of insects. Advances in Insect Physiology 28, 185–IN2.

Bridges, R. J. and Esslinger, C. S. (2005). The excitatory amino acid transporters: pharmacological insights on substrate and inhibitor specificity of the EAAT subtypes. Pharmacology & therapeutics 107, 271–285.

Broughton, S. and Partridge, L. (2009). Insulin/IGF-like signalling, the central nervous system and aging. Biochem J 418, 1–12.

Campbell, W. (2012). History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. Current pharmaceutical biotechnology 13, 853–865. Cayre, M., Buckingham, S. D., Yagodin, S. and Sattelle, D. B. (1999). Cultured insect

mushroom body neurons express functional receptors for acetylcholine, GABA, glutamate, octopamine, and dopamine. J. Neurophysiol. 81, 1–14.

Chalasani, S. H., Chronis, N., Tsunozaki, M., Gray, J. M., Ramot, D., Goodman, M. B. and Bargmann, C. I. (2007). Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450, 63–70.

Chapman, A. G., Smith, S. E. and Meldrum, B. S. (1991). The anticonvulsant effect of the non- NMDA antagonists, NBQX and GYKI 52466, in mice. Epilepsy Research 9, 92–96.

Cleland, T. A. (1996). Inhibitory glutamate receptor channels. Molecular Neurobiology 13, 97– 136.

Cole, L. M., Nicholson, R. A. and Casida, J. E. (1993). Action of Phenylpyrazole Insecticides at the GABA-Gated Chloride Channel. Pesticide Biochemistry and Physiology 46, 47–54.

Collingridge, G. L., Olsen, R. W., Peters, J. and Spedding, M. (2009). A nomenclature for ligand-gated ion channels. Neuropharmacology 56, 2–5.

Collins, B., Kane, E. A., Reeves, D. C., Akabas, M. H. and Blau, J. (2012). Balance of activity between LN(v)s and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila. Neuron 74, 706–718.

Connolly, C. N. and Wafford, K. A. (2004). The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochemical Society Transactions 32, 529.

Copley, R. R. (2004). Evolutionary convergence of alternative splicing in ion channels. Trends in genetics 20, 171–176.

Cull-Candy, S. G. (1976). Two types of extrajunctional L-glutamate receptors in locust muscle fibres. J. Physiol. (Lond.) 255, 449–464.

Cull-Candy, S. and Usherwood, P. (1973). Two populations of L-glutamate receptors on locust muscle fibres. Nature 246, 62–64.

Cully, D. F., Vassilatis, D. K., Liu, K. K., Paress, P. S., Van der Ploeg, L. H., Schaeffer, J. M. and Arena, J. P. (1994). Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371, 707–711.

Cully, D., Paress, P., Liu, K., Schaeffer, J. and Arena, J. (1996). Identification of a Drosophila melanogaster Glutamate-gated Chloride Channel Sensitive to the Antiparasitic Agent Avermectin. Journal of Biological Chemistry 271, 20187–20191.

Curtis, D. R. and Watkins, J. C. (1960). The excitation and depression of spinal neurones by structurally related amino acids. Journal of Neurochemistry 6, 117–141.

Davies, P. A., Wang, W., Hales, T. G. and Kirkness, E. F. (2003). A novel class of ligand-gated ion channel is activated by Zn2+. Journal of Biological Chemistry 278, 712–717.

Dehnes, Y., Chaudhry, F. A., Ullensvang, K., Lehre, K. P., Storm-Mathisen, J. and Danbolt, N. C. (1998). The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate- gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. The Journal of neuroscience 18, 3606–3619.

Delgado, R., Barla, R., Latorre, R. and Labarca, P. (1989). L-Glutamate activates excitatory and inhibitory channels in Drosophila larval muscle. FEBS Letters 243, 337–342.

Démares, F., Raymond, V. and Armengaud, C. (2013). Expression and localization of glutamate-gated chloride channel variants in honeybee brain (Apis mellifera). Insect Biochem. Mol. Biol. 43, 115–124.

Dent, J. A. (2006). Evidence for a Diverse Cys-Loop Ligand-Gated Ion Channel Superfamily in Early Bilateria. Journal of Molecular Evolution 62, 523–535.

Dent, J. A., Davis, M. W. and Avery, L. (1997). avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. The EMBO Journal 16, 5867–5879.

Dent, J. A., Smith, M. M., Vassilatis, D. K. and Avery, L. (2000). The genetics of ivermectin resistance in Caenorhabditis elegans. Proceedings of the National Academy of Sciences 97, 2674–2679.

Devaud, J.-M., Clouet-Redt, C., Bockaert, J., Grau, Y. and Parmentier, M.-L. (2008). Widespread brain distribution of the Drosophila metabotropic glutamate receptor. Neuroreport 19, 367–371.

Dermauw, W., Ilias, A., Riga, M., Tsagkarakou, A., Grbić, M., Tirry, L., Van Leeuwen, T. and Vontas, J. (2012). The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect biochemistry and molecular biology.

Devillers-Thiery, A., Changeux, J.-P., Paroutaud, P. and Strosberg, A. D. (1979). The amino- terminal sequence of the 40,000 molecular weight subunit of the acetylcholine receptor protein from Torpedo marmorata. FEBS letters 104, 99.

Dillon, J., Hopper, N., Holden-Dye, L. and O’Connor, V. (2006). Molecular characterization of the metabotropic glutamate receptor family in Caenorhabditis elegans. Biochemical Society Transactions 34, 942–948.

Dubas, F. (1990). Inhibitory effect of L-glutamate on the neuropile arborizations of flight motoneurones in locusts. Journal of experimental biology 148, 501–508.

Dubas, F. (1991). Actions of putative amino acid neurotransmitters on the neuropile arborizations of locust flight motoneurones. Journal of experimental biology 155, 337–356. Dudel, J. (2005). Glutamatergic chloride currents associated to glutamate transport?

Neuroscience letters 377, 176–178.

Dudel, J., Franke, C., Hatt, H., Ramsey, R. L. and Usherwood, P. N. (1988). Rapid activation and desensitization by glutamate of excitatory, cation-selective channels in locust muscle. Neuroscience letters 88, 33–38.

Dudel, J., Franke, C., Hatt, H. and Usherwood, P. N. (1989). Chloride channels gated by extrajunctional glutamate receptors (H-receptors) on locust leg muscle. Brain Res. 481, 215– 220.

Dujardin, F. (1850). Mémoire sur le système nerveux des insectes. Ann. Sci. Nat. Zool 14, 195– 206.

Dupuis, J. P., Bazelot, M., Barbara, G. S., Paute, S., Gauthier, M. and Raymond-Delpech, V. (2010). Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing. J. Neurophysiol. 103, 458–468.

Edwards, T. N. and Meinertzhagen, I. A. (2010). The functional organisation of glia in the adult brain of Drosophila and other insects. Progress in neurobiology 90, 471–497.

Eguchi, Y., Ihara, M., Ochi, E., Shibata, Y., Matsuda, K., Fushiki, S., Sugama, H., Hamasaki, Y., Niwa, H., Wada, M., et al. (2006). Functional characterization of Musca glutamate- and GABA-gated chloride channels expressed independently and coexpressed in Xenopus oocytes. Insect Molecular Biology 15, 773–783.

Ehmer, B. and Gronenberg, W. (2002). Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). The Journal of Comparative Neurology 451, 362–373.

Eisenhardt, D. (2006). Learning and memory formation in the honeybee (Apis mellifera) and its dependency on the cAMP-protein kinase A pathway. Animal biology 56, 259–278.

El Hassani, A. K., Dacher, M., Gauthier, M. and Armengaud, C. (2005). Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol. Biochem. Behav. 82, 30–39.

El Hassani, A. K., Giurfa, M., Gauthier, M. and Armengaud, C. (2008). Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiology of Learning and Memory 90, 589–595.

El Hassani, A. K., Dupuis, J. P., Gauthier, M. and Armengaud, C. (2009). Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invertebrate Neuroscience 9, 91–100.

El Hassani, A. K., Schuster, S., Dyck, Y., Demares, F., Leboulle, G. and Armengaud, C. (2012). Identification, localization and function of glutamate-gated chloride channel receptors in the honeybee brain. Eur. J. Neurosci. 36, 2409–2420.

Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001a). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. nature 411, 494–498.

Elbashir, S. M., Lendeckel, W. and Tuschl, T. (2001b). RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes & development 15, 188–200.

Eliasof, S. and Jahr, C. E. (1996). Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proceedings of the National Academy of Sciences 93, 4153–4158.

Eliasof, S. and Werblin, F. (1993). Characterization of the glutamate transporter in retinal cones of the tiger salamander. The Journal of neuroscience 13, 402–411.

Erber, J. (1976). Retrograde amnesia in honeybees (Apis mellifera carnica). Journal of comparative and physiological psychology 90, 41.

Etter, A., Cully, D. F., Schaeffer, J., Liu, K. and Arena, J. (1996). An Amino Acid Substitution in the Pore Region of a Glutamate-gated Chloride Channel Enables the Coupling of Ligand Binding to Channel Gating. Journal of Biological Chemistry 271, 16035–16039.

Etter, A., Cully, D., Liu, K., Reiss, B., Vassilatis, D., Schaeffer, J. and Arena, J. (1999). Picrotoxin blockade of invertebrate glutamate-gated chloride channels: subunit dependence and evidence for binding within the pore. Journal of neurochemistry 72, 318–326.

Fairman, W., Vandenberg, R., Arriza, J., Kavanaught, M. and Amara, S. (1995). An excitatory amino-acid transporter with properties of a ligand-gated chloride channel.

Fahrbach, S. E. and Robinson, G. E. (1995). Behavioral development in the honey bee: toward the study of learning under natural conditions. Learning & Memory 2, 199–224.

Farooqui, T., Robinson, K., Vaessin, H. and Smith, B. H. (2003). Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. The journal of Neuroscience 23, 5370–5380.

Fedorova, I. M., Magazanik, L. G. and Tikhonov, D. B. (2009). Characterization of ionotropic glutamate receptors in insect neuro-muscular junction. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 149, 275–280.

Feng, M., Song, F., Aleku, D. W., Han, B., Fang, Y. and Li, J. (2011). Antennal Proteome Comparison of Sexually Mature Drone and Forager Honeybees. Journal of Proteome Research 10, 3246–3260.

Ferraguti, F. and Shigemoto, R. (2006). Metabotropic glutamate receptors. Cell and tissue research 326, 483–504.

Ffrench-Constant, R. H., Rocheleau, T. A., Steichen, J. C. and Chalmers, A. E. (1993). A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363, 449–451. Finch, C. E. (1990). Longevity, senescence, and the genome. Chicago: University of Chicago Press. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent

and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. nature 391, 806–811.

Flores, K., Wolschin, F., Corneveaux, J. J., Allen, A. N., Huentelman, M. J. and Amdam, G. V. (2012). Genome-wide association between DNA methylation and alternative splicing in an invertebrate. BMC Genomics 13, 480.

Fluri, P., Wille, H., Gerig, L. and Lüscher, M. (1977). Juvenile hormone, vitellogenin and haemocyte composition in winter worker honeybees (Apis mellifera). Experientia 33, 1240– 1241.

Fonnum, F. (1984). Glutamate: a neurotransmitter in mammalian brain. Journal of neurochemistry 42, 1–11.

Foret, S., Kucharski, R., Pittelkow, Y., Lockett, G. A. and Maleszka, R. (2009). Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes. BMC Genomics 10, 472.

Foret, S., Kucharski, R., Pellegrini, M., Feng, S., Jacobsen, S. E., Robinson, G. E. and Maleszka, R. (2012). DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proceedings of the National Academy of Sciences 109, 4968–4973. Forrester, S. G., Prichard, R. K., Dent, J. A. and Beech, R. N. (2003). Haemonchus contortus:

HcGluCla expressed in Xenopus oocytes forms a glutamate-gated ion channel that is activated by ibotenate and the antiparasitic drug ivermectin. Molecular and Biochemical Parasitology 129, 115–121.

Forrester, S. G., Beech, R. N. and Prichard, R. K. (2004). Agonist enhancement of macrocyclic lactone activity at a glutamate-gated chloride channel subunit from Haemonchus contortus. Biochemical pharmacology 67, 1019–1024.

Freeman, M. R. and Doherty, J. (2006). Glial cell biology in Drosophila and vertebrates. Trends in neurosciences 29, 82–90.

Funada, M., Yasuo, S., Yoshimura, T., Ebihara, S., Sasagawa, H., Kitagawa, Y. and Kadowaki, T. (2004). Characterization of the two distinct subtypes of metabotropic glutamate receptors from honeybee, Apis mellifera. Neuroscience Letters 359, 190–194.

Gibson, N. J., Rössler, W., Nighorn, A. J., Oland, L. A., Hildebrand, J. G. and Tolbert, L. P. (2001). Neuron–Glia Communication via Nitric Oxide Is Essential in Establishing Antennal- Lobe Structure in Manduca sexta. Developmental biology 240, 326–339.

Glendinning, S. K., Buckingham, S. D., Sattelle, D. B., Wonnacott, S. and Wolstenholme, A. J. (2011). Glutamate-gated chloride channels of Haemonchus contortus restore drug sensitivity to ivermectin resistant Caenorhabditis elegans. PloS one 6, e22390.

Goff, D. C. and Wine, L. (1997). Glutamate in schizophrenia: clinical and research implications. Schizophrenia research 27, 157–168.

Granger, A. J., Gray, J. A., Lu, W. and Nicoll, R. A. (2011). Genetic analysis of neuronal ionotropic glutamate receptor subunits. The Journal of Physiology 589, 4095–4101.

Greer, E. R., Pérez, C. L., Van Gilst, M. R., Lee, B. H. and Ashrafi, K. (2008). Neural and Molecular Dissection of a C. elegans Sensory Circuit that Regulates Fat and Feeding. Cell metabolism 8, 118–131.

Grünewald, B. (1999a). Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera. J. Comp. Neurol. 404, 114–126.

Grünewald, B. (1999b). Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee, Apis mellifera. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 185, 565–576.

Grünewald, B. and Wersing, A. (2008). An ionotropic GABA receptor in cultured mushroom body Kenyon cells of the honeybee and its modulation by intracellular calcium. Journal of Comparative Physiology A 194, 329–340.

Gruntenko, N. E., Chentsova, N. A., Andreenkova, E. V., Bownes, M., Segal, D., Adonyeva, N. V. and Rauschenbach, I. Y. (2003). Stress response in a juvenile hormone-deficient Drosophila melanogaster mutant apterous56f. Insect Molecular Biology 12, 353–363.

Guerrieri, F., Schubert, M., Sandoz, J.-C. and Giurfa, M. (2005). Perceptual and Neural Olfactory Similarity in Honeybees. PLoS Biology 3, e60.

Guo, S. and Kemphues, K. J. (1995). < i> par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620.

Guy, R. G., Goodman, L. J. and Mobbs, P. G. (1979). Visual interneurons in the bee brain: Synaptic organisation and transmission by graded potentials. Journal of comparative physiology 134, 253–264.

Hähnlein, I. and Bicker, G. (1996). Morphology of neuroglia in the antennal lobes and mushroom bodies of the brain of the honeybee. Journal of Comparative Neurology 367, 235– 245.

Hähnlein, I. and Bicker, G. (1997). Glial patterning during postembryonic development of central neuropiles in the brain of the honeybee. Development Genes and Evolution 207, 29–41. Halter, D. A., Urban, J., Rickert, C., Ner, S. S., Ito, K., Travers, A. A. and Technau, G. M. (1995). The homeobox gene repo is required for the differentiation and maintenance of glia function in the embryonic nervous system of Drosophila melanogaster. Development 121, 317–332. Hammer, M. (1993). An identified neuron mediates the unconditioned stimulus in associative

olfactory learning in honeybees. Nature 366,.

Hammer, M. and Menzel, R. (1998). Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learning & Memory 5, 146–156.

Documents relatifs