• Aucun résultat trouvé

CHAPITRE III CONCLUSION GENERALE

3.5 Perspectives

La formation de greffes racinaires demeure une curiosité naturelle. Bien que communes chez certaines espèces, les mécanismes de la formation des greffes et leur portée écologique demeurent largement incompris. Puisque les greffes racinaires existent en proportion relativement importante, les résultats ouvrent des perspectives considérables sur les recherches au niveau des espèces utilisées en foresterie de courte rotation ou les plantations à croissance rapide. Des recherches approfondies devront être menées sur la signification précise des connexions racinaires pour comprendre ce phénomène naturel chez les espèces ligneuses. Sont-elles bénéfiques pour l’amélioration de la productivité en plantations forestières et donc faudra-t-il les favoriser en plantant les arbres plus proches les uns des autres? Ou au contraire, le transfert de maladies est plus important et faudra-t-il éviter que le contact racinaire ne s’établisse?

La question à savoir si la formation de greffes racinaires naturelles est un trait adaptatif chez une espèce ou si elle est de nature accidentelle demeure toujours aussi. Bien que nos résultats aient montré que les facteurs amenant les racines à être en contact les favorisent, l’hypothèse de la nature accidentelle de la formation des greffes racinaires semble donc mieux être appuyée par cette étude. Cependant, il pourrait s’agir de substances chimiques ou phytohormones envoyées par les arbres qui initient la formation de greffes. Des métabolites ou exsudats racinaires pourraient être sécrétés par les racines et déclencher leur fusion. Durant les différentes étapes de sélection, de tests et de croisements génétiques, pourrait-on alors envisager de considérer les greffes racinaires comme un caractère à favoriser et à exploiter?

Cette étude a permis de mettre en exergue l’étendue de la présence des greffes racinaires et du fait qu’elles existent tôt chez le peuplier hybride. En lumière de ces différentes implications, les arbres ne devront plus uniquement être considérés en termes d’individus en compétition pour les ressources, mais plus comme un groupe fonctionnel où des partages de ressources et de transmissions de maladies peuvent être facilités par les greffes racinaires.

ANNEXE A

Tableau A.1 Belowground characteristics of the two hybrid poplar clones (915319: Populus maximowiczii x Populus balsamifera, 747215: Populus balsamifera x Populus trichocarpa) under two spacings, after 15 growing seasons. Numbers between brackets are standard error of the mean.

Plots Clone 915319 Clone 747215

1 x 1 m 3 x 3 m 1 x 1 m 3 x 3 m Mean root diameter (cm) 4.4 (0.2) a 5.6 (0.2) b 4.2 (0.2) a 5.7 (0.3) b

Mean CSA (cm2) 15.9 (1.6) a 25.0 (1.5) b 14.9 (1.5) a 25.9 (2.4) b

Mean height-root ratio 28.8 (4.2) a 15.8 (0.9) b 33.2 (2.0) a 17.8 (0.8) b

Mean number of roots (>2

cm) 13 (0.8) c 15 (0.8) c 8 (0.5) b 9 (0.6) b Mean root age (years) 12 (0.2) a 11.2 (0.2) a 10.5 (0.2) b 10.7 (0.3) b

Mean root surface (cm) 55.9 (4.1) a 86.6 (6.1) b 34.0 (1.9) c 52.9 (3.6) a

Notes: CSA represents the mean cross-sectional area of the roots. Different letters within a row indicate significant statistical differences using Tukey-Kramer adjustment tests

Tableau A.2 Two-way Analysis of variance giving sources of variation, degrees of freedom (df), F values, and associated probabilities for the belowground parameters: root diameter, CSA, height-root ratio, Number of roots, root surface and root age.

Sources of variation df F P-value

Root diameter (cm) Spacing 1 24.9 <0.001 Clone 1 0.2 0.62 Spacing x Clone 1 0.12 0.68 CSA (cm2) Spacing 1 23.6 <0.001 Clone 1 0.09 0.76 Spacing x Clone 1 0.2 0.68 Height-root ratio Spacing 1 17.0 <0.001 Clone 1 1.5 0.23 Spacing x Clone 1 0.1 0.73 Number of roots >2cm Spacing 1 7.3 0.008 Clone 1 41.6 <0.001 Spacing x Clone 1 0.8 0.31 Root surface (cm) Spacing 1 46.3 <0.001 Clone 1 50.8 <0.001 Spacing x Clone 1 2.2 0.14

Root age (years)

Spacing 1 0.2 0.65

Clone 1 29.3 <0.001

Spacing x Clone 1 3.9 0.05

Notes: Significant p-values are indicated in bold, CSA represents the mean cross- sectional area of the roots

RÉFÉRENCES BIBLIOGRAPHIQUES

Adonsou, K. E., DesRochers, A., & Tremblay, F. (2016). Physiological integration of connected balsam poplar ramets. Tree Physiology, 36, 797-806. http://dx.doi.org/10.1093/treephys/tpv142

Adonsou, K. E., DesRochers, A., Tremblay, F., Thomas, B. R., & Isabel, N. (2016). The clonal root system of balsam poplar in upland sites of Quebec and Alberta. Ecology and Evolution, 6, 6846 - 6854. http://dx.doi.org/10.1002/ece3.2441 Adonsou, K. E., Drobyshev, I., DesRochers, A., & Tremblay, F. (2016). Root

connections affect radial growth of balsam poplar trees. Trees, 30, 1775-1783. http://dx.doi.org/10.1007/s00468-016-1409-2

Al Afas, N., Marron, N., Van Dongen, S., Laureysens, I., & Ceulemans, R. (2008). Dynamics of biomass production in a poplar coppice culture over three rotations (11 years). Forest Ecology and Management, 255(5-6), 1883-1891. http://dx.doi.org/10.1016/j.foreco.2007.12.010

Anderson, J. A., & Luckert, M. K. (2007). Can hybrid poplar save industrial forestry in Canada?: A financial analysis in Alberta and policy considerations. The Forestry chronicle, 83(1), 92-104.

Armson, K. A., & van den Driessche, R. (1959). Natural root grafts in red pine (Pinus resinosa Ait.). Forestry chronicle, 35(3), 232-241.

Arseneau, C., & Chiu, M. (2003). Canada – A Land of Plantations? Communication présentée UNFF Intersessional Experts Meeting on the Role of Planted Forests in Sustainable Forest Management, New Zealand.

Bader, M. K., & Leuzinger, S. (2019). Hydraulic Coupling of a Leafless Kauri Tree Remnant to Conspecific Hosts. iScience, 19, 1238-1247. http://dx.doi.org/10.1016/j.isci.2019.05.009

Basham, J., Hudak, J., Lachance, D., Magasi, L., & Stillwell, M. (1976). Balsam fir death and deterioration in eastern Canada following girdling. Canadian Journal of Forest Research, 6(3), 406-414.

Basnet, K., Scatena, F. N., Likens, G. E., & Lugo, A. E. (1993). Ecological Consequences of Root Grafting in Tabonuco (Dacryodes excelsa) Trees in the Luquillo Experimental Forest, Puerto Rico. Biotropica, 25(1), 28-35.

Benomar, L., DesRochers, A., & Larocque, G. R. (2011). Changes in specific leaf area and photosynthetic nitrogen-use efficiency associated with physiological acclimation of two hybrid poplar clones to intraclonal competition. Canadian Journal of Forest Research, 41(7), 1465-1476. http://dx.doi.org/10.1139/x11- 073

Benomar, L., DesRochers, A., & Larocque, G. R. (2012). The effects of spacing on growth, morphology and biomass production and allocation in two hybrid poplar clones growing in the boreal region of Canada. Trees, 26(3), 939-949. http://dx.doi.org/10.1007/s00468-011-0671-6

Benomar, L., DesRochers, A., & Larocque, G. R. (2013). Comparing growth and fine root distribution in monocultures and mixed plantations of hybrid poplar and spruce. Journal of Forestry Research, 24(2), 247-254. http://dx.doi.org/10.1007/s11676-013-0348-7

Bertness, M. D., & Callaway, R. (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9(5), 191-193. http://dx.doi.org/10.1016/0169- 5347(94)90088-4

Bilodeau-Gauthier, S., Paré, D., Messier, C., & Bélanger, N. (2013). Root production of hybrid poplars and nitrogen mineralization improve following mounding of boreal Podzols. Canadian Journal of Forest Research, 43(12), 1092-1103. http://dx.doi.org/10.1139/cjfr-2013-0338

Binkley, C. S. (1999). Ecosystem management and plantation forestry: new directions in British Columbia. New Forests, 18, 75-88.

Bormann, F. H. (1966). The structure, function and ecological significance of root grafts in Pinus strobus L. Ecological Monographs, 36(1), 1-26.

Bormann, F. H., & Graham, B. F. (1959). The occurrence of natural root grafting in eastern white pine, Pinus strobus L., and its ecological implications. Ecology, 40(4), 677 - 691.

Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33(2), 261- 304. http://dx.doi.org/10.1177/0049124104268644

Callaway, R. M., & Walker, L. R. (1997). Competition and Facilitation: a synthetic approach to interactions in plant communities. Ecology, 78(7), 1958-1965.

Cavard, X., Bergeron, Y., Chen, H. Y. H., Paré, D., Laganière, J., & Brassard, B. (2011). Competition and facilitation between tree species change with stand development. Oikos, 120(11), 1683-1695. http://dx.doi.org/10.1111/j.1600- 0706.2011.19294.x

Chomel, M., Guittonny-Larcheveque, M., DesRochers, A., & Baldy, V. (2015). Home Field Advantage of Litter Decomposition in Pure and Mixed Plantations Under Boreal Climate. Ecosystems, 18(6), 1014-1028.

Cook, D. B., & Welch, D. S. (1957). Backflash damage to residual stands incident to chemi-peeling. Journal of Forestry, 55(4), 265-267.

DeBell, D. S., Clendenen, G. W., Harrington, C. A., & Zasada, J. C. (1996). Tree growth and stand development in short-rotation populus plantings: 7-year results for two clones at three spacings. Biomass and Bioenergy, 11(4), 253- 269.

DesRochers, A., & Lieffers, V. J. (2001). The Coarse-Root System of Mature Populus tremuloides in Declining Stands in Alberta, Canada. Journal of Vegetation Science, 12(3), 355-360.

DesRochers, A., & Tremblay, F. (2009). The effect of root and shoot pruning on early growth of hybrid poplars. Forest Ecology and Management, 258(9), 2062- 2067. http://dx.doi.org/10.1016/j.foreco.2009.07.059

Dickmann, D. I., Isebrands, J. G., Eckenwalder, J. E., & J., R. (2001). Poplar Culture

in North America: NRC Research Press. http://dx.doi.org/10.1139/9780660181455

Domenicano, S., Coll, L., Messier, C., & Berninger, F. (2011). Nitrogen forms affect root structure and water uptake in the hybrid poplar. New Forests, 42(3), 347- 362. http://dx.doi.org/10.1007/s11056-011-9256-x

Eis, S. (1972). Root grafts and their silvicultural implications. Canadian Journal of Forest Research, 2, 111-120. http://dx.doi.org/10.1139/x72-022

Environment and Natural Resources Canada. (2018). Canadian Climate Normals 1981- 2010 Station Data. Repéré le 18 February 2019 à http://climat.meteo.gc.ca/climate_normals/results_1981_2010_f.html?searchT ype=stnName&txtStationName=amos&searchMethod=contains&txtCentralLa tMin=0&txtCentralLatSec=0&txtCentralLongMin=0&txtCentralLongSec=0& stnID=6019&dispBack=1

Fajardo, A., & McIntire, E. J. B. (2010). Merged trees in second-growth, fire-origin forests in Patagonia, Chile: positive spatial association patterns and their ecological implications. American Journal of Botany, 97(9), 1424-1430. http://dx.doi.org/10.3732/ajb.1000054

Fang, S., Xu, X., Lu, S., & Tang, L. (1999). Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings. Biomass and Bioenergy, 17, 415-425.

Feau, N., Mottet, M.-J., Périnet, P., Hamelin, R. C., & Bernier, L. (2010). Recent advances related to poplar leaf spot and canker caused by Septoria musiva. Canadian Journal of Plant Pathology, 32(2), 122-134. http://dx.doi.org/10.1080/07060661003740009

Fraser, E. C., Lieffers, V. J., & Landhäusser, S. M. (2006). Carbohydrate transfer through root grafts to support shaded trees. Tree Physiology, 26, 1019-1023.

Fraser, E. C., Lieffers, V. J., & Landhäusser, S. M. (2007). The persistence and function of living roots on lodgepole pine snags and stumps grafted to living trees. Annals of Forest Science, 64(1), 31-36. http://dx.doi.org/10.1051/forest:2006085

Fraser, E. C., Lieffers, V. J., & Landhäusser, S. M. (2005). Age, stand density, and tree size as factors in root and basal grafting of lodgepole pine. Canadian Journal of Botany, 83, 983-988. http://dx.doi.org/10.1139/B05-048

Gleason, M. L., & Mueller, D. (2005). Sustainable Urban Landscapes: Oak Wilt, Identification and Management: Iowa State University, University Extension. Gordon, D. E., & Roth, L. F. (1976). Root Grafting of Port-Orford-cedar—An Infection Route for Root Rot. Forest Science, 22(3), 276-278. http://dx.doi.org/10.1093/forestscience/22.3.276

Graham, B. F., & Bormann, F. H. (1966). Natural Root Grafts. Botanical Review, 32(3), 255-292.

Guillemette, T., & DesRochers, A. (2008). Early growth and nutrition of hybrid poplars fertilized at planting in the boreal forest of western Quebec. Forest Ecology and Management, 255(7), 2981-2989. http://dx.doi.org/10.1016/j.foreco.2008.02.004

Hessburg, P. F., & Hansen, E. M. (1986). Mechanisms of intertree of Ceratocystis wageneri in young Douglas-fir. Canadian Journal of Forest Research, 16, 1250-1254.

Jelínková, H., Tremblay, F., & DesRochers, A. (2009). Molecular and dendrochronological analysis of ratural root grafting in Populus tremuloides (Salicaceae). American Journal of Botany, 96(8), 1500-1505. http://dx.doi.org/10.3732/ajb.0800177

Keeley, J. E. (1988). Population variation in root grafting and hypothesis. Oikos, 52(3), 364-366.

Kelty, M. J. (2006). The role of species mixtures in plantation forestry. Forest Ecology and Management, 233(2-3), 195-204. http://dx.doi.org/10.1016/j.foreco.2006.05.011

Kosmidis, I. (2007). brglm: Bias reduction in binary-response GLMs. R package version 0.5-4. R Foundation for Statistical Computation Vienna.

Krause, C., & Morin, H. (1995). Changes in radial increment in stems and roots of balsam fir [Abies balsamea (L.) Mill.] after defoliation spruce budworm. The Forestry chronicle, 71(6), 747-754.

Krause, C., & Morin, H. (2005). Adventive-root development in mature black spruce and balsam fir in the boreal forests of Quebec, Canada. Canadian Journal of Forest Research, 35(11), 2642-2654. http://dx.doi.org/10.1139/x05-171 Külla, T., & Lõhmus, K. (1999). Influence of cultivation method on root grafting in

Norway spruce (Picea abies (L.) Karst.). Plant and Soil, 217, 91-100.

Langton, S. (1990). Avoiding edge effects in agroforestry experiments; the use of neighbour-balanced designs and guard areas. Agroforestry Systems, 12, 173- 185.

Lev-Yadun, S. (2011). Why should trees have natural root grafts? Tree Physiol, 31(6), 575-578. http://dx.doi.org/10.1093/treephys/tpr061

Loehle, C., & Jones, R. H. (1990). Adaptive significance of root grafting in trees. Functional Ecology, 4(2), 268-271.

Lortie, C. J., Brooker, R. W., Choler, P., Kikvidze, Z., Michalet, R., Pugnaire, F. I., & Callaway, R. M. (2004). Rethinking plant community theory. Oikos.

Mamashita, T., Larocque, G. R., Desrochers, A., Beaulieu, J., Thomas, B. R., Mosseler, A., . . . Sidders, D. (2015). Short-term growth and morphological responses to nitrogen availability and plant density in hybrid poplars and willows. Biomass and Bioenergy, 81, 88-97. http://dx.doi.org/10.1016/j.biombioe.2015.06.003 Maurin, V., & DesRochers, A. (2013). Physiological and growth responses to pruning

season and intensity of hybrid poplar. Forest Ecology and Management, 304, 399-406. http://dx.doi.org/10.1016/j.foreco.2013.05.039

McIntire, E. J., & Fajardo, A. (2011). Facilitation within species: a possible origin of group-selected superorganisms. American Naturalist, 178(1), 88-97. http://dx.doi.org/10.1086/660286

McIntire, E. J., & Fajardo, A. (2014). Facilitation as a ubiquitous driver of biodiversity. New Phytol, 201(2), 403-416. http://dx.doi.org/10.1111/nph.12478

McIvor, I. R., Douglas, G. B., Hurst, S. E., Hussain, Z., & Foote, A. G. (2008). Structural root growth of young Veronese poplars on erodible slopes in the southern North Island, New Zealand. Agroforestry Systems, 72(1), 75-86. http://dx.doi.org/10.1007/s10457-007-9090-5

Ménétrier, J. (2008). Le peuplier hybride au Québec: une révolution, une évolution! Le naturaliste canadien, 132(1), 46-54.

Messier, C., Bigué, B., & Bernier, L. (2003). Using fast-growing plantations to promote forest ecosystem protection in Canada. Unasylva, 54(214/215), 59-62.

Ministère des Forêts de la Faune et des Parcs. (2015). Stratégie d’aménagement durable des forêts. Québec: Repéré à http://www.mffp.gouv.qc.ca.

Montoro Girona, M., Morin, H., Lussier, J.-M., & Walsh, D. (2016). Radial growth response of black spruce stands ten years after experimental shelterwoods and seed-tree cuttings in boreal forest. Forests, 7(10), 240.

Ordre des ingénieurs forestiers du Québec, Doucet, R., & Côté, M. (2009). Manuel de foresterie, 2e éd. Éditions MultiMondes, Québec, Canada.

Ostry, M., & McNabb, H. (1983). Diseases of intensively cultured hybrid poplars: a summary of recent research in the north central region. In: Hansen, Edward A., ed. Intensive plantation culture: 12 years research. Gen. Tech. Rep. NC-91. St. Paul, MN: US Department of Agriculture, Forest Service, North Central Forest Experiment Station. 102-109., 91.

Paquette, A., & Messier, C. (2010). The role of plantations in managing the world's forests in the Anthropocene. Frontiers in Ecology and the Environment, 8(1), 27-34. http://dx.doi.org/10.1890/080116

Paquette, A., Messier, C., Périnet, P., & Cogliastro, A. (2008). Simulating Light Availability under Different Hybrid Poplar Clones in a Mixed Intensive Plantation System. Forest Science, 54(5), 481-489.

Pekár, S., & Brabec, M. (2016). Modern analysis of biological data : Generalized linear models in R: Masarykova univerzita.

Pliura, A., Zhang, S. Y., MacKay, J., & Bousquet, J. (2007). Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. Forest Ecology and Management, 238(1-3), 92-106. http://dx.doi.org/10.1016/j.foreco.2006.09.082

R Core Team. (2019). R: A Language and Environment for Statistical Computing. Vienna, Australia: R Foundation for Statistical Computing. Repéré à https://www.R-project.org/

Réseau Ligniculture Québec. (2011). Le Guide de Populiculture au Québec - Un guide pratique sur la culture du peuplier hybride.

Ressources Naturelles Canada. (2000). L’Amélioration génétique des arbres au Québec. Direction de la Recherche Forestière Forêt Québec.

Ressources Naturelles Canada. (2018). L’état des forêts au Canada: rapport annuel 2018. (ISSN 1488-2744).

Reynolds, K. M., & Bloomberg, W. J. (1982). Estimating probability of intertree root contact in second-growth Douglas-fir. Canadian Journal of Forest Research, 12, 493-498.

Riemenschneider, D. E., Stanton, B. J., Vallée, G., & Périnet, P. (2001). Poplar breeding strategies. Dans D. I. Dickmann, J. G. Isebrands, J. E. Eckenwalder & J. Richardson (Éds.), Poplar Culture in North America (NRC Research Press éd., pp. 43—76). National Research Council of Canada, Ottawa, ON K1A 0R6, Canada.

Rigg, G. B., & Harrar, E. S. (1931). The Root Systems of Trees Growing in Sphagnum. American Journal Botany, 18(6), 391-397.

Ruel, J.-C., Larouche, C., & Achim, A. (2003). Changes in root morphology after precommercial thinning in balsam fir stands. Canadian Journal of Forest Research, 33(12), 2452-2459. http://dx.doi.org/10.1139/x03-178

Salmon, D. (2016). Ressources et industries forestières du Québec - Portrait statistique: Ministère des Forêts, de la Faune et des Parcs - Direction du développement de l’industrie des produits du bois.

Salomón, R. L., Tarroux, E., & DesRochers, A. (2016). Natural root grafting in Picea mariana to cope with spruce budworm outbreaks. Canadian Journal of Forest Research, 46(8), 1059-1066. http://dx.doi.org/10.1139/cjfr-2016-0121

Saunier, R. E., & Wagle, R. F. (1965). Root Grafting in Quercus Turbinella Greene. Ecology, 46(5), 749-750.

Schultz, R. P., & Woods, F. W. (1967). The frequency and implications of intraspecific root-grafting in loblolly pine. Forest Science, 13(3), 226-239. http://dx.doi.org/10.1093/forestscience/13.3.226

Stanturf, J. A., van Oosten, C., Netzer, D. A., Coleman, M. D., & Portwood, C. J. (2001). Ecology and silviculture of poplar plantations. Dans D. I. Dickmann, J. G. Isebrands, J. E. Eckenwalder & J. Richardson (Éds.), Poplar Culture in North America (NRC Research Press éd., pp. 153-206). National Research Council of Canada, Ottawa, ON K1A 0R6, Canada.

Stone, J. E., & Stone, E. L. (1975). The communal root system of red pine: water conduction through root grafts. Forest Science, 21(3), 255-261. http://dx.doi.org/10.1093/forestscience/21.3.255

Sundberg, B. (2000). Cambial growth and auxin gradients. Cell and molecular biology of wood formation, 169-188.

Tarroux, E., & DesRochers, A. (2010). Frequency of root grafting in naturally and artificially regenerated stands of Pinus banksiana: influence of site characteristics. Canadian Journal of Forest Research, 40(5), 861-871. http://dx.doi.org/10.1139/x10-038

Tarroux, E., & DesRochers, A. (2011). Effect of natural root grafting on growth response of jack pine (Pinus banksiana; Pinaceae). American Journal of Botany, 98(6), 967-974. http://dx.doi.org/10.3732/ajb.1000261

Tarroux, E., DesRochers, A., & Krause, C. (2010). Effect of natural root grafting on growth response of jack pine (Pinus banksiana) after commercial thinning. Forest Ecology and Management, 260(4), 526-535. http://dx.doi.org/10.1016/j.foreco.2010.05.008

Tarroux, E., DesRochers, A., & Tremblay, F. (2014). Molecular analysis of natural root grafting in jack pine (Pinus banksiana) trees: how does genetic proximity influence anastomosis occurrence? Tree Genetics & Genomes, 10(3), 667-677. http://dx.doi.org/10.1007/s11295-014-0712-6

van Oosten, C. (2006). Hybrid Poplar Crop Manual for the Prairie Provinces. Report for the Saskatchewan Forest Centre. Nanaimo, British Columbia, Canada: SilviConsult Woody Crops Technology, Inc.

West, P. W. (2009). Tree and forest measurement (Springer éd.). Heidelberg.

York, R. A., Battles, J. J., & Heald, R. C. (2003). Edge effects in mixed conifer group selection openings: tree height response to resource gradients. Forest Ecology and Management, 179(1-3), 107-121. http://dx.doi.org/10.1016/s0378- 1127(02)00487-5

Zalesny, R. S., Donner, D. M., Coyle, D. R., & Headlee, W. L. (2012). An approach for siting poplar energy production systems to increase productivity and associated ecosystem services. Forest Ecology and Management, 284, 45-58. http://dx.doi.org/10.1016/j.foreco.2012.07.022

Documents relatifs