• Aucun résultat trouvé

Cette expérience nous a permis de comprendre le mouvement des particules fines dans le profil du sol de canneberges, plusieurs travaux restent à faire à ce sujet. Les analyses et les expériences à venir devront permettre de mieux comprendre les mécanismes responsables de la migration de particules fines dans les sols de canneberge et leurs effets sur la dégradation des sols. L’acquisition de connaissances sur ces mécanismes permettra désormais de prévoir l’évolution des sols selon plusieurs conditions pour mieux anticiper et contrôler leurs futurs effets négatifs sur la production de canneberge.

Il serait important d’utiliser une méthode non destructive, comme la technologie de tomodensitométrie (CT SCAN) par exemple pour déterminer la concentration de Zr dans les carottes de sol sans les couper. Cette nouvelle technologie est une technique d’imagerie non destructive qui peut être utilisée pour l’analyse à haute résolution des modifications dans les propriétés du sol telles que la porosité, et les paramètres de transport des solutés (Helliw e ll et al., 2013), Selon la littérature, la tomodensimétrie (X-ray CT scan) a été largement utilisée pour la caractérisation des propriétés hydrauliques du sol (Rab et al., 2014) et en menant des études sur le transport des particules colloïdales (Chen et al., 2010). Cependant, cette technique est chère comparativement à la méthode de fluorescence à rayon X que nous avons utilisée.

En plus, la concentration des particules de Zr appliquée dans les champs de canneberges a été constante pour toutes les parcelles, soit 5 % d’oxyde de zirconium. En effet, l’utilisat io n de différentes concentrations dans les parcelles serait aussi intéressante afin de vérifier l’effet de la concentration. De plus, le diamètre des particules était le même pour toutes les parcelles aussi, l’utilisation de particules de différente taille devrait prendre en considération dans le cadre de ce projet.

Enfin, il serait nécessaire d`effectuer la modélisation de l’écoulement de l’eau et des particules fines, afin de faire une prévision du transport de ces particules à long terme.

40

Conclusion générale

Cette étude a permis de mettre en évidence la migration de particules colloïdales dans le profil de sol à différentes profondeurs et l’influence de ce transport sur la formation d’une couche compacte sous culture de canneberges et les principaux facteurs responsables de transport et la vitesse à laquelle ils se produisent. Parmi les trois sites, le site C est plus rapide en termes de transport de particules fines. La plupart des particules de Zr s’accumulent dans le premier horizon du profil de sol, dans la zone racinaire de la canneberge au site A et B. Les particules ont migré à l’interface du sol et à la zone de la fluctuation de la nappe au site C. Les parcelles qui étaient situées sur le drain et près du drain ont montré une migration plus rapide en profondeur dans le profil de sol.

Cette étude nous a permis de mettre en évidence les différentes conditions du colmatage qui dépend du rapport entre la taille des pores et du diamètre des particules. Parmi les quatre types de rétention de particules fines des sols, deux phénomènes qui ont été prédomina nts dans le processus de transport sont : la déposition sur la paroi des pores et le blocage des pores causé par la formation des ponts entre les particules.

En outre, il est important de continuer des recherches plus approfondies sur ce sujet, car ce domaine d’étude est crucial pour identifier les problèmes les particules peuvent causer dans les sols de canneberges. Les connaissances acquises sur les processus de transport des particules fines contribueront à prévoir l’évolution des sols soumis à différentes conditions et d’assurer des pratiques agricoles durables en production de canneberges.

41

Références

Agbangla, G. C., Climent, É., and Bacchin, P. (2012). Experimental investigation of pore clogging by microparticles: Evidence for a critical flux density of particle yielding arches and deposits. Separation and purification technology, 101, 42-48.

Ahfir, N. D., Benamar, A., Alem, A., and Wang, H. (2009). Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. Transport in porous media, 76(2), 289.

Alaoui, A., Lipiec, J. and Gerke, H. H. (2011). A review of the changes in the soil pore

system due to soil deformation: A hydrodynamic perspective. Soil and Tillage

Research, 115, 1-15.

Ando T, Akamatsu K, Nakao S, Fujita M 2012. Simulation of fouling and backwash dynamics in dead-end microfiltration: effect of pore size. J Membr Sci 392-393:48-57.

Aramrak, S., Flury, M., and Harsh, J. B. (2011). Detachment of deposited colloids by advancing and receding air-water interfaces. Langmuir, 27(16), 9985-9993.

Aramrak, S., Flury, M., Harsh, J. B., and Zollars, R. L. 2014. Colloid mobilization and transport during capillary fringe fluctuations. Environmental science and technology, 48(13), 7272-7279.

Banwart, S. 2011. Save our soils. Nature, 474(7350), 151-152.

Bedrikovetsky, P., Zeinijahromi, A., Siqueira, F. D., Furtado, C. A., and de Souza, A. L. S. (2012). Particle detachment under velocity alternation during suspension transport in porous media. Transport in porous media, 91(1), 173-197.

Benamar, A. 2013. Soil clogging phenomena in vertical flow. Clogging issues associated with managed aquifer recharge methods. IAH Commission on Managing Aquifer Recharge, Australia, 77-83.

Bodner, G., Scholl, P., and Kaul, H. P. (2013). Field quantification of wetting–dr ying cycles to predict temporal changes of soil pore size distribution. Soil and Tilla ge Research, 133, 19.

Bodner, G., Scholl, P., Loiskandl, W., and Kaul, H. P. (2013). Environmental and management influences on temporal variability of near saturated soil hydraulic properties. Geoderma, 204, 120-129.

Bradford, S. A., and Torkzaban, S. (2008). Colloid transport and retention in unsaturated porous media: A review of interface-, collector-, and pore-scale processes and models.

42

Bradford, S. A., Simunek, J., Bettahar, M., van Genuchten, M. T., and Yates, S. R. (2003). Modeling colloid attachment, straining, and exclusion in saturated porous media.

Environmental science and technology, 37(10), 2242-2250.

Bradford, S. A., Torkzaban, S., Leij, F., and Simunek, J. 2015. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions. Journal of contaminant hydrology, 181, 141-152.

Bradford, S.A., J. Simunek, M. Bettahar, M.Th . van Genuchten, and S.R. Yates. 2006. Signifi cance of straining in colloid deposition: Evidence and implications. Water Resour. Res. 42:W12S15, doi:10.1029/2005WR00479.

Chen, G., Flury, M., Harsh, J. B., and Lichtner, P. C. (2005). Colloid-facilitated transport

of cesium in variably saturated Hanford sediments. Environmental science and

technology, 39(10), 3435-3442.

Chen, K. L., Smith, B. A., Ball, W. P., and Fairbrother, D. H. (2010). Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C 60 nanoparticles and carbon nanotubes. Environmental Chemistry, 7(1), 10-27.

Cheng, T., and Saiers, J. E. (2010). Colloid-facilitated transport of cesium in vadose-zone sediments: the importance of flow transients. Environmental Science and Technology, 44(19), 7443-7449.

Croudace, I. W., Rindby, A., and Rothwell, R. G. (2006). ITRAX: description and evaluation of a new multi- function X-ray core scanner. Geological Society, London, Special Publications, 267(1), 51-63.

Denaix, L., Semlali, R. M., and Douay, F. (2002). Transferts de Zn, Pb et Cd par voie soluble ou colloïdale. Les éléments traces métalliques dans les sols. Approches fonctione l les et spatiales. D. Baize, M. Tercé coord., INRA Éditions, Paris.

Derjaguin, B. V. (1941). Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. USSR, 14, 633-662.

Derjaguin, B. V., Muller, V. M., and Toporov, Y. P. (1948). Effect of contact deformatio ns on the adhesion of particles. Journal of Colloid and interface science, 53(2), 314-326.

DiCarlo, D.A., Y. Zevi, A. Dathe, S. Giri, B. Gao, and T.S. Steenhuis. 2006. In situ measurements of colloid transport and retention using synchotron x-ray fl uorescence. Water Resour. Res. 42:W12S05, doi:10.1029/ 2005WR004850.

Flury, M., Mathison, J. B., and Harsh, J. B. (2002). In situ mobilization of colloids and transport of cesium in Hanford sediments. Environmental Science and Technology, 36(24), 5335-5341.

43

Gao, B., J.E. Saiers, and J.N. Ryan. 2006. Pore-scale mechanisms of colloid deposition and mobilization during steady and transient fl ow through unsaturated granular media. Water Resour. Res. 42:W01410, doi:10.1029/ 2005WR004233.

Gonzalez-Merchan, C., Barraud, S., and Sébastian, C. (2013). Does clogging of stormwater Infiltration systems only depend on TSS inputs?. NOVATECH 2013.

Haberer, C. M.; Rolle, M.; Cripka, O. A.; Grathwohl, P., 2012. Oxygen transfer in a

fluctuating capillary fringe. Vadose Zone J. 2012, 11, 2015, 14,(1),

doi:010.2136/vzj2014.05.0058.7279.

Hamamoto, S., Moldrup, P., Kawamoto, K., Wickramarachchi, P. N., Nagamori, M., and Komatsu, T. (2010). Extreme compaction effects on gas transport parameters and estimated climate gas exchange for a landfill final cover soil. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 653-662.

Herzig, J.P., Leclerc, D.M. and LeGoff, P. (1970). Flow of Suspension through Porous Media: Application to Deep Filtration. Industrial and Engineering Chemistry Research, 62, 8-35. http://dx.doi.org/10.1021/ie50725a003.

Horn, R., 2004. Time dependence of soil mechanical properties and pore functions for arable soils. Soil Sci. Soc. Am. J. 68, 1131–1137.

Kamau-Rewe, M., Rasche, F., Cobo, J. G., Dercon, G., Shepherd, K. D., and Cadisch, G. (2011). Generic prediction of soil organic carbon in Alfisols using diffuse reflectance Fourier-Transform Mid-Infrared spectroscopy. Soil Science Society of America Journal, 75(6), 2358-2360.

Kim, H., Anderson, S. H., Motavalli, P. P., and Gantzer, C. J. (2010). Compaction effects on soil macropore geometry and related parameters for an arable field. Geoderma, 160(2), 244-251.

Lazouskaya, V., Jin, Y. and Or, D. 2006. Interfacial interactions and colloid retention under steady flows in a capillary channel, J. Colloid Interface Sci. 303: 171-184.

Majdalani, S., Michel, E., Di‐Pietro, L., and Angulo‐Jaramillo, R. (2008). Effects of wetting and drying cycles on in situ soil particle mobilization. European journal of soil science, 59(2), 147-155.

Maraqa, M. A., Imran, H. D., and Hegazy, S. 2015. Modeling changes in hydraulic conductivity due to siltation using soil columns from Alshuwaib dam site, United Arab Emirates. Environmental Earth Sciences, 74(5), 4345-4354.

Masciopinto, C., La Mantia, R., and Chrysikopoulos, C. V. (2008). Fate and transport of pathogens in a fractured aquifer in the Salento area, Italy. Water Resources Research, 44(1).

44

Mays, D. C. 2007. Using the Quirk-Schofield diagram to explain environmental colloid dispersion phenomena. Journal of Natural Resources and Life Sciences Education, 36(1), 45- 52.

McCarthy JF, Zachara JM (1989). Subsurface transport of contaminants. Environme nta l Science and Technology 23: 496-502.

Miller, W. M., Chapman, N., McKinley, I., Alexander, R., and Smellie, J. A. T. (2011). Natural analogue studies in the geological disposal of radioactive wastes (Vol. 57). Elsevier.

Moghadasi, J., Müller-Steinhagen, H., Jamialahmadi, M., and Sharif, A. (2004).

Theoretical and experimental study of particle movement and deposition in porous media during water injection. Journal of Petroleum Science and Engineering, 43(3), 163-181.

Mohanty, S. K., Bulicek, M. C., Metge, D. W., Harvey, R. W., Ryan, J. N., and Boehm, A. B. (2015). Mobilization of microspheres from a fractured soil during intermit te nt infiltration events. Vadose Zone Journal, 14(1).

Mohanty, S. K., Saiers, J. E., and Ryan, J. N. (2015). Colloid mobilization in a fractured

soil during dry-wet cycles: role of drying duration and flow path

permeability. Environmental science and technology, 49(15), 9100-9106.

Mostafa, M., and Van Geel, P. J. (2015). Impact of bioclogging on peat vs. sand biofilters. Vadose Zone Journal, 14(6).

Mustin, B., and Stoeber, B. 2010. Deposition of particles from polydisperse suspensions in microfluidic systems. Microfluidics and nanofluidics, 9(4-5), 905-913.

Nogaro, G., Datry, T., MERMILLOD‐BLONDIN, F. L. O. R. I. A. N., Descloux, S., and

Montuelle, B. 2010. Influence of streambed sediment clogging on microbial processes in the hyporheic zone. Freshwater biology, 55(6), 1288-1302.

Olsen, D. A., Matthaei, C. D., and Townsend, C. R. 2010. Effects of a depositional flood

event on the hyporheos of a New Zealand stream.Fundamental and Applied

Limnology/Archiv für Hydrobiologie, 176(4), 337-348.

Pédrot, M., Dia, A., Davranche, M., Bouhnik-Le Coz, M., Henin, O., Gruau, G., 2008. Insights into colloid mediated trace element release at the soil/water interface. J. Colloid. Interface. Sci. 325, 187-197.

Périard, Y., Gumiere, S. J., Long, B., Rousseau, A. N., and Caron, J. (2016). Use of X- ray CT scan to characterize the evolution of the hydraulic properties of a soil under drainage conditions. Geoderma, 279, 22-30.

Porubcan, Alexis A., and Xu, S.P., (2011). Colloid straining within saturated heterogeneous porous media, water Research 45 (2011) 1796-1806.

45

Rab, M. A., Haling, R. E., Aarons, S. R., Hannah, M., Young, I. M., and Gibson, D. (2014). Evaluation of X-ray computed tomography for quantifying macroporosity of loamy pasture soils. Geoderma, 213, 460-470.

Sagee, O., Dror, I., and Berkowitz, B. (2012). Transport of silver nanoparticles (AgNPs) in soil. Chemosphere, 88(5), 670-675.

Saiers, J. E., Hornberger, G. M., and Liang, L. (1994). First‐and second‐order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resources Research, 30(9), 2499-2506.

Sang, W., Morales, V. L., Zhang, W., Stoof, C. R., Gao, B., Schatz, A. L., and Steenhuis, T. S. (2013). Quantification of colloid retention and release by straining and energy minima in variably saturated porous media. Environmental science and technology, 47(15), 8256- 8264.

Sasidharan, S., Torkzaban, S., Bradford, S. A., Dillon, P. J., and Cook, P. G. 2014. Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 169-179.

Sen, T. K., and Khilar, K. C. (2006). Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in colloid and interface science, 119(2), 71-96.

Shang, J., Liu, C., Wang, Z., Wu, H., Zhu, K., Li, J., and Liu, J. (2010). In-situ

measurements of engineered nanoporous particle transport in saturated porous

media. Environmental science & technology, 44(21), 8190-8195.

Sharma, P., Flury, M., and Zhou, J. (2008). Detachment of colloids from a solid surface by a moving air–water interface. Journal of Colloid and Interface Science, 326(1), 143-150. Siriwardene, N. R., Deletic, A., and Fletcher, T. D. (2007). Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water research, 41(7), 1433-1440.

Stelzer, R. S., Scott, J. T., Bartsch, L. A., and Parr, T. B. 2014. Particulate organic matter quality influences nitrate retention and denitrification in stream sediments : evidence from a carbon burial experiment. Biogeochemistry, 119 (1-3), 387-402.

Tang, X.Y., Weisbrod, N., 2010. Dissolved and colloidal transport of cesium in natural discrete fractures. J. Environ. Qual. 39, 1066-1076.

46

Thomson, J., I. W. Croudace, and R. G. Rothwell. 2006. A geo-chemical application of the ITRAX scanner to a sediment core containing eastern Mediterranean sapropel units, p.65-77. InR. G. Rothwell [ed.], New techniques in sediment core analysis. Geologica l Society Special Publication.

Torkzaban, S., Bradford, S. A., Vanderzalm, J. L., Patterson, B. M., Harris, B., and

Prommer, H. 2015. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity. Journal of contaminant hydrology, 181, 161-171.

Torkzaban, S., H. N. Kim, J. Simunek, and S. A. Bradford 2010, Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistr y, Environ. Sci. Technol., 44, 1662-1669.

Totsche, K. U., and Kögel-Knabner, I. (2004). Mobile organic sorbent affected contaminant transport in soil. Vadose Zone Journal, 3(2), 352-367.

Vancampenhout, K., De Vos, B., Wouters, K., Swennen, R., Buurman, P., and Deckers, J. (2012). Organic matter of subsoil horizons under broadleaved forest: Highly processed or labile and plant-derived?. Soil Biology and Biochemistry, 50, 40-46.

Veerapaneni, S., Wan, J., and Tokunaga, T. K. 2000. Motion of particles in film

flow. Environmental science and technology, 34(12), 2465-2471.

Vitorge, E., Szenknect, S., Martins, J. M., & Gaudet, J. P. 2013. Size-and concentratio n- dependent deposition of fluorescent silica colloids in saturated sand columns: transport experiments and modeling. Environmental Science: Processes & Impacts, 15(8), 1590-1600.

Wang, D., Bradford, S. A., Paradelo, M., Peijnenburg, W. J., and Zhou, D. (2012). Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand. Soil Science Society of America Journal, 76(2), 375-388.

Wildenschild, D., and Sheppard, A. P. (2013). X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217-246

Zhang, L., Hou, L., Wang, L., Kan, A. T., Chen, W., & Tomson, M. B. (2012). Transport of fullerene nanoparticles (n C60) in saturated sand and sandy soil: controlling factors and modeling. Environmental science & technology, 46(13), 7230-7238.

Zhang, W., Tang, X. Y., Weisbrod, N., Zhao, P., and Reid, B. J. 2015. A coupled field study of subsurface fracture flow and colloid transport. Journal of Hydrology, 524, 476-488. Zhuang, J., McCarthy, J. F., Tyner, J. S., Perfect, E., and Flury, M. (2007). In situ colloid mobilization in Hanford sediments under unsaturated transient flow conditions: Effect of irrigation pattern. Environmental science and technology, 41(9), 3199-3204. 4. Limites de détection des éléments de traces.

Documents relatifs