• Aucun résultat trouvé

Chapitre I. Etude bibliographique

VI. Elaboration des composites SnO 2 /ZnO en couches minces

VI.5. Performances opto-électriques (front de Pareto)

Habituellement, le choix d'un bon matériau (TCO) pour une application spécifique implique l'utilisation des fonctions de mérite qui relient la transparence optique et la conductivité électrique (ou résistivité) du matériau. Dans ce sens, nous avons adopté le même raisonnement [92] en construisant un diagramme 2D composé de deux caractéristiques: la perte optique définie comme 1 – T (T : transmittance optique moyenne dans l’intervalle des longueurs d’onde 400 - 800 𝑛𝑚) et la résistance de sheet 𝑅𝑠ℎ = 𝜌 / 𝑑 où 𝜌 est la résistivité et 𝑑 est l'épaisseur de la couche. En effet, un bon matériau TCO doit présenter en même temps une faible perte optique et une petite résistance de sheet. On note par ailleurs, que les épaisseurs des couches ont été estimées par la même technique que dans la partie V.3 de ce chapitre (technique SpPS [82]).

Fig. IV.49: Propriétés électriques des couches minces de ZnO

et SnO2/ZnO sans et avec recuit.

Chap. IV Résultats et discussions 141

Pour bien positionner nos résultats comparativement à d’autres issus de la littérature, nous avons calculé (1 –𝑇) et 𝑅𝑠ℎ pour nos échantillons (Fig. IV.50) tout en les mettant avec d'autres valeurs expérimentales de 16 références aléatoires dans le même graphe donné par la figure IV.49. A noter que les références utilisées dans cette comparaison sont relatives à différents travaux sur les couches minces de ZnO pur, dopé et co-dopé.

La lecture du graphique donné par la figure IV.50 montre que nos couches composites de SnO2/ZnO avec recuit thermique à 350°C possèdent la meilleure performance et terme de perte optique et de conductivité électrique.

VII. Conclusion

Dans ce chapitre, les différentes précurseurs chimiques utilisés nous ont permis d’arrêter le choix des nitrates de zinc comme produit chimique de départ pour fabriquer des couches minces de ZnO de bonne qualité structurale.

L’étude de deux types de dopants, l’aluminium et l’étain, nous a permis de conclure que pour améliorer à la fois la transparence optique et la conductivité électrique des films de

Fig. IV. 50: Front de Pareto des couches de SnO2/ZnO avec et sans recuit et des couches de ZnO de la littérature.

Chap. IV Résultats et discussions 142

ZnO obtenus à partir des nitrates de zinc par spray pyrolysis, il faut les co-doper conjointement en en aluminium et en étain.

Par ailleurs, la technique de double dépôt avec le spray pyrolysis nous a permis d’obtenir des couches minces du composite SnO2/ZnO encore plus performantes en terme de perte optique et de conductivité électrique.

Chap. IV Résultats et discussions 143

R

éférences

[1] Kamal Baba, Claudia Lazzaroni, Mehrdad Nikravech, ZnO and Al doped ZnO thin films

deposited by spray plasma: effect of the growth time and Al doping on microstructural, optical and electrical properties, Thin Solid Films 595 (2015) 129-135.

[2] A. Bedia, F. Z. Bedia, M. Aillerie, N. Maloufi, Structural, electrical and optical properties

of Al-Sn codoped ZnO transparent conducting layer deposited by spray pyrolysis technique, Superlattices Microstructure 111 (2017) 714-721.

[3] Hassan Guendouz, Abdelhamid Bouaine, Noureddine Brihi , Biphase effect on

structural, optical, and electrical properties of Al-Sn codoped ZnO thin films deposited by sol-gel spin-coating technique, Optik 158 (2018) 1342-1348.

[4] Joint Committee on Powder Diffraction Standards Powder Diffraction File. 1988

International Center for Diffraction Swarthmore PA (card 36-1451).

[5] D Bao, H Gu, A Kuang , Sol-gel-derived c-axis oriented ZnO thin films , Thin solid films

312 (1998) 37-39.

[6] R. Romero, D. Leinen, E. A. Dalchiele, J.R. Ramos-Barrado, F. Martin,The effects of zinc acetate and zinc chloride precursors on the preferred crystalline orientation of ZnO and Al-doped ZnO thin films obtained by spray pyrolysis, Thin solid Films 515 (2006) 1942-1949.

[7] J. Rodriguez-Baez, A. Maldonado, G. Torres-Delgado, R. Castanedo Perez, M. de la, L.

Olvera,Influence of the molar concentration and substrate temperature on fluorine-doped zinc oxide thin films chemically sprayed, Mater. Lett. 60 (2006) 1594-1598.

Chap. IV Résultats et discussions 144 [8] Y Liu, L Zhao, J Lian, Al-doped ZnO films by pulsed laser deposition at room

temperature, Vacuum (2006) 18-21.

[9] P. V. Raghavendra, J. S. Bhat, N. G. Deshpande, Enhancement of photoluminescence in

Sr doped ZnO thin films prepared by spray pyrolysis, Mat. Sci. Semicon. Proc. 68 (2017) 262-269.

[10] Ü.Alver, A.KudretS, Tekerek, Spray pyrolysis deposition of ZnO thin films on FTO coated

substrates from zinc acetate and zinc chloride precursor solution at different growth temperatures, Journal of Physics and Chemistry of Solids , Volume 72 (2011) 701-704

[11] Emrah Sarica, Vildan Bilgin, Structural, optical, electrical and magnetic studies of

ultrasonically sprayed ZnO thin films doped with vanadium, Surface & Coatings Technology 286 (2016) 1-8.

[12] https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray

diffraction/xrd-software/eva.html.

[13] M Krunks, T Dedova, IO Açik, Spray pyrolysis deposition of zinc oxide nanostructured

layer, Thin Solid Films , 515 (2006) 1157-1160.

[14] A. Nakrela, N. Benramdane, A. Bouzidi, Z. Kebbab, M. Medles, C. Mathieu, Site location

of Al-dopant in ZnO lattice by exploiting the structural and optical characterisation of ZnO:Al thin films, Results in Phys. 6 (2016) 133-138.

[15] H. Benzarouk, M. Mekhnache, A. Drici, A. Amara, Effect of the precursor solution on

the structural morphological and optical properties of ZnO thin films deposited by Spray Pyrolysis technique for solar cell application, International Journal of Scientific Research & Engineering Technology 10 (2019) 45-49.

Chap. IV Résultats et discussions 145 [16] R. Mimouni, O. Kamoun, A. Yumak, A. Mhamdi, K. Boubaker, P. Petkova, M. Amlouk,

Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds, J. Alloy. Compd. 645 (2015) 100-111.

[17] Chien Yie Tsay, Hua-Chi Cheng, Yen-Ting Tung, Wei Hsing Tuan, Chung Kwei Lin, Effect

of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method, Thin Solid Films 517 (2008) 1032-1036.

[18] N. Chahmat, T. Souier, A. Mokri, M. Bououdina, M. S. Aida, M. Ghers, Structure,

microstructure and optical properties of Sn-doped ZnO thin films, J. Alloys. Compd. 593 (2014) 148-153.

[19] A. R. Babar, P. R. Deshamukh, R. J. Deokate, D. Haranath, C. H. Bhosale, K. Y. Rajpure,

Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis, J. Phys. D Appl. Phys. 41 (2008) 135404.

[20] S. Edinger, N. Bansal, M. Bauch1, R. A. Wibowo, G. Újvári, R. Hamid, G. Trimmel, T.

Dimopoulos, Highly transparent and conductive indium-doped zinc oxide films deposited at low substrate temperature by spray pyrolysis from water-based solutions, J. Mater. Sci. 52 (2017) 8591-8602.

[21] Daoli Zhang, Jianbing Zhang, Zhe Guo, Xiangshui Miao, Optical and electrical properties

of zinc oxide thin films with low resistivity via Li–N dual-acceptor doping n, Journal of Alloys and Compounds 509 (2011) 5962-5968.

[22] Ramon Tena-Zaera, Jamil Elias, Gillaume Wang, and Claude Le vy-Cle ment, Role of

Chloride Ions on Electrochemical Deposition of ZnO Nanowire Arrays from O2 Reduction,J. Phys. Chem. C 45 (2007) 16706-16711.

Chap. IV Résultats et discussions 146 [23] M. Bedir, M. Öztas, A. N. Yazici, Characterization of un-doped and Cu-doped ZnO thin

films deposited on glass substrates by spray pyrolysis, Chinese Physics Letters 23 (2006)4.

[24] E. Bacaksiz, M. Parlak, M. Tomakin, A. O. zc¸elik, M. Karakız, M. Altunba¸ The effects of

zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films , Journal of Alloys and Compounds 466 (2008) 447- 450.

[25] Li Li, Liang Fang, Xian Ju Zhou, Yi Liu Zi, Liang Zhao, Sha Jiang, X-ray photoelectron

spectroscopy study and thermoelectric properties of Al-doped ZnO thin films, J. Electron Spectrosc. Relat. Phenom 173 (2009) 7-11.

[26] L. C. Damonte G. N. Darriba, Structural and electronic properties of Al-doped ZnO

semiconductor nanopowders: Interplay between XRD and PALS experiments and first-principles/DFT modeling, Journal of Alloys and Compounds Volume 735 (2018) 2471-2478.

[27] M. Khuiliad, El Hallania Fazouanac, Abou El Makarim, E .H. Atmani, First-principles

calculation of (Al,Ga) co-doped ZnO , Computational Condensed Matter 21 (2019) e00426.

[28] Xiurong Qu, Shuchen Lü, Dechang Jia, Sheng Zhou and Qingyu Meng, First-principles

study of the electronic structure of Al and Sn co-doping ZnO system, Materials Science in Semiconductor Processing 16 (2013) 1057-1062.

[29] A.S lassi, S. Najib, Benyousse M. Hamedoun, A. El Kenz, On the transparent conducting

oxide Al doped ZnO:First Principles and Boltzmann equations study, Journal of Alloys and Compounds, 605 (2014) 118-123.

Chap. IV Résultats et discussions 147 [30] Tong Gua ,Er TaoHua, Shuai Guoa Ying, WuaJing Wangb, Zhong-Yue WangaK, Han,

Yua Wei, Weia, Yu Xiang Zhengc, Song You Wangc, Liang Yao Chenc, Ellipsometric study on optical properties of hydrogen plasma-treated aluminum-doped ZnO thin film, Vacuum 163 (2019) 69-74.

[31] Rina Pandey, Shavkat Yuldashev, Hai Dong Nguyen, Hee Chang Jeon, Tae Won Kang,

Fabrication of aluminium doped zinc oxide (AZO) transparent conductive oxide by ultrasonic spray pyrolysis, Current Applied Physics 12 (2012) 56-58.

[32] R. Brenier, L. Ortega, Structural properties and stress in ZnO films obtained from a

nanocolloidal, Sol. Technol. 29 (2004) 137.

[33] Murat Tomakin, Structural and optical properties of ZnO and Al-doped ZnO microrods

obtained by spray pyrolysis method using different solvents, Superlattices Microstructure 51 (2012) 372-380.

[34] Nikša Krstulovid, Krešimir Salamon, Ognjen Budimlija, Janez Kovač, Jasna Dasovid,

Polona Umek, Ivana Capan, Parameters optimization for synthesis of Al doped ZnO nanoparticles by laser ablation in water, Appl. Surf. Sci. 440 (2018) 916-925.

[35] M. Humayan Kabir, M. Al amin, M. S. Rahman, M. K. R. Khan, Infuence of Al doping on

microstructure, morphology, optical and photoluminescence properties of pyrolytic ZnO thin Þlms prepared in an ambient atmosphere, Chinese J. Phys. 56 (2018) 2275-2284.

[36] Muhammad R. Islama, S. F. U. Mukhlasur Rahmana, J. Farhadb Poddera, Structural,

optical and photocatalysis properties of sol–gel deposited Al doped ZnO thin films, Surf. Interfaces 16 (2019) 120-126.

Chap. IV Résultats et discussions 148 [37] C. M. Muiva, T. S. Sathiaraj, K. Maabong, Effect of doping concentration on the

properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications, Ceram. Int. 37 (2011) 555-560.

[38] A. R. Landa-Cánovas, J. Santiso, F. Agulló Rueda, P. Herrero, E. Navarrete-Astorga, E.

Ochoa Martínez, J. R. Ramos-Barrado, M. Gabás, Nanostructural changes upon substitutional Al doping in ZnO sputtered films, Ceram. Int. 45 (2019) 6319-6327.

[39] H. Aydin, H. M. El-Nasser, C. Aydin Ahmed, A. Al-Ghamdi, F. Yakuphano glu, Synthesis

and characterization of nanostructured un-doped and Sn doped ZnO Thin Films via Sol–Gel Approach, App. Surf. Sci. 350 (2015) 109-114.

[40] A. Amala Rani, Suhashini Ernest, Structural, morphological, optical and compositional

characterization of spray deposited Ga doped ZnO thin film for desensitized solar cell application, Superlattices Microstructure 75 (2014) 398-408.

[41] Jie Hua, Fanqin Gao, Zhenting Zhao, Shengbo Sang, Pengwei Li, Wendong Zhang,

Xiongtu Zhou, Yong Chen, Synthesis and characterization of Cobalt-doped ZnO microstructures for methane gas sensing, Appl. Surf. Sci. 363 (2016) 181-188.

[42] G. H. Zhang, P. Y. Wang, X. Y. Deng, Y. Chen, D. J. Gengzang, X. L. Wang, W. J. Chen ,

CTAB-assisted synthesis of 3D SN doped ZnO nanostructures with enhanced acetone sensing performance, Materials Letters 162 (2015) 265-268.

[43] Zhixiang Ye, Ting Wang, Shuang Wu, Xiaohong Ji, Qinyuan Zhanga, Na-doped ZnO

nanorods fabricated by chemical vapor deposition and their optoelectrical properties, J. Alloys. Compd. 690 (2017) 189-194.

[44] M. Humayan Kabir , M. Al amin , M. S. Rahman , M. K. R Khan , Infuence of Al doping

Chap. IV Résultats et discussions 149

ZnO thin Þlms prepared in an ambient atmosphere, Chinese Journal of Physics, 56 (2018) 2275-2284.

[45] Mohammad Tajally, Omid Mirzaee, Akbar Eshaghi, The effects of Ti concentration on

the structure, optical, and electricalproperties of Al and Ti co-doped ZnO thin films, Optik 127 (2016) 4645-4649.

[46] M. Vishwas K. Narasimha Rao , K. V. Arjuna Gowda , R. P. S. Chakradhar , Influence of

Sn doping on structural, optical and electrical properties of ZnO thin films prepared by cost effective sol–gel process, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 95 (2012) 423-426

[47] Charles Moditswe Cosmas M. Muiva Albert Juma, Highly conductive and transparent

Ga-doped ZnO thin films deposited by chemical spray pyrolysis, Optik 127 (2016) 8317-8325.

[48] Kamal Baba, Claudia Lazzaroni, Mehrdad Nikravech, ZnO and Al doped ZnO thin films

deposited by spray plasma: effect of the growth time and Al doping on microstructural, optical and electrical properties, Thin Solid Films 595 (2015) 129-135.

[49] A. Crossay, Buecheler Kranz, Perrenoud, M. Fella, Romanyuk, N. Tiwari,

Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells, Solar Energy Materials and Solar Cells 101 (2012) 283-288.

[50] Karyaoui, M. Ben Jemia, D. Gannouni, M. Ben Assaker, I. Bardaoui, A. Amlouk, M.

Chtourou R, Characterization of Ag-doped ZnO thin films by spray pyrolysis and its using in enhanced photoelectrochemical performances, Inorganic Chemistry Communications 119 (2020) 108114.

Chap. IV Résultats et discussions 150 [51] F. Z. Bedia, A. Bedia, N. Maloufi, M. Ailleried, F. Gentyd, B. Benyoucef, Effect of tin

doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique, Journal of Alloys and Compounds616 (2014) 312-318.

[52] S. S. Shind, A. P. Korad, C. H. Bhosal, K. Y. Rajpur, Influence of tin doping onto

structural, morphological, optoelectronic and impedance properties of sprayed ZnO thin films, Journal of Alloys and Compounds 551 (2013) 688-693.

[53] C Qingqing, Fanab Dongning, Liab Junhong, Lia Chenghao Wanga, Structure and piezoelectricity properties of V-doped ZnO thin films fabricated by sol-gel method, Journal of Alloys and Compounds829 (2020) 154483.

[54] Rosalin Beura, P. Thanga durai, Effect of Sn doping in ZnO on the photocatalytic activity

of ZnO-Graphene nanocomposite with improved activity, Journal of Environmental Chemical Engineering 6 (2018) 5087-5100.

[55] M. Vasanthi, K. Ravichandran, N. Jabena Begum, G. Muruganantham, S. Snega, A.

Panneerselvam, P. Kavitha, Influence of Sn doping level on antibacterial activity and certain physical properties of ZnO films deposited using a simplified spray pyrolysis technique, Superlattices and Microstructures 55 (2013) 180-190.

[56] S. H. Jeong, B. N. Park, S. B. Lee, J. H. Boo, Metal-doped ZnO thin films, synthesis and

characterisations, Surf.Coat. Technol. 201 (2007) 5318-5322.

[57] Satirtha K. Sarma, Ratan Mohan, Anupam Shukla, Structural, opto-electronic and

photoelectrochemical properties of tin doped hematite nanoparticles for water splitting, Mater. Sci. Semicond. Process. 108 (2020) 104873.

[58] A. Karthick, G. Umadevi, D. Pradhabhan, Structural, optical and antibacterial activity

studies of sn doped zno thin films prepared by chemical spray pyrolysis technique, Int. J. Res. Anal. Rev. 5 (2018) 246-260.

Chap. IV Résultats et discussions 151 [59] J. H. Lee, B. O. Park, Transparent conducting ZnO: Al, In and Sn thin films deposited by

the sol–gel method, Thin Solid Films 426 (2003) 94.

[60] N. Rajeswari Yogamalar, A. Chandra Bose, Burstein–Moss shift and room temperature

near-band-edge luminescence in lithium-doped zinc oxide, Appl. Phys. A 103 (2011) 33–42.

[61] Anuj Kumar,Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for super capacitor, Journal of Molecular Structure 15 (2020) 128654.

[62] M. K. Nanthagopal, Ashok Tamilarasujith ,Johny Aravind Mohan, Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine , Energy Conversion and Management, 146 (2017) 8-19.

[63] Muhammad R. Islama, Mukhlasur Rahmana, S. F. U. Farhadb, J. Poddera , Structural,

optical and photocatalysis properties of sol–gel deposited Al doped ZnO thin films Surfaces and Interfaces 16 (2019) 120-126.

[64] Mingyang Wu, Dan Sun, Changlong Tan, Xiaohua Tian and Yuewu Huang, Al-doped ZnO

monolayer as a promising transparent electrode material a first-principles study, Materials 10 (2017) 359-372.

[65] Jin Zhao, Qiao Liping, Guo Chen, He Zhili, Liu Lidong, Rong Mei, First-priniciple study of

electrical and optical properties of (Al,Sn) co-doped ZnO, Optik 127 (2016) 1988-1992.

[66] M. Leszczyoski, E. Litwin-Staszewska, T. Suski, Lattice constant of doped

semiconductor, Acta Phys. Pol. 88 (1995) 837-840.

[67] U. Pietsch, K. Unger, The influence of free carriers on the equilibrium lattice parameter

Chap. IV Résultats et discussions 152 [68] Chris G. Van de Walle, Effects of impurities on the lattice parameters of GaN, Physical

Rreview B 68 165209 (2003) 1-5.

[69] Anderson Janotti, Bharat Jalan, Susanne Stemmer, Chris G. Van de Walle, Effects of

doping on the lattice parameter of SrTiO3, Appl. Phys. Lett. 100 (2012) 1-3.

[70] M. A. Javid, M. Rafi, I. Ali, F. Hussain, M. Imran, Ali Nasir, Synthesis and study of

structural properties of Sn doped ZnO nanoparticles, Mater. Science-Poland 34 (2016) 741-746.

[71] A. Karthick, G. Umadevi, D. Pradhabhan, Structural, optical and antibacterial activity

studies of sn doped zno thin films prepared by chemical spray pyrolysis technique, Int. J. Res. Anal. Rev. 5 (2018) 246-260.

[72] Ehssan S. Hassan, Tahseen H. Mubarak, Khalid H. Abass, Sami S. Chiad, Nadir F.Habubi

Maher, H. Rahid, Abdulhussain A. Khadayeir, Mohamed O. Dawod, Ismaeel a Al-Baidhany, Structural, morphological and optical characterization of tin doped zinc oxide thin film by (SPT), J. Phys. Conf. Ser. 1234 (2019) 12013.

[73] Nikša Krstulovid, Krešimir Salamon, Ognjen Budimlija, Janez Kovač, Jasna Dasovid,

Polona Umek, Ivana Capan, Parameters optimization for synthesis of Al doped ZnO nanoparticles by laser ablation in water, Appl. Surf. Sci. 440 (2018) 916-925.

[74] Li Li, Liang Fang, Xian Ju Zhou, Yi Liu Zi, Liang Zhao, Sha Jiang, X-ray photoelectron

spectroscopy study and thermoelectric properties of Al-doped ZnO thin films, J. Electron Spectrosc. Relat. Phenom. 173 (2009) 7-11.

[75] H. T. Cao, Z. L. Pei, J. Gong, C. Sun, R. F. Huang, L. S. Wen, Preparation and

characterization of Al and Mn doped ZnO (ZnO: (Al, Mn)) transparent conducting oxide films, J. Solid State Chem. 177 (2004) 1480-1487.

Chap. IV Résultats et discussions 153 [76] Rongyue Liu, Ying Chen, Shuyu Ding, Yuanbo Li, Yong Tian, Preparation of highly

transparent conductive aluminum-doped zinc oxidethin films using a low temperature aqueous solution process for thin-film solar cells applications, Sol. Energy Mater. Sol. Cells 203 (2019) 777-780.

[77] M. Ohtsuka, R. Sergiienko, S. Petrovska, B. Ilkiv, T. Nakamura, Iron-doped indium

saving indium-tin oxide (ITO) thin films sputtered on preheated substrates, Optik 179 (2019) 19-28.

[78] Satirtha K. Sarma, Ratan Mohan, Anupam Shukla, Structural, opto-electronic and

photoelectrochemical properties of tin doped hematite nanoparticles for water splitting, Mater. Sci. Semicond. Process. 108 (2020) 777-780.

[79] Tiekun Jia, Jian Chen, Zhao Deng, Fang Fu, Junwei Zhao, Xiaofeng Wang, Fei Long,

Facile synthesis of Zn-doped SnO2 dendrite-built hierarchical cube-like architectures and their application in lithium storage, Mater. Sci. Eng. B 189 (2014) 32-37.

[80] Konstantin Lovchinov, Georgi Marinov, Miroslav Petrov, Nikolay Tyutyundzhiev,

Tsvetank Babeva, Influence of ZnCl2 concentration on the structural and optical properties of electrochemically deposited nanostructured ZnO, Appl. Surf. Sci. 456 (2018) 69-74.

[81] G. Turgut, E. Sönmez, A study of Pb-Doping effect on structural, optical, and

morphological properties of ZnO thin films deposited by sol–gel spin coating, Metall,a Mater. Trans. A 45 (2014) 3675-3685.

[82] R. Miloua, Z. Kebbab, F. Chiker, K. Sahraoui, M. Khadraoui, N. Benramdane,

Determination of layer thickness and optical onstants of thin films by using a modified pattern search method, Opt. Lett. 37 (2012) 449-451.

Chap. IV Résultats et discussions 154 [83] Joint Committee on Powder Diffraction Standards Powder Diffraction File. 1988

International Center for Diffraction: Swarthmore, PA (card 041-1445).

[84] Jonathan Giencke, Application Engineer, X-ray Diffraction, Introduction to EVA T88-E00031. (2007).

[85] Toby, B. H., & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source

all-purpose crystallography software package. Journal of Applied Crystallography, 46 (2013) 544-549.

[86] http://www.casaxps.com/

[87] N. Sadananda Kumar, Kasturi V. Bangera, G.K. Shivakumar, Effect of annealing on the

properties of Bi doped ZnO thin films grown by spray pyrolysis technique, Superlattices and Microstructures 75 (2014) 303-310.

[88] Jin Hong Lee, Bong-Whan Yeo, Byung-Ok Park, Effects of the annealing treatment on

electrical and optical properties of ZnO transparent conduction films by ultrasonic spraying pyrolysis, Thin Solid Films 457 (2004) 333-337.

[89] A. H. Yahi, A. Bouzidi, R. Miloua, M. Medles, A. Nakrela, M. Khadraoui, H. Tabet Derraz,

R. Desfeux, A. Ferri, J-F. Blach, The relationship between processing and structural, optical, electrical properties of spray pyrolysed SnO2 thin films prepared for different deposition times, Optik 196 (2019) 163198.

[90] Said Benramache, Boubaker Benhaoua, Influence of annealing temperature on

structural and optical properties of ZnO: In thin films prepared by ultrasonic spray technique, Superlattices and Microstructures 52 (2012) 1062-1070.

[91] C. Goebbert, R. Nonninger, M.A. Aegerter, H. Schmidt , Wet chemical deposition of

ATO and ITO coatings using crystalline nanoparticles redispersable in solutions, Thin Solid Films 351 (1999) 79-84.

Chap. IV Résultats et discussions 155 [92] Redouane Miloua, Zoubir Kebbab and Noureddine Benramdane, Pareto-optimal

transparent conductive oxides, RSC Advances 2 (2012) 3210-3213.

[93] S. S. Shinde A.P.Korade, C. H. Bhosale K. Y. Rajpure, Influence of tin doping onto

structural, morphological, optoelectronic and impedance properties of sprayed ZnO thin films, Journal of Alloys and Compounds 551 (2013) 688-693.

[94] S. Ilican, M. Caglar, Y. Caglar, Determination of the thickness and optical constants of

transparent indium-doped ZnO thin films by the envelope method, Materials Science-Poland 25 (2007) 3.

155

C

onclusion générale

Dans le présent travail, nous avons pu avoir avec sucées, en utilisant la technique spray pyrolysis, des couches minces de ZnO non dopé à partir de différents précurseurs chimiques (nitrate de zinc, acétates de zinc et chlorure de zinc).

L’examen des différentes propriétés (structurales, optiques et électriques) nous a permis de conclure que les films de ZnO obtenus à partir des nitrates de zinc ont la meilleure cristallinité avec une transparence non satisfaisante et une conductivité faible ce qui nous a pousser à essayer de les améliorer par dopage en aluminium et en étain.

L’étude des couches minces de ZnO dopées en étain, obtenues par spray pyrolysis à partir des nitrates de zinc, nous a montré que l’incorporation des atomes d’étain dans la matrice Wurtzite de ZnO améliore nettement la transparence optique de ces couches sans avoir un effet réel sur leur conductivité.

D’autre part, l’étude entreprise sur les couches minces de ZnO, obtenues toujours à partir des nitrates de zinc mais dopées avec l’aluminium, nous a permis de savoir que l’introduction des atomes d’aluminium dans la matrice de la structure des couches de ZnO permet d’améliorer sensiblement leur conductivité sans avoir un vrai impact sur leur transparence optique.

A la lumière des deux précédentes études, nous a avons fait l’étude des couches minces de ZnO, obtenues toujours à partir des nitrates de zinc, mais co-dopées à la fois en aluminium

Documents relatifs