• Aucun résultat trouvé

Dans ce chapitre, nous avons tout d'abord passé en revue les principaux travaux traitant des dispersions colloïdales de nanoparticules magnétiques. La première partie de ce chapitre se compose d'une étude bibliographique décrivant les généralités sur NPM et les méthodes de stabilisation des ferrofluides (stérique et électrostatique). Le deuxième volet de ce chapitre, nous a permis de réviser les principaux travaux sur les transitions de phase induites par le champ magnétique et sur la cinétique d'agrégation des particules magnétiques en échelles différentes. La dernière partie de ce chapitre révise la séparation magnétique à deux échelles différentes ainsi que les séparateurs magnétiques.

De ces études bibliographiques, il en ressort plusieurs questions ouvertes dans le domaine de la séparation magnétique. Premièrement, il n’est pas claire comment l’agrégation de nanoparticules induite par le champ et la cinétique de cette agrégation influent la séparation magnétique. Deuxièmement, le rôle de plusieurs paramètres (tels que le paramètre de couplage dipolaire , la concentration  de particules, l’orientation du champ magnétique par rapport à l’écoulement) sur la séparation magnétique de nanoparticules reste très peu connu. Finalement, les effets de recouvrement de la surface de nanoparticules (conduisant à un changement des interactions magnétiques et colloïdales) sur leur agrégation sous champ et leur séparation magnétique restent très peu étudiés. Ces questions sont importantes à la fois pour la recherche fondamentale (meilleure compréhension de la séparation magnétique de NPM) et pour les applications de NPM dans des systèmes de microfiltration magnétique.

Pour faire ces études nous avons besoin de NPM superparamagnétiques de taille intermédiaire (environ entre 20 et 100 nm). L’une des façons d’avoir les particules superparamagnétiques de cette taille est de synthétiser des nanoclusters composés de plusieurs NPM de taille environ 10 nm au lieu de synthétiser des nanoparticules isolées de

32

taille 20-100 nm, car ces dernières seront sans doute ferro- ou ferrimagnétiques avec cette taille.

Les problèmes ouverts cités ci-dessus seront abordés dans ce travail et ils nous permettent de formuler les objectifs suivants de la thèse :

1. La synthèse de nanoclusters superparamagnétiques de taille intermédiaire (20-100 nm) par la méthode de coprécipitation de sels de fer et la caractérisation par différentes techniques.

2. Etablir les lois de comportement de la cinétique d'agrégation de nanoclusters synthétisés sous l'effet d'un champ magnétique appliqué. Plus concrètement l'évolution de taille et de la forme des agrégats composés des nanoclusters en fonction du temps, de l'intensité du champ magnétique et de la concentration de nanoclusters sera étudiée par la visualisation par la microscopie optique, ces résultats seront comparés à la théorie élaborée en collaboration avec professeur A. Zubarev en tenant compte de la coalescence des agrégats de nanoclusters.

3. Etablir les lois de comportement de la filtration des nanoclusters magnétiques de taille intermédiaire (20-100 nm) à travers un réseau ordonné de microplots de nickel. Plus concrètement l’évolution de la taille de dépôts de nanoclusters captés par des microplots en fonction du temps, de la vitesse et du champ magnétique sera étudiée pour les deux réseaux de géométries différentes.

4. Etablir l'effet de recouvrement de la surface de nanoclusters sur les interactions magnétiques et colloïdales entre eux et sur le processus de filtration magnétique. Nous allons réaliser les expériences de filtration sur un plot isolé dans un canal microfluidique et nous allons comparer les performances des nanoclusters fonctionnalisés par des surfactants/polymères différents.

33 Références

Adny H. Silva, E. Lima Jr, M. V. Mansilla, Roberto D. Zysler, H. Troiani, M. Pisciotti, MScb,Claudriana Locatelli, Juan C. Benech, N. Oddone, MScd, Vinícius C. Zoldan, E. Winte, André A. Pasa,Tânia, C. Pasa, “Superparamagnetic iron-oxide nanoparticles mPEG350– and mPEG2000- coated: cell uptake and biocompatibility evaluation”; Nanomedicine: Nanotechnology, Biology, and Medicine 12, 909–919 (2016).

Ambashta R. D., M. Sillanppa, “Watter purification using magnetic assistance” J. Hazard. Mater.

180, 38-49 (2010).

Andreu J.S, J. Camacho, J. Faraudo, M. Benelmekki, C. Rebollo, L.M. Martínez, “Simple analytical

model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient”, Phys. Rev. E 84, 021402 (2011).

Arana M, Paula G. Bercoff, Silvia E. Jacobo, "Thermomagnetic characterization of organic-based ferrofluids prepared with Ni ferrite nanoparticles" Journal of Magnetism and Magnetic Materials, 431, 21 (2017).

Atalay Y.T., S. Vermeir, D. Witters, N. Vergauwe, B. Verbruggen, P. Verboven,B.M. Nicolai, J. Lammertyn, "Microfluidic analytical systems for food analysis", Trends Food Sci. Technol. 22, 386– 404 (2011).

Avdeev M. V, D. Bica, L. Vekas, Vekas, L., Aksenov, V. L., Feoktystov, A. V., Marinica, O., ... & Willumeit, R.., "Comparative structure analysis of non-polar organic ferrofluids stabilized by saturated mono-carboxylic acids", J. Colloid. Inter. Sci. 334, 37-41 (2009).

Bacri J.-C., R. Perzynski, D. Salin et J. Servais, “Magnetic transient birefringence of ferrofluids : particle size determination”, J.Phys.France 48, 1385-1391 (1987).

Baghbanzadeh M, Luigi Carbone, P. Davide Cozzoli, and C. Oliver Kappe "Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals; Angew". Chem. Int. Ed. 50, 11312 – 11359 (2011).

Baudry J., Rouzeau. C, Goubault. C, Robic. C, Cohen- Tannoudji L, Koenig A, Bertrand E, and Bibette J., “Acceleration of the recognition rate between grafted ligands and reports with magnetic forces”, Proc. Natl. Acad. Sci. USA 103, 16076-16078 (2006).

Bee A., R. Massart, S. Neveu, “Synthesis of very fine maghemite particles”; Journal of Magnetism and

Magnetic Materials 149, 6-9 (1995)

Ben Amira. A «comportement hydrodynamiques des nanoparticules au cours de la séparation magnétique». Thèse de doctorat Université Aix-Marseille (2013).

Bica D., Vekas, L., Avdeev, M. V., Marinica, O., Socoliuc, V., M. Balasoiu M. et V. M. Garamus, V. M. “Sterically stabilized water based magnetic fluids : Synthesis, structure and properties”. Journal of Magnetism and Magnetic Materials 311, 17-20 (2007).

34

Blanco G., Hiraldo, F., Rojas, A., Dénes, F. V., & Tella, J. L.“Parrots as key multilinkers in ecosystem

structure and functioning”.Ecology and evolution 5(18), 4141-4160 (2015).

Bong K. Park , Sunho Jeong , Dongjo Kim,, Jooho Moon , Soonkwon Lim b, Jang Sub Kim “Synthesis

and size control of monodisperse copper nanoparticles by polyol method”, Journal of Colloid and Interface Science 311, 417–424 (2007).

Bossis G., C.Métayer and A. Zubarev, “Analysis of chaining structures in colloidal suspensions

subjected to an electric field”, Phys. Rev. E 76, 041401 (2007).

Bossis G., O.Volkova, S. Lacis, and A. Meunier, “ in Magnetorheology: Fluids, Structures and Rheology”, edited by S. Odenbach (Springer, Berlin, 2002).

Bossis G., L. Iskakova, V. Kostenko, A. Zubarev, “Kinetics aggregation of magnetic suspensions”,

Physica A 390, 2655-2663 (2011)

Bossis G., P. Lançon, A. Meunier, L. Iskakova, V. Kostenko, and A. Zubarev, “Kinetics of internal

structure growth in magnetic suspensions” Physica A 392, 1567-1576 (2013).

Brody J., Yager, P., Goldstein, R., and Austin, R. “Biotechnology at low Reynolds numbers » Biophysical Journal 71, 3430–3441 (1996).

Buyevich Yu. A., A.O.Ivanov, ‘Equilibrium properties of ferrocolloids” Physica A 190, 276-294 (1992) Caruntu D, G. Caruntu, Yuxi Chen, Charles J. O’Connor, Galina Goloverda, and Vladimir L.

Kolesnichenko, “Synthesis of Variable-Sized Nanocrystals of Fe3O4 with High Surface Reactivity”,

Chem. Mater. 16, 5527-5534 (2004).

Chaudhari N.K.; Yu, J.-S.“Size control synthesis of uniform β-FeOOH to high coercive field porous magnetic α-Fe2O3 nanorods”. J. Phys. Chem. C, 112, 19957–19962, (2008).

Clarkson C. J, D.R. Kelland, “Theory and experimental verification of a model for high gradient

magnetic separation”, IEEE Trans. Magn. 14, 97–103 (1978).

Coltro W.K.T., C.M. Cheng, E. Carrilho, D.P. de Jesus, “Recent advances in low cost microfluidic

platforms for diagnostic applications”, Electrophoresis 35, 2309–2324 (2014).

Cousin F, E. Dubois and V. Cabuil, « Approach of the critical point of gas–liquid transitions in an electrostatically stabilized colloidal suspension » J. Chem. Phys. 115, 6051 (2001).

Cousin E. Dubois, and V. Cabuil. "Tuning the interactions of a magnetic colloidal suspension", Phys Rev E Phys, 68 :021405 (2003).

De las Cuevas.G., J. Faraudo, J. Camacho, "Low-gradient magnetophoresis through field-induced reversible aggregation", J. Phys. Chem. C 112, 945–950, (2008).

Ditsch A., Lindenmann, S., Laibinis, P.E., Wang, D.I.C., Hatton, T.A. “High-Gradient Magnetic Separation of Magnetic Nanoclusters”.Ind. Eng. Chem. Res. 44, 6824–6836 (2005).

Ditsch A., J. Yin, Laibinis, P.E., Wang, D.I.C., Hatton, T.A. “Ion-Exchange Purification of Proteins

35

Dobrovolskaia MA1, McNeil SE. “Immunological properties of engineered nanomaterials”.Nat Nanotechnol. 2, 469-78 (2007).

Donado F, U. Sandoval, and J. L. Carrillo, « Kinetics of aggregation in non-Brownian magnetic particle dispersions in the presence of perturbations », Phys. Rev. E 79, 011406 (2009).

Douziech-Eyrolles L., H. Marchais, Katel Hervé, E. Munnier, C. Linassier, P. Dubois, and I. Chourpa, “Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles”, Int. J. Nanomedicine 2, 541-550 (2007).

Dubois E., R. Perzynski, F. Boué, and V. Cabuil, «Liquid−Gas Transitions in Charged Colloidal Dispersions: Small-Angle Neutron Scattering Coupled with Phase Diagrams of Magnetic Fluids », Langmuir16, 5617–5625 (2000).

Duffy D, J. Cooper McDonald, Olivier J. A. Schueller, and George M. Whitesides “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)”. Anal.Chem.,70, 4974-4984, (1998).

Dutz S., Hayden, M. E., & Häfeli, U. O.“Fractionation of Magnetic Microspheres in a Microfluidic

Spiral: Interplay between Magnetic and Hydrodynamic Forces”. PloS one, 12, e0169919, (2017).

Esterlich J., E. Escribano, J. Queralt and M.-A.Busquets, “Iron Oxide Nanoparticles for Magnetically-Guide and Magnetically- Responsive Drug Delivery”, Int. J. Mol. Sci. 16, 8070-8101 (2015).

Faraudo J,J. S. Andreu and J. Camacho, “Understanding diluted dispersions of superparamagnetic particles under strong magnetic fields: a review of concepts, theory and simulations”, Soft Matter 9, 6654-6664 (2013).

Fermigier M., and A. P Gast, “Structure evolution in a paramagnetic latex suspension”, J. Coll. Int.

Sci. 154, 522-539 (1992).

Fletcher D. “Fine particle high gradient magnetic entrapment”.IEEE Transactions on Magnetics 27,

655–3677 (1991).

Friedlaender F.J., R. Gerber, W. Kurz, R.R. Birss, “Particle motion near and capture on single

spheres in HGMS”, IEEE Trans. Magn. 17 (6), 2801–2803 (1981).

Frka-Petesic B, J Fresnais, JF Berret, V Dupuis, R Perzynski, O Sandre, “Stabilization and controlled

association of superparamagnetic nanoparticles using block copolymers”, J. Magn. Magn. Mater. 321, 667-670 (2009).

Furlani E P, K.C. Ng, “Analytical model of magnetic nanoparticle transport and capture in the

microvasculature”, Phys. Rev. E 73, 061919 (2006).

Furlani E. P., Sahoo, Y., Ng, K. C., Wortman, J. C., & Monk, T. E. « A model for predicting magnetic particle capture in a microfluidic bioseparator ». Biomedical Microdevices 9, 451-463 (2007).

Gavili A, Fatemeh Zabihi, Taghi Dallali Isfahani, Jamshid Sabbaghzadeh, “The thermal conductivity

of water base ferrofluids under magnetic field” Experimental Thermal and Fluid Science 41, 94–98, (2012).

36

Gijs M. A. M., F. Lacharme, and U. Lehmann, "Microfluidic applications of magnetic particles for biological analysis and catalysis" Chemical reviews 110, 1518-1563 (2010).

Gerber R., and Birss, R. R. « High gradient magnetic separation. Research Studies » Press Div. of John Wiley & Sons, Ltd., 1983, 209 (1983).

Gómez-Pastora J, E. Bringas, I. Ortiz, “Recent progress and future challenges on the use of high

performance magnetic nano-adsorbents in environmental applications”, Chem. Eng. J. 256, 187–204, (2014).

Guo H.; Barnard, A.S. “Naturally occurring iron oxide nanoparticles: Morphology, surface chemistry

and environmental stability”. J. Mat. Chem.A, 1, 27–42, (2013).

Gupta AK, Gupta M. “Synthesis and surface engineering of iron oxide nanoparticles for biomedical” applications.Biomaterials”. 18, 3995-4021 (2005).

Häfeli U. O., Riffle, J. S., Harris-Shekhawat, L., Carmichael-Baranauskas, A., Mark, F., Dailey, J. P., & Bardenstein, D.“Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery.”Molecular pharmaceutics, 6, 1417-1428 (2009).

Hagenbüchle M. and J. Liu, “Chain formation and chain dynamic in dilute magnetorheological

fluid”, J. Appl. Optics 36, 76664-7671 (1997).

Hergt R., S. Dutz, R. Müller and M. Zeisberger, «Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy». Phys.: Condens. Matter 18, S2919– S2934 (2006).

Hemery G, Anthony C. Keyes J, Eneko Garaio, Irati Rodrigo, Jose Angel Garcia, Fernando Plazaola, Elisabeth Garanger, Olivier Sandre,"Tuning sizes, morphologies, and magnetic properties of mono- vs. multi-core iron oxide nanoparticles through control of added water in the polyol synthesis". J.//arXiv.org/abs/1701.05858 (2017).

Hoffman M.et Franzreb, C. “Novel repulsive-mode high gradient magnetic separator”. Part I. Design

and experimental results”, IEEE Transactions 40, 456-461 (2004).

Holm C., and J. J. Weiss, “The structure of ferrofluids: A status report”, Current Opinion Coll. Int. Sci 10, 031404, (2005).

Hong C-Y, I.J. Jang, H.E. Horng, C. J. Hsu Y. D.Yao, H. C. Yang, “Ordred structure in Fe3O4

Kerosene -based ferrofluids”, J. Appl. Phys. 81, 4275-4277 (1997).

Hovorka O., Yellen, B., Dan, N., Friedman, G. "Self-consistent model of field gradient driven particle aggregation in magnetic fluids". Journal of Applied Physics 97, 10Q306 (2005).

Hynninen A. P, and M. Dijkstra, «Phase Diagram of Dipolar Hard and soft Spheres: Manipulation of colloidal crysatl structures by an external field”, Phys. Rev. Lett. 94, 138303, (2005).

Issadore D,Y. I. Park, H. Shao, C. Min, K. Lee, M. Liong, R. Weissleder,and H. Lee; “Magnetic sensing technology for molecular analyses” Lab Chip. 14, 2385–2397 (2014).

37

Ito A, M. Shinkai, H. Honda and T. Kobayashi, “Medical application of functonalized magnetic

nanoparticles”, J. Biosci.Bioeng. 100, 1-11 (2005).

Ivanov A. O, A.Yu. Zubarev. “Ostwald ripening kinetics in a magnetic fluid made metastable by a

strengthening of an external magnetic field”, Phys. Rev. E 58, 7517 (1998).

IvanovA. S. and A. F. Pshenichnikov," Vortex flows induced by drop-like aggregate drift in magnetic fluids" Phys. Fluids 26, 012002 (2014).

Janasek D., Franzke, J., and Manz, A. “Scaling and the design of miniaturized chemical-analysis

systems” Nature, 442, 374–380 (2006).

Jones G.H. "Wet magnetic separator for feebly magnetic minerals". In: Proc. 5th Int. Miner. Proc. Congress, London 717 (1960).

Jordan A., R. Scholz, K. Maier-Hau, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, and R. Felix, “Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia”, J. Magn. Magn.Mater. 225, 118-126 (2001).

Katerina H, Hola, K., Markova, Z., Zoppellaro, G., Tucek, J., & Zboril, "Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances." Biotechnology advances 33, 1162-1176 (2015).

Kohler N., Sun, C., Wang, J., & Zhang, M. “Methotrexate-modified superparamagnetic nanoparticles

and their intracellular uptake into human cancer cells.Langmuir, 21(19), 8858-8864 (2005).

Kohler N., Sun, C., Fichtenholtz, A., Gunn, J., Fang, C., & Zhang, M. Methotrexate-immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small, 2, 785-792 (2006).

Kolm H. H, “The large-scale manipulation of small particles”, IEEE Trans. Magn. 11, 1567–1569,

(1975).

Konry T., S.S. Bale, A. Bhushan, K. Shen, E. Seker, B. Polyak, M. Yarmush, "Particles and microfluidics merged: perspectives of highly sensitive diagnostic detection", Microchim. Acta, 176, 251–269 (2012).

Kuzhir P., C, Magnet, H. Ezzaier, A. Zubarev, and G. Bossis, “Magnetic filtration of phase separating

ferrofluids: from basic concepts to microfluidic device”, J. Magn. Magn. Mater. 431, 84-90 (2017).

Laskar J. M., J. Philip, and B. Raj, "Experimental investigation of magnetic-field- induced aggregation kinetics in non aqueous ferrofluids", Phys. Rev. E 82, 021402 (2010).

Latour C. "Magnetic separation in water pollution control", IEEE Trans. Magn. 9, 314–316 (1973).

Laurent S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N.. "Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications". Chemical reviews 108, 2064-2110 (2008).

Lemine O.M.; Omri, K.; Zhang, B.; El Mir, L.; Sajieddine, M.; Alyamani, A.; Bououdina, M. "Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties" Super lattices" Microstruct. 52, 793–799 (2012).

38

Liang L, J. Zhu, X. Xuan, "Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows" Biomicrofluidics 5, 034110 (2011).

Liu J., E. M. Lawrence, A. Wu, M. L. Ivey, G. A. Flores, K. Javier, J. Bibette, and J. Richard, "Field- induced structures in ferrofluid emulsions", Phys. Rev. Lett. 74, 2828, (1995).

Lopez-Lopez M. T, Scionti G, Oliveira AC, Duran JDG, Campos A, Alaminos M, I. A. Rodriguez, “Generation and characterization of Novel Magnetic Field -Responsive Biomaterials”. PloS ONE 10, e0133878, (2015)

Magnet C, P. Kuzhir, G. Bossis, A.Meunier, L. Suloeva, and A. Zubarev "Haloing in bimodal magnetic colloids: the role of field induced phase separation" Phys. Rev. E 86, 011404, (2012).

Magnet C., P. Kuzhir, G. Bossis, A. Meunier, S. Nave, A. Zubarev, C. Lomenech and V. Bashtovoi, “Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields,” Phys. Rev. E 89, 032310 (2014).

Magnet C, M. Akouala, P. Kuzhir, G. Bossis, A. Zubarev, and N.M. Wereley, Closed-loop magnetic separation of nanoparticles on a packed bed of spheres J. Appl. Phys. 117; 17C719 (2015).

Mamusa M "Colloidal interactions in ionic liquids " PhD; thesisat Université Pierre et Marie Curie - Paris VI, (2014).

Mamusa M., Siriex-Plenet, J., Cousin, F., Dubois, E., & Peyre, V. « Tuning the colloidal stability in ionic liquids by controlling the nanoparticles/liquid interface ».Soft Matter 10, 1097-1101 (2014).

Martin J. E., J. Odinek, and T. C. Halsey, « Evolution of structure in a quiescent electrorheological fluid », Phys. Rev. Lett. 69, 1524 (1992).

Martin A. M. Gijs, Frédéric Lacharme, and Ulrike Lehmann; Microfluidic Applications of Magnetic Particles for Biological Analysis and Catalysis; Chem. Rev. 110, 1518–1563, (2010).

Martinet A, "Biréfringenee et diehroisme linéaire des ferrofluides sous champ magnétique" Rheol. Acta. 13, 260-264 (1974).

Martinez Pedrero F., A. El-Harrak, J.C. Fernandez-Toledano, M. Tirado-Miranda, J.Baudry, A. Schmitt, J. Bibette and J. Callejas-Ferrnandez, “Kinetic study of coupled field-induced aggregation and sedimentation processes arising in magnetic fluids”, Phys. Rev. E 78, 011403, (2008).

Massart R. "Preparation of aqueous magnetic liquids in alkaline and acidic media" IEEE Transactions on Magnetics 17, 1247–1248 (1981).

Mendoza-Reséndez, Sergio O, Raquel; Luna, Carlos; "Facile Synthesis of Ultrafine Akaganeite Nanoparticles for the Removal of Hexavalent Chromium: Adsorption Properties, Isotherm and Kinetics"; Journal of Nanoscience and Nanotechnology 17 (2017).

39

Menzel K, J. Lindner, H. Nirschl, “Removal of magnetite particles and lubricant contamination from

viscous oil by High-Gradient Magnetic Separation technique”, Sep. Purif. Technol. 92, 122–128 (2012).

Miyazima S., P. Meakin, and F. Family « Aggregation of oriented anisotropic particles » Phys. Rev. A 36, 1421 (1987).

Miltenyi S., W. Müller, W. Weichel, and A. Radbruch, “High gradient magnetic cell separation with MACS,”Cytometry 11, 231–238, (1990).

Mishima F., S. Takeda, M. Fukushima, S. Nishijima, “A superconducting magnetic separation system

of ferromagnetic fine particles from a viscous fluid”, Physica C 463–465, 1302–1305 (2007).

Moeser G. D., Roach, K. A., Green, W. H., Alan Hatton, T., & Laibinis, P. E.”High gradient magnetic

separation of coated magnetic nanoparticles” AIChE Journal 50, 2835-2848 (2004).

Mohapatra J.; Mitra, A.; Tyagi, H.; Bahadur, D.; Aslam, M. "Iron oxide nanorods as high- performance magnetic resonance imaging contrast agents". Nanoscale 7, 9174–9184 (2015).

Monošík R., & Angnes, L. "Utilisation of micro-and nanoscaled materials in microfluidic analytical devices."Microchemical Journal 119, 159-168 (2015).

Nandy K., S. Chaudhuri, R. Ganguly, I.K. Puri, “Analytical model for the magnetophoretic capture of

magnetic microspheres in microfluidic devices” J. Magn. Magn. Mater. 320, 1398–1405 (2008).

Nurdin I., Iskandar Idris Yaacob c, Mohd Rafie Johan, "Enhancement of thermal conductivity and kinematic viscosity in magnetically controllable maghemite (-Fe2O3) nanofluids" Experimental

Thermal and Fluid Science 77, 265–271 (2016).

Ohara T, H. Kumakura, H. Wada, “Magnetic separation using superconducting magnets”, Physica C, 357–360 1272–1280 (2001).

Oberteuffer J. A., “Magnetic separation: a review of principles, devices and applications”, IEEE

Trans. Magn. 10, 223–238 (1974).

Okoli C, A. Fornara, J. Qin, M.S, Toprak, G. Dalhammar, M. Muhammed, and G. Rajarao, “Characterisation of superparamagnetic Iron Oxide Nanoparticles and its application in protein purification”, J. Nanosci. Nanotechnol. 11, 1533-4880 (2011).

Orlandi G.,P.Kuzhir, Y.Izmaylov, J. AlvesMarins, H. Ezzaier, L. Robert, F. Doutre, X. Noblin, C. Lomenech, G. Bossis, A. Meunier, G. Sandoz, A. Zubarev,”Microfluidic separation of magnetic nanoparticles on an ordered array of magnetized micro-pillars” Phys.Rev.E 93, 062604 (2016).

Osman O, S. Toru, F. Dumas-Bouchiat, N. Dempsey, N. Haddour, L.-F. Zanini, F. Buret, G. Reyne, M. Frenea-Robin. "Microfluidic immunomagnetic cell separation using integrated permanent micromagnets"Biomicrofluidics 7, 054115 (2013).

Pankhurst Q A, J Connolly, S K Jones3 and J Dobson, "Applications of magnetic nanoparticles in biomedicine" J. Phys. D: Appl. Phys. 36, R167–R181 (2003).

Park J.; An, K.; Hwang, Y.; Park, J.G.; Noh, H.J.; Kim, K.Y.; Park, J.H.; Hwang, N.M.; Hyeon, T. "Ultra-large-scale syntheses of monodisperse nanocrystals" Nat. Mater. 3, 891–895, (2004).

40

Petrenko V. I., O.P.Artykulnyi, L. A. Bulavin, L. Almásy, V. M. Garamus, O. I. Ivankov, N. A. Grigoryeva, L.Vekas, P.Kopcansky, M.V.Avdeev, "On the impact of surfactant type on the structure of aqueous ferrofluids" Colloids and Surfaces A: (2017).

Périgo E. A.; Hemery, G.; Sandre, O.; Ortega, D.; Garaio, E.; Plazaola, F.; Teran, F. J. "Fundamentals andadvances in magnetic hyperthermia" Appl. Phys. Rev. 2, 41302 (2015).

Philip J, P. D. Shima, and Baldev Raj, “Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures”, APPLIED PHYSICS LETTERS 91, 203108 (2007).

Pothayee N., S. Balasubramaniam, N. Pothayee, Neeta Jain, N. Hu, Y. Lin, Richey M. Davis, N. Sriranganathan, Alan P. Koretsky, and J. S. Riffle, "Magnetic Nanoclusters with Hydrophilic Spacing for Dual Drug Delivery and Sensitive Magnetic Resonance Imaging," J Mater Chem B 1, 1142–1149 (2013).

Promislow J. H. E. and A. P. Gast, Low-energy suspension structure of a magnetorheological fluid, Phys. Rev. E 56, 642 (1997).

Promislow J. H. E., A. P. Gast and M. Fermigier, “Aggregation Kinetics of paramagnetic colloidal particles”, J. Chem. Phys. 102, 5492 (1995).

Prokopieva T. A., V. A. Danilov, S. S. Kantorvich, and Ch. Holm, J., “Ground state structures in

ferrofluid monolayers”, Phys. Rev. E 80, 031404, (2009).

Raj K. and R. Moskowitz, "Commercial applications of ferrofluids", Journal of Magnetism and Magnetic Materials 85, 233 (1990).

Rodriguez-Arco L., I. A. Rodriguez, V. Carriel, A. B. Bonhome-Espinosa, F. Campos, P. Kuzhir, J.D.G. Duran, and M. T. Lopez-Lopez, “Biocompatible magnetic core–shell nanocomposites for engineered magnetic tissues,” Nanoscale 8, 8138-8150 (2016)

Rosensweig R.E. “Ferrohydrodynamics”. Cambridge University Press, Cambridge, New York (1985) Samanta A, R. Ganguly, A. Datta, N.Modak, “Separation of magnetic beads in a hybrid continuous

flow microfluidic device”, Journal of Magnetism and Magnetic Materials 427, 300–305 (2017).

Sandre O, C Genevois, E Garaio, L Adumeau, S Mornet, "In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia", doi:10.20944/preprint, 201701, 0105 (2017).

Silva A. S. and D. Wirtz, “Dominant Diffusing Mode in the Self - similar phase Separation of a

magnetic suspension a magnetic field”, Langmuir 14, 578-581 (1998).

Socoliuc V, L. Vékas, and R. Turcu, “Magnetically induced phase condensation in an aqueous

dispersion of magnetic nanogels”, Soft Matter 9, 3098 (2013).

Socoliuc V., and D. Bica, "Ferrofluids colloidal stability phase transition phase separation'', Prog. Coll. Polym. Sci. 117, 131-135 (2001).

Suh S.K; Yuet, K; Hwang, D.K; Bong, K.W; Doyle, P.S; Hatton, T.A. “Synthesis of nonspherical

superparamagnetic particles: In situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography”. J. Am. Chem. Soc. 134, 7337–7343, (2012).

41

Sun C. Ouyang, M., Cao, Z., Ma, S., Alqublan, H., Sriranganathan, N.,& Lu, C. "Electroporation- delivered fluorescent protein biosensors for probing molecular activities in cells without genetic encoding".Chem. Comm. 50, 11536–11539 (2014).

Sun C, J. S.H. Lee, and M. Zhang, «Magnetic nanoparticles in MR imaging and drug delivery », Advanced Drug Delivery Reviews 60, 1252 –1265 (2008).

Sun C., Hassanisaber, H., Yu, R., Ma, S., Verbridge, S. S., & Lu, C. "Paramagnetic structures within a microfluidic channel for enhanced immunomagnetic isolation and surface patterning of cells". Scientific reports 6, 29407 (2016).

Svoboda J. “Magnetic techniques for the treatment of materials.Kluwer Academic Publishers,” Dordrecht, Boston, (2004).

Swan J.W., P. A. Vasquez, P. A. Whitson, E. M. Fincke, K. Wakata, S. H. Magnus, F. De Winne, M. R. Barratt, J. H. Agui, R. D. Green, N. R. Hall, D. Y. Bohman, Ch. T. Bunnell, A. P. Gast, and E. M. Furst, Multi-scale Kinetics of a field- directed colloidal phase transition Proc. Natl. Acad. Sci. USA. 109, 16023 (2012).

Tian Y.; Yu, B.; Li, X.; Li, K. "Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents" J. Mater. Chem, 21, 2476–2481 (2011).

Torrisi V, A. Graillot, L. Vitorazi, Q. Crouzet, G. Marletta, C. Loubat, and Berret “Preventing corona effects: multiphosphonic acid poly (ethylene glycol) copolymers for stable stealth iron oxide nanoparticles” J.-F., Biomacromolecules 15, 3171-3179 (2014).

Tsebers A. O, "Role of Surface Interactions in Stratification of Magnetic Fluids", Magnetohydrodynamics 18, 137 (1982).

Tucek G. Der wandel von einer altorientalischen musiktherapie zur ethno-musiktherapie sowie zum kremser studienkonzept, in Wiener Ringvorlesung Musiktherapie. Grundlagen und Anwendungsfelder – ein Kurzlehrbuch, eds Stegemann T., Fitzthum E., editors. (Wien: Praesens; Wiener Beiträge zur Musiktherapie 131–144 (2014).

Vekas L, M.V.Avdeev, D.Bica, “Magnetic nanofluids: synthesis and structure" Nanoscience in

Biomedicine, D. Shi(Ed.”), Springer-Verlag, Berlin, 650-728 (2009).

Yavuz C. T., J.T. Mayo, W. W. Yu, A. Prakash, J. C. Falkner, S. Yean, L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson, V. L. Colvin, “Low field Magnetic separation of monodisperse Fe3 O4

Nanocrystals”, Science 314, 964-967 (2006).

Yavuz C. T., Prakash, A., Mayo, J. T., & Colvin, V. L. “Magnetic separations: from steel plants to

biotechnology.”Chemical Engineering Science 64, 2510-2521(2009).

Documents relatifs