• Aucun résultat trouvé

Pseudomonas entomophila a été découverte dans l'étude du système immunitaire de la drosophile. En démontrant sa virulence envers plusieurs insectes, son caractère particulier entomopathogène a été révélé. Cette souche est très pathogène chez la drosophile car il tue rapidement la larve et l’adulte après ingestion. Il semble que Pe ait sélectionné des systèmes particuliers pour manifester sa virulence chez les insectes. Grâce à l'expérience de l'infection de la drosophile par le surnageant de culture de Pe, on a découvert que la métallo-protéine AprA est un facteur de virulence important. Cependant le mutant aprA peut persister dans l'intestin de la drosophile et provoque toujours une réponse immunitaire et une cessation d’ingestion de nourriture chez la drosophile. La bactérie Pe doit donc posséder d’autres facteurs de virulence qui lui permettent de persister et de provoquer des dommages à la drosophile. La synthèse de ces facteurs est supposée d’être contrôlée par le système Gac puisque la virulence de Pe est complètement abolie par des mutations du système Gac. Le but de ce projet était de disséquer le fonctionnement du système Gac de Pe, afin d’identifier des gènes régulés par ce système et qui sont en même temps impliqués dans la virulence surtout dans la persistance de Pe.

BIBLIOGRAPHIE

Acosta Muniz C., Jaillard D., Lemaitre B., Boccard F., (2007). Erwinia carotovora Evf antagonizes the elimination of bacteria in the gut of Drosophila larvae. Cell Microbio, 9,106-119.

Agrios G.A., (1997). Plant pathology, New York.

Babitzke P. and Romeo T., (2007). CsrB sRNA family : sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol, 10, 156–163.

Basset A., Khush RS., Braun A., Gardan L., Boccard F., Hoffmann JA., Lemaitre B., (2000). The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc Natl Acad Sci U S A, Mar 28, 97(7), 3376-81.

Basset A., Tzou P., Lemaitre B., Boccard F., (2003). A single gene that promotes interaction of a phytopathogenic bacterium with its insect vector, Drosophila melanogaster. EMBO Rep, 4, 205–209.

Blumer C., Heeb S., Pessi G., Haas D., (1999). Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA, 96, 14073-14078.

Boman H.G., Nilsson I., Rasmuson B., (1972). Inducible antibacterial defense system in Drosophila. Nature, 237, 232–35.

Butler S.M., Festa R.A., Pearce M.J., Darwin K.H., (2006). Self-compartmentalized

bacterial proteases and pathogenesis. Mol. Microbiol, 60, 553–562.

Casadevall A. and Pirofski L., (2000). The basic concepts of microbial

commensalism, colonization, infection and disease. Infect Immun, 68, 6511-8.

Dethlefsen L., Eckburg P.B., Bik E.M., Relman D.A., (2006). Assembly of the human intestinal microbiota. Trends Ecol Evol, 21(9), 517-23.

Immun, 78(3), 887-97.

Dubey A.K., Baker C.S., Suzuki K., Jones A.D., Pandit P., Romeo T.,Babitzke P., (2003). CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol, 185,

4450–4460.

Dubuis, C. and Haas D., (2007). Cross-species GacAcontrolled induction of antibiosis in pseudomonads. Appl Environ Microbiol, 73, 650–654.

Falkow S., (2004). Molecular Koch's postulates applied to bacterial pathogenicity-- a personal recillection 15 years later. Nat Rev Microbil, 2, 67-72.

Giddens, S.R., Tormo A., Mahanty H.K., (2000). Expression of the

antifeeding gene anfA1 in Serratia entomophila requires rpoS. Appl. Environ. Microbiol, 66, 1711–1714.

Gooderham W.J., Hancock R.E., (2009). Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev, 33, 279–294.

Goodier R.I. and Ahmer B.M., (2001). SirA orthologs affect both motility and virulence. J Bacteriol, 183, 2249-2258.

Haas, D., Blumer, C., Keel, C., (2000). Biocontrol ability do fluorescent

pseudomonads genetically dissected; Importance of positive feedback regulation. Curr.Opin Biotechnol, 11, 290-297.

Heeb S., Blumer C., Haas D., (2002). Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol, 184, 1046–1056.

Heeb S., Valverde C., Gigot-Bonnefoy C., D. Haas. (2005). Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol. Lett, 243, 251-258.

Heeb S., Kuehne S.A., Bycroft M., Crivii S., Allen M.D.,Haas D., Cámara M, Williams P., (2006). Functional analysis of the posttranscriptional regulator RsmA reveals a novel RNAbinding site. J Mol Biol, 355, 1026–1036.

Hengge-Aronis R., (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev, 66(3), 373-95.

Hrabak E. M. and Willis D.K., (1992). The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol, 174, 3011-3020.

Jander G., Rahme L.G., Ausubel F.M. (2000). Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol, 182, 3843-3845.

Johnston C., Pegues D.A., Hueck C.J., Lee A., Miller S.I., (1996). Transcriptional activation of Salmonella typhimurium invasion genes by a member of the

phosphorylated response-regulator superfamily. Mol Microbiol, 22, 715-727.

Kaberdin V.R., Bläsi U., (2006). Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol Rev, 30: 967–979.

Kay E., Dubuis C., Haas D., (2005). Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA , 102, 17136–17141.

Lapouge K., Sineva E., Lindell M., Starke K., Baker C.S., Babitzke P., Haas D., (2007). Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol. Microbiol, 66,341–356.

Lapouge K., Schubert M., Allain F.H., Haas D., (2008). Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol. Microbiol, 67, 241–253.

Laville J., Voisard C., Keel C., Maurhofer M., Défago G., Haas D., (1992). Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci USA, 89, 1562-1566.

Leulier F., Parquet C., Pili-Floury S., Ryu J.H., Caroff M., Lee W.J., Mengin-Lecreulx D., Lemaitre B., (2003). The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol, 4,478–84.

Lucas R.L., Lostroh C.P., DiRusso C.C., Spector M.P., Wanner B.L., Lee C. A., (2000). Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar Typhimurium. J Bacteriol, 182, 1872-1882.

Mercante J., Suzuki K., Cheng X., Babitzke P., Romeo T., (2006). Comprehensive alanine-scanning mutagenesis of Escherichia coli CsrA defines two subdomains of critical functional importance. J Biol Chem, 281, 31832–31842.

Miller, J., (1972). Experiments in Molecular Genetics, p. 352-355, Cold Spring Harbor Laboratory, NY.

Mukhopadhyay S., Audia J.P., Roy R.N., Schellhorn H.E., (2000). Transriptional induction of the conserved alternative sigma factor RpoS in Escherichia coli is

dependent on BarA, a probable two-component regulator. Mol Microbiol, 37(2), 371-381.

Mutch D.M., Simmering R., Donnicola D., Fotopoulos G., Holzwarth J.A., Williamson G., Corthésy-Theulaz I., (2004). Impact of commensal microbiota on murine

gastrointestinal tract gene ontologies. Physiol Genomics, 19(1), 22-31.

Natsch A., Keel C., Pfirter H.A., Haas D., Défago G., (1994). Contribution of the global regulator gene gacA to persistence and dissemination of Pseudomonas fluorescens biocontrol strain CHA0 introduced into soil microcosms. Appl.Enviro Microbiol, 60, 2553-2560.

Oshima T., Aiba H., Masuda Y., Kanaya S., Sugiura M., Wanner B.L., Mori H., Mizuno T., (2002). Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol, 46, 281–291.

Pernestig A.K., Melefors O., Georgellis D., (2001). Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J Biol Chem, 276, 225-23.

Pessi G., Haas D., (2001). Dual control of hydrogen cyanide biosynthesis by the global activator GacA in Pseudomonas aeruginosa PAO1. FEMS (Fed Eur Microbiol Soc ) Microbio. Lett, 200, 73-78.

Peter Liehl, Mark Blight, Nicolas Vodovar, Frédéric Boccard, Bruno Lemaitre, (2006). Prevalence of Local Immune Reponse against Oral Infection in a

Drosophila/Pseudomonas Infection. Model PLoS Pathogens 2(6), e56. Pirofski LA., Casadevall A., (2008). Adv Exp Med Biol, 635,135-46.

Rahme L.G., Tan M.W., Le L., Wong S. M., Tompkins R.G., Calderwood S.B.,

Ausubel F.M., (1997). Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci USA, 94, 13245-13250.

Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., Haas D., (1997).The global activator gacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol, 24, 309-319.

Rich J.J., Kinscherf T.G., Kitten T., Willis D.K., (1994). Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J Bacteriol, 176, 7468-7475.

Schubert M., Lapouge K., Duss O., Oberstrass F.C., Jelesarov I., Haas D., Allain F.H.-T., (2007). Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol, 14, 807–813.

Suh S.J., Silo-Suh L., Woods D.E., Hassett D.J., West S.E., Ohman D.E., (1999). Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol, 181, 3890-3897.

Suh, S.J., Silo-Suh L., Ohman D.E., (2004). Development of tools for the genetic manipulation of Pseudomonas aeruginosa. J Microbiol Methods, 58, 203-212.

Tan M.W., Rahme, L. G., Sternberg, J. A., Tompkins, R. G., Ausubel F. M., (1999). Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA, 96, 2408-2413.

Vallet-Gely, Lemaitre B., Boccard F., (2008). Bacterial strategies to overcome insect defences. Nat Rev Microbiol , doi,10.1038 /nrmicro1870.

Valverde C., Lindell M., Wagner E.G.H., Haas D., (2004). A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens. J Biol Chem, 279, 25066–25074.

Vivas E. I., Goodrich-Blair H., (2001). Xenorhabdus nematophilus as a model for host-bacterium interactions: rpoS is necessary for mutualism with nematodes. J. Bacteriol, 183, 4687–4693.

Vodovar N., Vinals M., Liehl P., Basset A., Degrouard J., Spellman P., Boccard F., Lemaitre B., (2005). Drosophila host defense after oral infection by an

entomopathogenic Pseudomonas species. Proc Natl Acad Sci USA, 102, 11414–11419.

Vodovar N., Vallenet D., Cruveiller S., Rouy Z., Barbe V., Acosta C., Cattolico L., Jubin C., Lajus A., Segurens B., Vacherie B., Wincker P., Weissenbach J., Lemaitre B., Medigue C., Boccard F. (2006). Complete genome sequence of the

entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol, 24, 673-679.

Whistler C.A., Corbell N.A., Sarniguet A., Ream W., Loper J.E., (1998). The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor _S and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol , 180, 6635-6641.

by RpoS in Pseudomonas aeruginosa. J Bacteriol, 82(15), 4356-60.

Willis D.K., Holmstadt J.J., Kinscherf T.G., (2001). Genetic evidence that loss of virulence associated with gacS or gacA mutations in Pseudomonas syringae B728a does not result from effects on alginate production. Appl. Environ. Microbiol, 67, 1400-1403.

Worlitzsch D., Tarran R., Ulrich M., Schwab U., Cekici A., Meyer K.C., Birrer P., Bellon G., Berger J., Weiss T., Botzenhart K., Yankaskas J.R., Randell S., Boucher R.C., Doring G. (2002). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest 109, 317–325.

Documents relatifs