• Aucun résultat trouvé

R. Rosales, B. Charbonnier, K. Merghem, A. Martinez, F. Van Diijk, et A. Ramdane, “Lasers à blocage de modes à base de batonnets quantiques InAs/InP pour la radio sur fibre à 60 GHz,” in Journées Nationales d’Optique Guidée (JNOG), Lyon, France, 2012. (présentation orale)

R. Rosales, K. Merghem, A. Martinez, et A. Ramdane, “Génération d’impulsions à une fréquence de répétition de 100 GHz à l’aide de lasers a verrouillage de modes passif à base de bâtonnets quantiques émettant à 1,55 mm,” in Journées Nationales d’Optique Guidée

194

R. Rosales, K. Merghem, A. Martinez, et A. Ramdane, “Evaluation de la gigue temporelle de lasers à verrouillage de modes à haute fréquence de répétition à partir du spectre optique” in

Journées Nationales d’Optique Guidée (JNOG), Besancon, France, 2010. (oral)

R. Rosales, K. Merghem, S. Azouigui, A. Akrout , A. Martinez, F. Lelarge, G.-H. Duan, G. Aubin, et A. Ramdane, “Stabilisation d’un Laser Monolithique à blocage de modes passif à base de bâtonnets quantiques a l’aide d’une rétroaction optique externe,” in Journées

References

195

References

[1] D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot lasers,” IEEE Journal of Selected Topics in

Quantum Electronics, vol. 3, no. 2, pp. 196 –205, Apr. 1997.

[2] X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode- locking in 1.3 μm two-section InAs quantum dot lasers,” Applied Physics Letters, vol. 78, no. 19, pp. 2825–2827, May 2001.

[3] M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE Journal of Quantum Electronics, vol. 22, no. 9, pp. 1915 – 1921, Sep. 1986.

[4] M. Willatzen, T. Tanaka, Y. Arakawa, and J. Singh, “Polarization dependence of optoelectronic properties in quantum dots and quantum wires-consequences of valence- band mixing,” IEEE Journal of Quantum Electronics, vol. 30, no. 3, pp. 640 –653, Mar. 1994.

[5] E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,”

Nature Photonics, vol. 1, no. 7, pp. 395–401, 2007.

[6] D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Applied Physics Letters, vol. 89, no. 17, pp. 171111–171111–3, Oct. 2006. [7] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature

dependence of its threshold current,” Applied Physics Letters, vol. 40, no. 11, pp. 939– 941, Jun. 1982.

[8] M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum- Dot Mode-Locked Laser Diodes,” IEEE Journal of Selected Topics in Quantum

Electronics, vol. 15, no. 3, pp. 661 –672, Jun. 2009.

[9] R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP [001],” IEEE

Photonics Technology Letters, vol. 13, no. 8, pp. 767 –769, Aug. 2001.

[10] R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Long-wavelength InP- based quantum-dash lasers,” IEEE Photonics Technology Letters, vol. 14, no. 6, pp. 735 –737, Jun. 2002.

[11] F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 mm,” IEEE Journal of

Selected Topics in Quantum Electronics, vol. 13, no. 1, pp. 111 –124, Feb. 2007.

[12] Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt

Express, vol. 16, no. 14, pp. 10835–10840, Jul. 2008.

[13] M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S.

Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two- section InAs/InP (100) quantum dot lasers around 1.55 ?m,” Opt. Express, vol. 15, no. 25, pp. 16292–16301, Dec. 2007.

196

[14] J. Renaudier, R. Brenot, B. Dagens, F. Lelarge, B. Rousseau, F. Poingt, O. Legouezigou, F. Pommereau, A. Accard, P. Gallion, and G.-H. Duan, “45 GHz self- pulsation with narrow linewidth in quantum dot Fabry-Perot semiconductor lasers at 1.5 mu;m,” Electronics Letters, vol. 41, no. 18, pp. 1007 – 1008, Sep. 2005.

[15] C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Applied Physics

Letters, vol. 88, no. 24, pp. 241105–241105–3, Jun. 2006.

[16] M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Notzel, “Passively Mode-Locked 4.6 and 10.5 GHz Quantum Dot Laser Diodes Around 1.55 mm With Large Operating Regime,” IEEE

Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp. 634 –643, Jun.

2009.

[17] L. Hou, M. Haji, J. Akbar, B. Qiu, and A. C. Bryce, “Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55mm mode-locked lasers,” Opt. Lett., vol. 36, no. 6, pp. 966–968, Mar. 2011.

[18] K. Merghem, A. Akrout, A. Martinez, G. Moreau, J.-P. Tourrenc, F. Lelarge, F. Van Dijk, G.-H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser,” Opt. Express, vol. 16, no. 14, pp. 10675–10683, Jul. 2008.

[19] J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, “250 mW, 1.5µm monolithic passively mode-locked slab-coupled optical waveguide laser,” Optics Letters, vol. 31, no. 2, p. 223, 2006.

[20] C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode- locked lasers,” Opt. Express, vol. 17, no. 22, pp. 19739–19748, Oct. 2009.

[21] R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP Quantum-Dot Passively Mode-Locked Lasers for 1.55 mm Applications,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 5, pp. 1292–1301, Sep. 2011.

[22] K. Sato, “Optical pulse generation using fabry-Pe acute;rot lasers under continuous- wave operation,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, no. 5, pp. 1288 – 1293, Oct. 2003.

[23] Y. Nomura, S. Ochi, N. Tomita, K. Akiyama, T. Isu, T. Takiguchi, and H. Higuchi, “Mode locking in Fabry-Perot semiconductor lasers,” Phys. Rev. A, vol. 65, no. 4, p. 043807, Mar. 2002.

[24] R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Optics Express, vol. 20, no. 8, p. 8649, Mar. 2012.

[25] M. Faugeron, M. Tran, F. Lelarge, M. Chtioui, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. Van Dijk, “High Power Mode Locked Quantum Dash 1.5 ?m Laser With Asymmetrical Cladding,” in CLEO: QELS-Fundamental Science, 2012, p. JW2A.85. [26] G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low Noise

Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode,” IEEE

References

197

[27] E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum- dot laser,” Applied Physics Letters, vol. 87, no. 8, pp. 081107–081107–3, Aug. 2005. [28] D. Nikitichev, Y. Ding, M. Cataluna, E. Rafailov, L. Drzewietzki, S. Breuer, W.

Elsaesser, M. Rossetti, P. Bardella, T. Xu, I. Montrosset, I. Krestnikov, D. Livshits, M. Ruiz, M. Tran, Y. Robert, and M. Krakowski, “High peak power and sub-picosecond Fourier-limited pulse generation from passively mode-locked monolithic two-section gain-guided tapered InGaAs quantum-dot lasers,” Laser Physics, vol. 22, no. 4, pp. 715– 724, 2012.

[29] D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A.

Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photonics, vol. 5, no. 6, pp. 364–371, 2011. [30] L. K. Oxenløwe, “Optical communications: Single-laser super-channel,” Nature

Photonics, vol. 5, no. 6, pp. 329–331, 2011.

[31] S. Chandrasekhar and X. Liu, “DSP-enabled OFDM superchannel transmission,” in

Signal Processing in Photonic Communications, 2012, p. SpTu2A.1.

[32] X. Liu, S. Chandrasekhar, X. Chen, P. Winzer, Y. Pan, B. Zhu, T. Taunay, M. Fishteyn, M. Yan, J. M. Fini, E. Monberg, and F. Dimarcello, “1.12-Tb/s 32-QAM- OFDM Superchannel with 8.6-b/s/Hz Intrachannel Spectral Efficiency and Space-

Division Multiplexing with 60-b/s/Hz Aggregate Spectral Efficiency,” in 37th European

Conference and Exposition on Optical Communications, 2011, p. Th.13.B.1.

[33] D. Zou and I. B. Djordjevic, “Beyond 1Tb/s Superchannel Optical Transmission based on Polarization Multiplexed Coded-OFDM over 2300 km of SSMF,” in Signal

Processing in Photonic Communications, 2012, p. SpTu2A.6.

[34] J. Li, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Building up low-complexity spectrally-efficient Terabit superchannels by receiver-side duobinary shaping,” Opt.

Express, vol. 20, no. 9, pp. 10271–10282, Apr. 2012.

[35] Z. He, I. Djordjevic, W. Liu, M. Luo, Q. Yang, Z. Yang, S. Yu, B. Huang, N. Chi, and W. Shieh, “Comparison of Various Bandwidth-Efficient LDPC Coding Schemes for Tb/s Superchannel Long-haul Transmission,” in National Fiber Optic Engineers

Conference, 2012, p. JW2A.43.

[36] M. Jinno, K. Yonenaga, H. Takara, K. Shibahara, S. Yamanaka, T. Ono, T. Kawai, M. Tomizawa, and Y. Miyamoto, “Demonstration of Translucent Elastic Optical Network Based on Virtualized Elastic Regenerator,” in National Fiber Optic Engineers

Conference, 2012, p. PDP5B.6.

[37] Q. Yang, “Experimental Demonstration of Tb/s Optical Transport Network Based on CO-OFDM Superchannel with Heterogeneous ROADM Nodes Supporting Single-Fiber Bidirectional Communications,” in National Fiber Optic Engineers Conference, 2012, p. JTh2A.47.

[38] J. Yu, Z. Dong, and N. Chi, “Generation, Transmission and Coherent Detection of 11.2 Tb/s (112x100Gb/s) Single Source Optical OFDM Superchannel,” in Optical Fiber

Documents relatifs