• Aucun résultat trouvé

4.1. Plant Material and Growth Conditions

nfu3-2[19] and the wild type Columbia genotypes were germinated and grown under long day conditions (16-h-light/8-h-dark cycle; light intensity: 120 mmoL/cm2/s). For proteomic analysis, two-week-old seedlings were grown on half-strength Murashige and Skoog medium containing 0.05%

(w/v) MES, 1% (w/v) sucrose, 0.7% (w/v) agar and 50µM iron provided as Fe(III)-EDTA as described in [21]. For histochemical GUS detection and GFP confocal observation, seedlings were grown under the same condition for 7 and 10 days, respectively. Four-week-old plants were grown on soil at 23C with a sunlight intensity limited to 300µmol.m2.s1and 16 h of light/8 h of dark.

4.2. Cloning

NFU1,NFU2,andNFU3genomic sequences from about 2 kb upstream from the start codon (2033 bp, 2579 bp, 2595 bp, respectively) and until the last coding codon (without the stop codon) were cloned into the pDONR201 vector and recombined into the pGWB3 and pGWB4 binary vectors [33].

The primers used are described in Table S6. All PCR products were obtained using high-fidelity Phusion DNA polymerase, and each construct was sequenced to ensure its integrity.

4.3. Histochemical GUS Detection and GFP Confocal Observation

Histochemical GUS detection was performed according to [34,35]. The acidified chloral hydrate–glycerol solution was prepared by dissolving 45 g chloral hydrate into a solution consisting of 25 mL 4.2% HCl and 10 mL glycerol. GFP confocal observations were carried out as described in [34]. GUS and GFP images are representative of 20 and 10 independent transgenic lines (at least 20 individuals per line were analyzed), respectively. Images shown in Figure2C were recorded with maximum Z-stack intensity projection.

4.4. Gene Expression Analysis

Total RNAs were extracted using the GenEluteMammalianTotalRNA Purification Kit(Sigma-Aldrich, Saint-Louis, MO, USA). For each sample, 1µg of total RNA treated with DNase was reverse transcribed into cDNA using the RevertAid kit (Thermo scientific, Waltham, MA, USA). qRT-PCR analyses were performed using a LightCycler®480 (Roche, Bâle, Switzerland) and TB Green Premix Ex Taq (2X) (Takara, Kusatsu, Shiga, Japan). PP2AA3 (PROTEIN PHOSPHATASE 2A SUBUNIT A3) was used as a reference gene [36]. Expression levels were calculated using the comparative threshold cycle method. The primers used are described in Table S6.

4.5. Liquid Chromatography Coupled with Mass Spectrometry (LC-MS/MS) Analysis

Protein extraction from whole seedlings, trypsin digestion and MS analysis were carried out as described in [21]. Raw mass spectrometric data were analyzed in the Maxquant environment (v.1.5.5.1, Max-Planck-Institute of Biochemistry, Planegg, Germany) [37] and Andromeda was employed for database search [38]. The MS/MS data were matched against the TAIR10 database. For protein identification and quantification, cysteine carbamidomethylation was set up as fixed modification and oxidation of methionine as a variable modification. At least two peptides were required for protein identification and quantification. Up to two missed cleavages was allowed for protease digestion.

For other characteristics, Maxquant default parameters were used. Following the quantification step

Int. J. Mol. Sci.2020,21, 8121 21 of 23

and the label free quantitative (LFQ) normalization, proteins were considered as quantifiable only if they are present in all samples. Data were log2 transformed prior analysis. For statistics, pairwise t-testsp<0.05 were carried out. Before statistical treatment, the normal distribution of the logarithmic transformed data was assessed. For the present/absent analysis, a protein was considered as absent in thenfu3-2mutant if it was identified with at least 2 peptides in at least 3 replicates achieved with WT plants and not in the 4 replicates achieved withnfu3-2plants. All raw MS data and Maxquant files generated have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD020228.

Supplementary Materials:The following are available online athttp://www.mdpi.com/1422-0067/21/21/8121/s1, Figure S1.Arabidopsis thalianaNFU1, NFU2 and NFU3 protein sequences. Figure S2. Quantitative analysis of GFP fluorescence inArabidopsis thalianaProNFU:gNFU-GFP transgenic lines. Table S1. List of significantly varying proteins in theArabidopsis thaliana nfu3-2mutant relative to wild type. Table S2. List of proteins specifically present in theArabidopsis thaliana nfu3-2mutant or in the wild type. Table S3. Detailed localization of variant proteins. Table S4: Detailed localization of proteins under-accumulated specifically innfu3-2,or innfu2-1or in both mutants. Table S5: Detailed localization of proteins over-accumulated specifically innfu3-2,or innfu2-1or in both mutants. Table S6. Primers used in this study.

Author Contributions:Conceptualization, N.B., F.V., V.R., F.G., and C.D.; Formal analysis, N.B., F.V., B.T., V.R., V.D., V.S., N.R., F.G., and C.D.; Funding acquisition, N.R., F.G., and C.D.; Investigation, N.B., F.V., M.T.-B., and V.R.; Project administration, F.G. and C.D.; Resources, V.S., F.G. and C.D.; Supervision, C.D.; Validation, N.B., F.V., and V.R.; Visualization, N.B., F.V., and C.D.; Writing—original draft, N.B., F.V., N.R., and C.D. All authors have read and agreed to the published version of the manuscript.

Funding:This research was funded by the Agence Nationale de la Recherche grant number ANR-2013-BSV6-0002-01.

Acknowledgments: All confocal analyses were performed on a device of the Montpellier RIO Imaging and PHIV platform.

Conflicts of Interest:The authors declare no conflict of interest.

References

1. Balk, J.; Pilon, M. Ancient and essential: The assembly of iron-sulfur clusters in plants.Trends Plant Sci.2011, 16, 218–226. [CrossRef] [PubMed]

2. Balk, J.; Schaedler, T.A. Iron cofactor assembly in plants.Annu. Rev. Plant Biol.2014,65, 125–153. [CrossRef]

[PubMed]

3. Couturier, J.; Touraine, B.; Briat, J.F.; Gaymard, F.; Rouhier, N. The iron-sulfur cluster assembly machineries in plants: Current knowledge and open questions.Front. Plant Sci.2013,4, 259. [CrossRef] [PubMed]

4. Pilon, M.; Abdel-Ghany, S.E.; Van Hoewyk, D.; Ye, H.; Pilon-Smits, E.A. Biogenesis of iron-sulfur cluster proteins in plastids.Genet. Eng.2006,27, 101–117.

5. Przybyla-Toscano, J.; Roland, M.; Gaymard, F.; Couturier, J.; Rouhier, N. Roles and maturation of iron-sulfur proteins in plastids.J. Biol. Inorg. Chem.2018,23, 545–566. [CrossRef]

6. Bandyopadhyay, S.; Gama, F.; Molina-Navarro, M.M.; Gualberto, J.M.; Claxton, R.; Naik, S.G.; Huynh, B.H.;

Herrero, E.; Jacquot, J.P.; Johnson, M.K.; et al. Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-2S] clusters.EMBO J.2008,27, 1122–1133. [CrossRef]

7. Abdel-Ghany, S.E.; Ye, H.; Garifullina, G.F.; Zhang, L.; Pilon-Smits, E.A.; Pilon, M. Iron-sulfur cluster biogenesis in chloroplasts. Involvement of the scaffold protein CpIscA.Plant Physiol.2005,138, 161–172.

[CrossRef]

8. Mapolelo, D.T.; Zhang, B.; Randeniya, S.; Albetel, A.N.; Li, H.; Couturier, J.; Outten, C.E.; Rouhier, N.;

Johnson, M.K. Monothiol glutaredoxins and A-type proteins: Partners in Fe-S cluster trafficking.Dalton Trans.

2013,42, 3107–3115. [CrossRef]

9. Banci, L.; Brancaccio, D.; Ciofi-Baffoni, S.; Del Conte, R.; Gadepalli, R.; Mikolajczyk, M.; Neri, S.; Piccioli, M.;

Winkelmann, J. [2Fe-2S] cluster transfer in iron-sulfur protein biogenesis.Proc. Natl. Acad. Sci. USA2014, 111, 6203–6208. [CrossRef]

10. Brancaccio, D.; Gallo, A.; Mikolajczyk, M.; Zovo, K.; Palumaa, P.; Novellino, E.; Piccioli, M.; Ciofi-Baffoni, S.;

Banci, L. Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery.J. Am.

Chem. Soc.2014,136, 16240–16250. [CrossRef]

Int. J. Mol. Sci.2020,21, 8121 22 of 23

11. Roland, M.; Przybyla-Toscano, J.; Vignols, F.; Berger, N.; Azam, T.; Christ, L.; Santoni, V.; Wu, H.C.;

Dhalleine, T.; Johnson, M.K.; et al. The plastidialArabidopsis thalianaNFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins.J. Biol. Chem.2020,295, 1727–1742. [CrossRef] [PubMed]

12. Gao, H.; Subramanian, S.; Couturier, J.; Naik, S.G.; Kim, S.K.; Leustek, T.; Knaff, D.B.; Wu, H.C.; Vignols, F.;

Huynh, B.H.; et al.Arabidopsis thalianaNfu2 accommodates [2Fe-2S] or [4Fe-4S] clusters and is competent for in vitro maturation of chloroplast [2Fe-2S] and [4Fe-4S] cluster-containing proteins.Biochemistry2013,52, 6633–6645. [CrossRef] [PubMed]

13. Gao, H.; Azam, T.; Randeniya, S.; Couturier, J.; Rouhier, N.; Johnson, M.K. Function and maturation of the Fe-S center in dihydroxyacid dehydratase from Arabidopsis.J. Biol. Chem.2018,293, 4422–4433. [CrossRef]

14. Rey, P.; Becuwe, N.; Tourrette, S.; Rouhier, N. Involvement of Arabidopsis glutaredoxin S14 in the maintenance of chlorophyll content.Plant Cell Environ.2017,40, 2319–2332. [CrossRef]

15. Touraine, B.; Vignols, F.; Przybyla-Toscano, J.; Ischebeck, T.; Dhalleine, T.; Wu, H.C.; Magno, C.; Berger, N.;

Couturier, J.; Dubos, C.; et al. Iron-sulfur protein NFU2 is required for branched-chain amino acid synthesis in Arabidopsis roots.J. Exp. Bot.2019,70, 1875–1889. [CrossRef] [PubMed]

16. Yabe, T.; Nakai, M. Arabidopsis AtIscA-I is affected by deficiency of Fe-S cluster biosynthetic scaffold AtCnfU-V.Biochem. Biophys. Res. Commun.2006,340, 1047–1052. [CrossRef]

17. Lezhneva, L.; Meurer, J. The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance inArabidopsis thaliana.Plant J.2004,38, 740–753. [CrossRef] [PubMed]

18. Stockel, J.; Oelmuller, R. A novel protein for photosystem I biogenesis.J. Biol. Chem.2004,279, 10243–10251.

[CrossRef]

19. Nath, K.; Wessendorf, R.L.; Lu, Y. A Nitrogen-Fixing Subunit Essential for Accumulating 4Fe-4S-Containing Photosystem I Core Proteins.Plant Physiol.2016,172, 2459–2470. [CrossRef]

20. Nath, K.; O’Donnell, J.P.; Lu, Y. Chloroplastic iron-sulfur scaffold protein NFU3 is essential to overall plant fitness.Plant Signal Behav.2017,12, e1282023. [CrossRef]

21. Berger, N.; Vignols, F.; Przybyla-Toscano, J.; Roland, M.; Rofidal, V.; Touraine, B.; Zienkiewicz, K.; Couturier, J.;

Feussner, I.; Santoni, V.; et al. Identification of client iron-sulfur proteins of the chloroplastic NFU2 transfer protein inArabidopsis thaliana.J. Exp. Bot.2020,71, 4171–4187. [CrossRef] [PubMed]

22. Yabe, T.; Morimoto, K.; Kikuchi, S.; Nishio, K.; Terashima, I.; Nakai, M. The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron-sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I.Plant Cell2004,16, 993–1007. [CrossRef] [PubMed]

23. Hooper, C.M.; Castleden, I.R.; Tanz, S.K.; Aryamanesh, N.; Millar, A.H. SUBA4: The interactive data analysis centre for Arabidopsis subcellular protein locations.Nucleic Acids Res.2017,45, D1064–D1074. [CrossRef]

[PubMed]

24. Martin, J.L.; McMillan, F.M. SAM (dependent) I AM: The S-adenosylmethionine-dependent methyltransferase fold.Curr. Opin. Struct. Biol.2002,12, 783–793. [CrossRef]

25. Melo-Oliveira, R.; Oliveira, I.C.; Coruzzi, G.M. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation.Proc. Natl. Acad. Sci. USA1996, 93, 4718–4723. [CrossRef]

26. Dubois, F.; TercéLaforgue, T.; Gonzalez Moro, M.; Estavillo, M.; Sangwan, R.; Gallais, A.; Hirel, B. Glutamate dehydrogenase in plants: Is there a new story for an old enzyme?Plant Physiol. Biochem.2003,41, 565–576.

[CrossRef]

27. Araujo, W.L.; Ishizaki, K.; Nunes-Nesi, A.; Larson, T.R.; Tohge, T.; Krahnert, I.; Witt, S.; Obata, T.; Schauer, N.;

Graham, I.A.; et al. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria.

Plant Cell2010,22, 1549–1563. [CrossRef]

28. Kluge, C.; Lahr, J.; Hanitzsch, M.; Bolte, S.; Golldack, D.; Dietz, K.J. New insight into the structure and regulation of the plant vacuolar H+-ATPase.J. Bioenerg. Biomembr.2003,35, 377–388. [CrossRef]

29. Motohashi, R.; Rodiger, A.; Agne, B.; Baerenfaller, K.; Baginsky, S. Common and specific protein accumulation patterns in different albino/pale-green mutants reveals regulon organization at the proteome level.Plant Physiol.2012,160, 2189–2201. [CrossRef]

30. Bernard, A.; Joubes, J. Arabidopsis cuticular waxes: Advances in synthesis, export and regulation.Prog. Lipid Res.

2013,52, 110–129. [CrossRef]

Int. J. Mol. Sci.2020,21, 8121 23 of 23

31. Hildebrandt, T.M.; Nunes Nesi, A.; Araujo, W.L.; Braun, H.P. Amino Acid Catabolism in Plants.Mol. Plant 2015,8, 1563–1579. [CrossRef] [PubMed]

32. Godman, J.; Balk, J. Genome analysis of Chlamydomonas reinhardtii reveals the existence of multiple, compartmentalized iron-sulfur protein assembly machineries of different evolutionary origins.Genetics2008, 179, 59–68. [CrossRef]

33. Nakagawa, T.; Suzuki, T.; Murata, S.; Nakamura, S.; Hino, T.; Maeo, K.; Tabata, R.; Kawai, T.; Tanaka, K.;

Niwa, Y.; et al. Improved Gateway binary vectors: High-performance vectors for creation of fusion constructs in transgenic analysis of plants.Biosci. Biotechnol. Biochem.2007,71, 2095–2100. [CrossRef] [PubMed]

34. Gao, F.; Robe, K.; Bettembourg, M.; Navarro, N.; Rofidal, V.; Santoni, V.; Gaymard, F.; Vignols, F.;

Roschzttardtz, H.; Izquierdo, E.; et al. The Transcription Factor bHLH121 Interacts with bHLH105 (ILR3) and Its Closest Homologs to Regulate Iron Homeostasis in Arabidopsis.Plant Cell2020,32, 508–524. [CrossRef]

[PubMed]

35. Tissot, N.; Robe, K.; Gao, F.; Grant-Grant, S.; Boucherez, J.; Bellegarde, F.; Maghiaoui, A.; Marcelin, R.;

Izquierdo, E.; Benhamed, M.; et al. Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3.New Phytol.2019,223, 1433–1446. [CrossRef]

36. Czechowski, T.; Stitt, M.; Altmann, T.; Udvardi, M.K.; Scheible, W.R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139, 5–17.

[CrossRef] [PubMed]

37. Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008,26, 1367–1372. [CrossRef]

[PubMed]

38. Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A peptide search engine integrated into the MaxQuant environment.J. Proteome Res.2011,10, 1794–1805. [CrossRef] [PubMed]

Publisher’s Note:MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

©2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Documents relatifs