• Aucun résultat trouvé

Master Probabilit´es et Finance, examen du 27 mars 2009

Mod`ele `a volatilit´e stochastique de Barndorff-Nielsen and Shephard

Premi`ere question On consid`ere la dynamique suivante pour la volatilit´e: dσt2=−kσ2

tdt + dZt, (B.4)

o`u Z est un processus de Poisson compos´e d’intensit´e λ, dont les sauts ont une distribution exponentielle de densit´e exponentielle f (z) = ηe−ηz1z>0. On note vt= σ2

t.

1. En appliquant la formule d’Itˆo `a ektvt, r´esoudre l’´equation (B.4).

2. Calculer la fonction caract´eristique φt(u) = E[eiuZt] et la transform´ee de Laplace Lt(u) = E[e−uZt] de Zt. 3. Calculer

EheR0Tf (s)dZsi

pour une fonction continue born´ee positive f . Indication: commencer par considerer une fonction f constante par morceaux puis passer `a la limite.

4. En d´eduire la transform´ee de Laplace de σ2

t et IT :=RT 0 σ2

Deuxi`eme question On consid`ere maintenant le mod`ele du comportement d’un actif financier

dSt= StσtdWt, (B.5)

o`u σ est donn´ee par l’´equation (B.4) et W est un mouvement brownien standard sous la probabilit´e risque-neutre Q, ind´ependant de Z. Le taux d’int´erˆet est nul.

1. En utilisant la formule d’Itˆo, d´eduire l’EDS satisfaite par Xt:= log St.

2. Montrer que XT a la mˆeme loi qu’un mouvement Brownien avec drift, chang´e de temps par un processus `

a pr´eciser. En utilisant l’ind´ependance entre Z et W et le point 4 de la premi`ere question, calculer la fonction caract´eristique de XT.

3. En d´eduire les indices d’explosion de moments (pour T fix´e) ˜

p = sup{p : E[ST1+p] <∞} et ˜q = sup{q : E[ST−q] <∞} 4. Calculer les asymptotiques de la volatilit´e implicite pour T fix´e et K grand/petit.

Troisi`eme question (ind´ependante des deux premi`eres) Dans cette question on s’int´eresse `a la couver-ture d’une option europ´eenne dans le mod`ele (B.5).

1. Le march´e, est-il complet? Peut-on construire un portefeuille de replication parfaite en utilisant une action et un autre actif liquide? Justifier votre r´eponse.

2. On consid`ere la couverture approch´ee utilisant uniquement les actions.

• Ecrire la dynamique du prix Ct d’une option europ´eenne, en consid´erant que Ct est une fonction d´eterministe de St et vt. On exprimera Ct comme integrale stochastique par rapport `a W et `a la mesure al´eatoire de Poisson de Z, not´ee par JZ.

• Ecrire la dynamique d’un portefeuille autofinan¸cant. • Calculer E[ε2

T] par isom´etrie d’Itˆo, o`u εT est l’erreur de couverture.

• Calculer la strat´egie de couverture quadratique optimale; montrer qu’elle coincide avec la strat´egie de couverture en delta et expliquer ce r´esultat.

Bibliographie

[1] M. Avellaneda, R. Buff, C. Friedman, N. Grandchamp, L. Kruk, and J. Newman, Weighted

Monte Carlo: a new technique for calibrating asset-pricing models, Int. J. Theor. Appl. Finance, 4 (2001),

pp. 91–119.

[2] O. E. Barndorff-Nielsen and N. Shephard, Econometric analysis of realized volatility and its use in

estimating stochastic volatility models, J. R. Statistic. Soc. B, 64 (2002), pp. 253–280.

[3] D. Bates, Jumps and stochastic volatility: the exchange rate processes implicit in Deutschemark options, Rev. Fin. Studies, 9 (1996), pp. 69–107.

[4] D. S. Bates, Testing option pricing models, in Statistical Methods in Finance, vol. 14 of Handbook of Statistics, North-Holland, Amsterdam, 1996, pp. 567–611.

[5] A. Ben Haj Yedder, Calibration of stochastic volatility model with jumps. A computer program, part of Premia software. See www.premia.fr, 2004.

[6] H. Berestycki, J. Busca, and I. Florent, Asymptotics and calibration of local volatility models, Quant. Finance, 2 (2002), pp. 61–69.

[7] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31 (1986), pp. 307–327.

[8] D. Breeden and R. Litzenberger, Prices of state-contingent claims implicit in option prices, Journal of Business, 51 (1978), pp. 621–651.

[9] M. Broadie and O. Kaya, Exact simulation of stochastic volatility and other affine jump diffusion

processes. Discussion paper, Columbia University, Graduate School of Business.

[10] R. Byrd, P. Lu, and J. Nocedal, A limited memory algorithm for bound constrained optimization, SIAM Journal on Scientific and Statistical Computing, 16 (1995), pp. 1190–1208.

[11] P. Carr and D. Madan, Towards a theory of volatility trading, in Volatility, R. Jarrow, ed., Risk Publications, 1998.

[12] T. F. Coleman, Y. Lee, and A. Verna, Reconstructing the unknown local volatility function, J. Comput. Finance, 2 (1999), pp. 77–102.

[13] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall / CRC Press, 2004.

[14] R. Cont and P. Tankov, Non-parametric calibration of jump-diffusion option pricing models, J. Comput. Finance, 7 (2004), pp. 1–49.

[15] R. Cont and P. Tankov, Retrieving L´evy processes from option prices: Regularization of an ill-posed

inverse problem, SIAM Journal on Control and Optimization, 45 (2006), pp. 1–25.

[16] R. Cont and E. Voltchkova, Integro-differential equations for option prices in exponential L´evy models, Finance and Stochastics, 9 (2005), pp. 299–325.

[17] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp., 19 (1965), pp. 297–301.

[18] J. C. Cox, The constant elasticity of variance option pricing model, Journal of Portfolio Management, 22 (1996), pp. 15–17.

[19] J. C. Cox, J. E. Ingersoll, Jr., and S. A. Ross, An intertemporal general equilibrium model of asset

prices, Econometrica, 53 (1985), pp. 363–384.

[20] S. Cr´epey, Calibration of the local volatility in a trinomial tree using Tikhonov regularization, Inverse Problems, 19 (2003), pp. 91–127.

[21] F. Delbaen and W. Schachermayer, The fundamental theorem of asset pricing for unbounded

stochas-tic processes, Math. Ann., 312 (1998), pp. 215–250.

[22] E. Derman, Regimes of volatility, RISK, (1999).

[23] E. Derman and I. Kani, Riding on a Smile, RISK, 7 (1994), pp. 32–39.

[24] E. Derman, I. Kani, and N. Chriss, Implied trinomial trees of the volatility smile, The Journal of Derivatives, (Summer 1996).

[25] D. Duffie, D. Filipovic, and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab., 13 (2003), pp. 984–1053.

[26] D. Duffie, J. Pan, and K. Singleton, Transform analysis and asset pricing for affine jump-diffusions, Econometrica, 68 (2000), pp. 1343–1376.

[27] B. Dupire, Pricing with a smile, RISK, 7 (1994), pp. 18–20.

[28] N. El Karoui, Couverture des risques dans les march´es financiers. Lecture notes for master ’Probability and Finance’, Paris VI university.

[29] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, vol. 375, Kluwer Academic Publishers Group, Dordrecht, 1996.

[30] R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of variance of united kingdom

inflation, Econometrica, 50 (1982), pp. 987–1008.

[31] P. Friz and S. Benhaim, Regular variation and smile asymptotics, Mathematical Finance, (to appear). [32] M. B. Garman and S. W. Kohlhagen, Foreign currency option values, Journal of International Money

and Finance, 2 (1983), pp. 231–237.

[33] J. Gatheral, The Volatility Surface: a Practitioner’s Guide, Wiley Finance, 2006.

[34] H. Geman, D. Madan, and M. Yor, Asset prices are Brownian motion: Only in business time, in Quantitative Analysis in Financial Markets, M. Avellaneda, ed., World Scientific, River Edge, NJ, 2001, pp. 103–146.

[35] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New York, 2003.

[36] T. Goll and J. Kallsen, Optimal portfolios for logarithmic utility, Stochastic Process. Appl., 89 (2000), pp. 31–48.

[37] P. S. Hagan and D. E. Woodward, Equivalent black volatilities. Research report, 1998.

[38] J. Harrison and D. Kreps, Martingales and arbitrage in multiperiod security markets, J. Economic Theory, 2 (1979), pp. 381–408.

[39] T. Hayashi and P. A. Mykland, Hedging errors: an asymptotic approach, Mathematical Finance, 15 (2005), pp. 309–343.

[40] S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and

currency options, Rev. Fin. Studies, 6 (1993), pp. 327–343.

[41] N. Jackson, E. S¨uli, and S. Howison, Computation of deterministic volatility surfaces, Journal of Computational Finance, 2 (1999), pp. 5–32.

[42] M. Keller-Ressel, Moment explosions and long-term behavior of affine stochastic volatility models. Forthcoming in Mathematical Finance, 2008.

[43] H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, Springer, 2001.

[44] R. Lagnado and S. Osher, A technique for calibrating derivative security pricing models: numerical

solution of the inverse problem, J. Comput. Finance, 1 (1997).

[45] R. Lee, The moment formula for implied volatility at extreme strikes, Mathematical Finance, 14 (2004), pp. 469–480.

[46] R. Lord and C. Kahl, Complex logarithms in heston-like models. Available at SSRN: http://ssrn.com/abstract=1105998, 2008.

[47] D. Madan, P. Carr, and E. Chang, The variance gamma process and option pricing, European Finance Review, 2 (1998), pp. 79–105.

[48] D. Madan and M. Konikov, Option pricing using variance gamma Markov chains, Rev. Derivatives Research, 5 (2002), pp. 81–115.

[49] D. Madan and F. Milne, Option pricing with variance gamma martingale components, Math. Finance, 1 (1991), pp. 39–55.

[50] A. Medvedev and O. Scaillet, A simple calibration procedure of

stochas-tic volatility models with jumps by short term asymptotics. Download from

www.hec.unige.ch/professeurs/SCAILLET_Olivier/pages_web/Home_Page.htm, 2004. [51] D. Nualart, The Malliavin Calculus and Related Topics, Springer, 1995.

[52] P. Protter, Stochastic integration and differential equations, Springer, Berlin, 1990.

[53] M. Romano and N. Touzi, Contingent claims and market completeness in a stochastic volatility model, Mathematical Finance, 7 (1997), pp. 399–410.

[54] M. Rubinstein, Implied binomial trees, Journal of Finance, 49 (1994), pp. 771–819.

[55] K. Sato, L´evy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, UK, 1999.

[56] M. Stutzer, A simple nonparametric approach to derivative security valuation, Journal of Finance, 51 (1996), pp. 1633–1652.

[57] P. Tankov, L´evy Processes in Finance: Inverse Problems and Dependence Modelling, PhD thesis, Ecole Polytechnique, France, 2004.

[58] R. Zhang, Couverture approch´ee des options Europ´eennes., PhD thesis, Ecole Nationale des Ponts et Chauss´ees, 1999.